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Abstract

This paper is concerned with quantitative analysis of tolerance of
sensor hardware failures by control system software. The aim is to
help the system designer evaluate the effectiveness of risk reduction
measures in the system design. This paper proposes an approach for
using stochastic model checking to evaluate how likely a given sensor
failure mode is to lead to a hazardous system failure, taking control
logic and sensor-update timing failures into account. In particular
we propose two complementary techniques: one for examining short-
term consequences of component failures and the other for examining
more subtle longer-term consequences (so-called hidden failures). The
techniques overcome scaling issues and yield valuable insights into
the relative merits of different design decisions. The PRISM model
checker is used for stochastic analysis of Continuous Time Markov
Chain (CTMC) system models. The approach is illustrated on a case
study from manufacturing, involving an industrial metal Press. Al-
though relatively simple, the Press exhibits a wide range of different
behaviours, including hidden failures and subtle race conditions.

Keywords: System hazard analysis ; design for safety ; FMEA ; stochas-
tic model checking ; quantitative risk analysis ; Continuous Time Markov
Chain models.
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1 Introduction

Programmable Electronic Systems are increasingly being used to control
safety-critical equipment [1, 2, 3]. Such systems have stringent fault-tolerance
requirements, and must be designed in such a way that component failures
are anticipated and their effects adequately mitigated, so that the risk of un-
safe (hazardous) system behaviours is acceptably low. It can be very difficult
to predict how the system will behave in the presence of component failures
due to the number of circumstances that need to be taken into account, in-
cluding all of the different combinations of states of the control system, the
Equipment Under Control (EUC) and the environment. Failure Modes and
Effects Analysis (FMEA) is the name typically given to this general form of
analysis [4].

The process of FMEA relies heavily on the analyst’s expertise and fa-
miliarity with the system design. Quantitative FMEA (also called criticality
analysis) is used to estimate the likelihood that a given component failure
mode will lead to a given hazard. It is usually done informally using approx-
imate models [2, 5, 6]. This paper explores in depth the use of stochastic
model checking with Continuous Time Markov Chain (CTMC) models to
automate such analysis. The aim is to improve system designers’ and ana-
lysts’ understanding of the impact of design decisions on hazard likelihood,
in the trade off between software complexity and system safety.

In principal, calculations which would be extremely difficult and error-
prone to do by hand can be done quickly and easily by the new generation
of stochastic model checkers, such as PRISM [7, 8]. This paper describes the
application of PRISM to a software control system. We show that CTMC
model checking is a powerful tool which can yield valuable insights into the
comparative merits of different design decisions, particularly with respect
to their relative effect on hazard probabilities and mean-time-to-hazardous-
failure. We show that it can be used to answer questions such as:

• What are the critical components in the design, and how reliable do
they need to be in order for risk of system failure to be tolerable?

• How do architectural performance issues such as data update and CPU
processor rates affect likelihood of failure due to race conditions?

• Given that faults can lie dormant for some time before the conditions
arise which cause a system failure to become manifest, how can the
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associated risk be quantified and estimated?

We propose two complementary techniques for performing component-failure
effects analysis: one for examining short-term consequences of component
failures, and the other for examining more subtle longer-term consequences
(so-called hidden or undetected failures). We also show that analysis results
can be highly sensitive to modelling decisions and so must be treated with a
great deal of care.

1.1 Overview of the approach

Our method begins with modelling physical aspects of the EUC using the
differential equation-based simulation tool Modelica [9], and then injecting
component faults into the model to investigate the circumstances under which
system behaviour diverges from normal. This step helps the analyst identify
critical components (or more precisely, the component failure modes which
contribute to system failures), the nature of possible hazardous system be-
haviour, and the circumstances under which component failures give rise to
system hazards (cause-consequence analysis).

The next step is to use the insights gained in order to estimate risk as-
sociated with particular component failures (criticality analysis). For these
purposes we develop CTMC models of the EUC, the control-system compo-
nents and their failures, and the environment (including the human operator),
and then use PRISM to evaluate the likelihood of hazardous system failures.
System properties, such as reability of hazardous states, are expressed in
Continuous Stochastic Logic (CSL) [10].

One of the main contributions of the paper is to develop analysis methods
that scale well with system operation time. This is particularly important for
systems with long mission times, of the order of months or years for example,
and with very low tolerable rates for hazardous system failure, such safety
monitoring and control systems [1, 2]. When the cause-consequence rela-
tionship between component failures and hazards is complex, probabilistic
analysis can quickly get pushed beyond the limits of computational feasibil-
ity [11]. The paper explores these limits on a well known case study and
proposes practical solutions.

The approach is illustrated on an Industrial Press case study taken from
the literature [12, 13]. The example is small enough to allow a detailed
treatment to be undertaken here. On the other hand, scaling is already
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an issue for this example because of the system’s long mission time. In
this paper we focus on control system design, including the control logic and
data rates used. We examine the possible consequences of sensor failures and
race conditions, and show how to estimate their likelihood using PRISM. We
examine the effect that changes to the design have on these figures. The
approach can of course be expanded to consider other component failures,
but the example is already rich enough to illustrate many of the subtle issues
that arise in practice.

In fact PRISM supports two other types of stochastic models [14]: Markov
Decision Processes (MDPs) and discrete-time Markov chains (DTMCs). We
chose CTMC modelling for several reasons. MDPs allow for non-deterministic
choice, but do not support calculation of probabilities for particular be-
haviours (such as system hazards), although they can be used to investigate
best-case and worst-case scenarios. DTMCs model time as discrete time
steps, and so would allow only a coarse view of the continuous timing be-
haviour that is typical of most control systems. CTMCs seemed the natural
choice for our application area, and indeed for our case study the resulting
models are relatively simple and elegant. Also, simple hardware components
are often assumed to have constant failure rates (and sometimes human op-
erators) and this is very natural to model in CTMCs [2]. CTMC reward
structures also proved very useful, as shown below.

1.2 Structure of the paper

The paper is structured as follows: Section 2 describes related work on tool
support for FMEA and criticality analysis. Section 3 describes the Press
case study and the Modelica model of the physical behaviour of the Press.
A simple control logic is assumed initially, based on the Press operational
concept. The Modelica model is used to derive values of key parameters
for the CTMC model of the Press developed later in the paper. Section 4
describes how the Modelica model was used to perform a Preliminary Hazard
Analysis by injecting component faults and seeing how and when system
behaviour diverged from expected behaviour. We identify four hazardous
and three undesirable (but not necessarily hazardous) system failure modes,
and provide a preliminary mapping from component failure modes to hazards
and co-effectors.

Section 5 describes the CTMC model of the Press, its control system and
its environment (in this case, operator actions), together with the sensor fail-
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ure modes and a means for injecting faults directly into the system model.
Section 6 describes the basis of the risk calculations, including how safety
requirements can be formalised for model checking in PRISM, and how the
risk of short- and longer-term consequences can be estimated. Section 7 de-
scribes the results of the risk analysis applied to the initial Press design, and
illustrates the effects of different CPU processor/data rates and component
failure modes on hazard likelihood. The section illustrates the sensitivity of
the results to modelling assumptions and establishes a baseline against which
the effects of system design changes are judged in later sections. Section 8
investigates the effect of modifying the control logic to detect errors and fail
to a safe state where possible, without otherwise modifying the Press design.
Section 9 investigates the effect of a second possible design change, which
involves altering the position of one of the sensors in order to reduce the
likelihood of a hazardous race condition. Throughout the paper we report
PRISM computation times, to illustrate the scaling issues of quantitative
analysis. The full Modelica model is given in Appendix A. Appendix B lists
the parts of the PRISM model that are omitted in the text for provide a
complete design model.

2 Related work

A number of different approaches to automating FMEA have been proposed
for software-based systems, including automated simulations with fault in-
jection [15, 16], extraction and analysis of fault propagation models such
as synthesized fault trees [17, 18], and model checking with fault injection
[19, 20, 21, 22, 23]. Simulation-based approaches explore a set of possible
traces for the cause-consequence relationship between failure modes and haz-
ards. Like other testing approaches, simulation-based approaches generally
cannot cover all of the different sets of circumstances that might arise, even in
relatively small systems. Techniques that extract fault propagation models
can reduce the search space to more feasible sizes, but depend critically on the
completeness and correctness of the extraction process, and the insights they
yield are often indirect and hard to interpret back into the system design.
Model checking approaches by contrast can provide means for exhaustively
exploring the state space of a given system directly and automatically.

Most of the approaches listed above are qualitative (although the fault-
tree based approaches typically support a crude form of quantitative anal-
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ysis). Stochastic model checking is a relatively recent development, and is
finding widespread use in quantitative system reliability evaluation [7]. A
number of recent papers have extended this to FMEA and the evaluation of
fault tolerance [24, 25, 26].

The stochastic model checking approach is clearly very promising, but the
usual scaling problems for model checking still apply. One way of dealing with
the problem, as applied in [24, 25], is to assume a target tolerable hazard rate
and mission lifetime and then to use the model checker to see whether the rate
is exceeded over the mission time for the given system design. Usually this
results in a significantly faster computation time than trying to estimate the
actual hazard likelihood. However the mission times for which this approach
is feasible are still relatively short. For example, the simple airbag model in
[25] takes 12 hours to check hazard tolerability over a 10 hr mission time. By
contrast in this paper we are concerned with mission times of over a year.

When a tolerability level is exceeded [25] proposes a way of generating a
set of paths (analogous to counterexamples in standard model checking) that
lead to the hazard and together exceed the tolerable probability. With the
aid of a visualiser, the analyst can investigate which paths are more likely
to occur, and thereby gain insights into which component failures and fault
propagation mechanisms contribute most to risk.

Elmqvist et al [26] set probabilistic model checking in the context of more
general safety assessment processes. Their approach is very similar to ours,
but their example (fault tolerance in an aircraft altimeter) is a synchronous
system with very simple timing behaviour and so does not address many of
the issues that are important for a wide range of systems. Domı́nguez-Garca
et al [27] demonstrate the use of Markov models and MatLab to support the
design analyst in the evaluation of fault tolerance for a flight control system
in a control theory setting (i.e., sets of differential or difference equations)
but use hand-crafted tools.

Bozzano et al [28] propose a model-based approach to system-software co-
engineering. The framework is supported by a tool chain which also includes
analysis tools for quantitative and qualitative analysis to produce Fault Trees
as well as FMEA tables. The report, however, does not reveal details of how
the initial model is transformed into a Markov Chain model which is then put
into the Markov Reward Model Checker (MRMC) [29] to check probabilistic
properties. An industrial evaluation of the framework is proposed as future
work.

Tool supported analysis of stuck-at faults in reconfigurable memory arrays
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using the HOL theorem prover is proposed in [30]. The aim is to prove a
more general relation between key statistical features of the device and its
parameters, namely the number of spare rows and columns in the memory
array that allows for repair solutions. This work is similar to ours in that it
aims at a quantitative analysis of system behaviour in the presence of faults.
However, the approach is not algorithmic and relies heavily on user expertise
in driving the proof engine.

Our work is focused on developing a CTMC model and analysing it with
the PRISM model checker. Other tools could have been also chosen for this
task, such as the Markov Reward Model Checker (MRMC) [31] and the Er-
langen Twente Markov Model Checker (ETMCC) [32] which provide similar
numerical analysis capabilities for CTMCs as PRISM, but with less devel-
oped user interfaces. Vesta [33] and YMER [34] provide statistical model
checking capabilities, based on Monte Carlo simulation or discrete event
sampling, respectively, and statistical hypothesis testing. An experimen-
tal performance comparison between these tools can be found in [35] and
a comparison between numerical versus statistical model checking can be
found in [36]. Probabilistic model checking has also been integrated into
various tool chains supporting formalisms such as stochastic Petri Nets [37]
and Statecharts [38].

3 The case study: the Industrial Metal Press

This section describes the hypothetical case study on which the approach is
illustrated, and the physical simulation that was used to derive key values
for the CTMC models developed later in the paper.

3.1 Press operation and design

The Industrial Press is a hydro-mechanical system of the kind used to produce
body parts for motor vehicles [13]. The main physical component of the Press
is a 50 tonne plunger which gets raised 7 metres and then, upon a command
from the operator, falls under gravity onto a metal workpiece, pressing it
into the desired shape. The Press system includes an automated control
component implemented via a Programmable Logic Controller (PLC).

The primary parts of the Press are shown in Figure 1. The plunger is
raised to the top and held there by a motor drive, winding gear and hydraulic
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Figure 1: Press design

clutches. The Press control component activates and deactivates the motor
drive in response to sensors which detect the position of the plunger and the
state of the operator button. When the plunger is at the top and the operator
pushes and holds down the button, the controller deactivates the motor drive
and allows the plunger to fall. When the plunger reaches the bottom, the
controller automatically re-activates the motor drive and the Press re-opens.

The control logic includes as a safety feature the ability for the operator
to abort operation by releasing the button while the Press is closing. This
causes the controller to reactivate the motor drive and re-open the Press.
Note however that there is a point – called the Point of No Return (PONR)
– after which the falling plunger’s momentum is so high that it is not feasible
to prevent the Press closing. Activating the motor drive after this point will
only slow the plunger’s descent but not stop it closing, and may even damage
or destroy the opening mechanism. The control system thus also includes a
PONR sensor and only permits closing to be aborted if the plunger has not
yet reached the PONR.

Under normal operation the Press will close in approximately 2 seconds,
and open in approximately 4 seconds. The Press would typically be operated
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Abbreviation Meaning Value

Given values:
H Height 7.0 m
TTO Time to open 4.0 s
TTC Time to close 2.0 s

Calculated values:
PONR Height of PONR 1.44 m
TTP Time to fall to PONR under gravity 1.780 s
RTP Time to rise from bottom to PONR 1.883 s
TTR Time to reopen fully after abort (worst case) 4.5 s

Table 1: Press distance and time values

once per minute (i.e., a full operational cycle would typically take 60 sec).
There would normally be 420 operations of the Press per day and approxi-
mately 105 per year. It is estimated that operation would be aborted roughly
once in every 100 press operations.

In this paper we are primarily concerned with the Press control system
software design, including the control logic and data rates used. We examine
the different possible consequences of sensor failures and race conditions, and
show how to estimate their likelihood using PRISM. We examine the effect
of design changes on these figures. The approach can of course be expanded
to consider other component failures, such as the motor drive and winding
gear or the PLC itself, but the example is already rich enough to illustrate
many of the subtle issues that arise in practice.

3.2 Modelling Press behaviour and component failures

In order to derive values for the key parameters of our CTMC models, we
first developed a physical simulation of the system in Modelica [9], using
the laws of physics for constant motor-drive force with friction. A value for
the motor-drive force was estimated and the value of the friction coefficient
was adjusted until a close match was achieved with the Press opening and
closing times given above. A very simple control logic was derived to match
the operational concept above: the motor gets turned off if the plunger is
at the top and the button gets pushed; the motor gets turned on again
when the plunger reaches the bottom or if the button is released while the

9



plunger is above the PONR (the abort case). The values for the other key
parameters, such as the height of the PONR, were then calculated from the
model: Table 1 presents the results. (The TTR case corresponds to activating
the motor drive immediately before PONR, so that the press almost, but not
quite, closes fully.) The full model is given in Appendix A.

The Modelica model was built in such a way that component failures
can be injected to help the analyst identify the kinds of system failure that
might eventuate. Section 4 below describes the Preliminary Hazard Analysis
process and the support Modelica provides. The most common forms of
control system input failures, and the ones whose effects last the longest,
are persistent (“stuck at”) failures, whereby a sensor component “breaks”
and the control system receives a constant value from that time onwards [2].
There could be many different causes of this: the sensor itself could break
or lose its connection with the plunger, the communication link between the
sensor and the control component could break, the PLC input register or
the read mechanism could fail, and so on. In the case of the Press control
system, there are four different sensors and hence eight different component
failure modes.

4 Preliminary Hazard Analysis

This section describes how the physical model of the Press in Modelica can be
used to establish cause-consequence relationships between component failures
and system hazards (system failure modes that could lead to accidents). In
some cases there is a delay between when the component fails and when the
system fails. In other cases the system failure occurs only when particular sets
of conditions (called co-effectors) occur, such as particular operator actions
being taken in particular phases of Press operation. By injecting component
failures into the Modelica model, we can investigate when and how system
behaviour diverges, thereby getting insight into the failure mechanisms and
co-effectors involved. More specifically, we are able to formulate the different
kinds of system behaviour that will be investigated more thoroughly using
model checking.
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4.1 Method

The effects of component failures can be investigated by running two Model-
ica models in parallel in the same environment: one for normal behaviour as
described in the operational concept above, and one for behaviour in the pres-
ence of a failed component. A system failure occurs when the two behaviours
diverge (that is, the system with a failed component behaves differently from
normal). For safe operation it is necessary to consider cases when the op-
erator pushes and/or releases the button at various different times in the
operational cycle, not just at “normal times”. These are the coeffectors for
the Press case study. For example, although the operator would not normally
push the button while the Press is opening, there is still the possibility that
they may do so, and the Press should continue to behave as expected (in this
case, continue to open).

A series of experiments was set up, in which one of the 8 sensor fail-
ure modes was injected 1 sec into the first operational cycle and one of
4 co-effectors took place in the second operational cycle (see below). The
plunger’s height was plotted as a function of time in each case where di-
vergence occurred, and the resulting system failure modes were categorised
according to the nature of the divergence. The four different environmental
conditions (co-effectors) were as follows:

• operator releases the button 1 sec after pushing it – corresponding to
the abort case (since from Table 1 it takes the plunger 1.78 sec to fall
to PONR)

• operator releases the button 1.8 sec after pushing it – corresponding to
releasing the button after PONR but before the Press has fully closed

• operator releases the button 3 sec after pushing it – corresponding to
releasing the button after the Press has fully closed

• operator pushes the button while the Press is opening

In a more systematic exploration of the consequences of component failures
we would also vary the time (or at least, operational phase) at which the
component failed. In the results reported in the next section we considered
only the case where the sensor failed as the Press was opening. This turns
out to be sufficient to reveal a wide range of divergent behaviours, enough
to formulate hazardous behaviours to be investigated using model checking
below.
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Figure 2: Normal Press behaviour (h) vs behaviour after PONR sensor fails
stuck low (hf): (a) button released before Press closes; (b) button released
after Press closes

4.2 Results

This section summarises the results of the experiments and identifies the
system failure modes that were revealed.

4.2.1 Button sensor failure

For the simple control system design considered here, the most clearly haz-
ardous Press failure occurs if the button sensor fails stuck high (indicating
that the button is pushed). The Press will start to close again unexpectedly
and uncontrollably as soon as the plunger reaches the top. We formulate the
corresponding system failure as ‘H1: Uncommanded closing’. No co-effectors
are needed in this case: the faulty behaviour is independent of the operator’s
actions. This is an example of a failure where there is a delay between the
cause (the button sensor fails) and the consequence (the system fails).

There is another, more subtle case involving the button sensor fails stuck
high case: if the failure occurs while the Press is closing but before the
operator attempts to abort by releasing the button above PONR, then abort
will fail. This case would not be revealed by our simple testing strategy
above. The model checking in Section 7.2.1 below does however reveal it.

If the button sensor fails stuck low then the Press will simply fail to
close again. For the purposes of hazard analysis below, we treat this as an
undesirable, but not hazardous, system failure ‘F1: Stuck open’.
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4.2.2 PONR sensor failure

Our experiments revealed two different kinds of system failure involving the
PONR sensor fails stuck low case (indicating that the plunger is above the
PONR). The first occurs when the operator releases the button between
PONR and bottom: in normal operation the plunger should continue to fall
under gravity to the bottom, but its fall is slowed in this case. Closer inspec-
tion, shown on the bottom of Fig. 2a, reveals that the plunger decelerates
during the last part of its fall, suggesting that the motor drive has activated
after PONR. This is a hazardous behaviour because, for reasons given in sec-
tion 3.1 above, the motor drive must not activate after the PONR is passed.
We categorise this as hazard ‘H2: Dangerous motor activation’.

The second case occurs when the operator releases the button after the
Press has closed (Fig. 2b). Rather than immediately rising after hitting the
bottom as expected, there is a one second delay before the plunger begins
rising. While this is not hazardous behaviour, it is clearly undesirable, and
is categorised as ‘F3: Incorrect opening’.

If the PONR sensor fails stuck high there is a hazardous failure in the
case where the operator attempts to abort: the plunger continues to fall to
the bottom. We categorise this as hazard ‘H4: Abort fails’.

4.2.3 Top sensor failure

Our experiments revealed two different kinds of system failure in the top
sensor fails stuck high case (indicating that the plunger has reached the
top). The first occurs in the case where the operator does not release the
button until after the Press has closed: this results in a delay in re-opening
of the Press similar to above (F3), since the motor only comes on (and stays
on) once the button is released. The other case is when the operator pushes
the button while the Press is opening, which results in the motor being
deactivated unexpectedly. We categorise this as hazard ‘H3: Unexpected
closing’. If the top sensor fails stuck low, the Press will not close again after
the plunger has reached the top (system failure F1 above).

4.2.4 Bottom sensor failure

Finally, if the bottom sensor fails stuck high (indicating that the plunger has
reached the bottom), we get behaviour F1 (stuck open). If the bottom sensor
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ID System failure Description

Hazardous:
H1 Uncommanded closing Press starts to close without operator

pushing button
H2 Dangerous motor activation Motor activated while Press closing

below PONR
H3 Unexpected closing Motor deactivated while Press opening
H4 Abort fails Operator unsuccessfully tries to

abort Press closing

Non-hazardous:
F1 Stuck open Press won’t close
F2 Stuck closed Press won’t open
F3 Incorrect opening Press doesn’t open until operator

releases button

Table 2: System failure modes

fails stuck low, the Press does not open again. We categorise this as system
failure ‘F2: Stuck closed’.

4.3 Discussion

The system failure modes are summarised in Table 2. In cases where the
system failure did not manifest itself under all environmental conditions, the
required co-effector was also noted: see Table 3. The results of the analysis,
and in particular the insights gained from detailed observation of the system,
are used to inform the quantitative analysis as explained in following sections.

A larger experiment, in which the phase in which the sensor failure is also
varied, would reveal further cases for Table 3. For example, H2 (dangerous
motor activation) would occur if the bottom sensor failed high during the
final phase of closing. Similarly, H4 (loss of abort) would occur if the button
sensor failed stuck high during the initial phase of closing and the operator
tried to abort.

Although the experiments reported above did not exercise all possible
conditions, the system failure modes have been defined in a general way so
that it is clear by inspection that they cover all the main system hazards. (See
section 5.3 for formal definitions.) Adequate identification and characterisa-
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Sensor Failure Co-effector System
mode failure

Button stuck high H1
stuck low F1

Bottom stuck high F1
stuck low F2

Top stuck high Button pushed while opening H3
Button released after Press closes F3

stuck low F1
PONR stuck high Button released between top & PONR H4

stuck low Button released between PONR & bottom H2
Button released after Press closes F3

Table 3: Partial Failure Modes and Effects Analysis

tion of hazards is an important pre-requisite for subsequent risk analysis, but
is beyond the scope of the current paper.

As a final remark, it should be noted that the operational concept for
the Press from Section 3.1 can be implemented in several different ways, and
that the choice has a large effect on the risk analysis results. As explained
in Section 3.2, the “naive” control logic used in this paper is the following:

• if the plunger is at the bottom, or is above PONR and the button is
released, turn the motor on

• if the plunger is at the top and the button is pushed, turn the motor
off

By contrast, Atchison et al [13, 16] use a control logic based on (an internal
representation of) the state of the Press along the following lines:

• if the Press is closed, or is closing above PONR and the button is
released, turn the motor on

• if the Press is open and the button is pressed, turn the motor off

While the two logics are indistinguishable when sensors are functioning cor-
rectly, they have very different behaviours in the presence of faults. For
example, if the PONR sensor fails stuck low (indicating the plunger is above
the PONR), then the Press will stay in the “closing above PONR” state in
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the latter case, and the motor will not get turned on again until the operator
releases the button. In our case however the motor gets turned on again as
soon as the plunger reaches the bottom.

Grunkse et al [24] use the same control logic as us but a different model
of operator behaviour, in which the operator pushes and releases the button
at a rate of once per 10 sec on average. This leads to quite different risk
analysis results for some failure modes, such as PONR stuck high. They also
assume that sensor values are updated and processed without delay, which
is different from our treatment below (see Section 6.5.1 for details).

5 Stochastic model of the Press system

Having performed Hazard Identification and a form of Failure Modes and
Effects Analysis, the next step is to develop stochastic models of the sys-
tem, in order to quantify the different possible effects of component failures
and estimate the likelihood of hazardous system failure. This section begins
with a description of formulation of CTMCs in PRISM as background to our
models. It then outlines the PRISM model of the Press. Section 5.3 out-
lines timing considerations and Section 5.7 describes how sensor failures are
modelled. The PRISM simulator was used to manually validate timing and
probability of individual transitions in the models reported below, to ensure
they approximated the behaviours of the plunger and operator described in
Section 3.

5.1 Stochastic modelling in PRISM

CTMCs are specified as collections of interacting modules in PRISM, each
with its own variable set, initial state and set of labelled transitions [14].
Each transition is of the form

[e] guard -> r: var’=b

where e is an event label (used for synchronisation of transitions across dif-
ferent modules; the event label is omitted if the transition is not required to
synchronise with transitions in other modules), guard is a Boolean expres-
sions representing the guard of the transition, r is a rate (explained below),
and b is the value of the variable var after the transition has taken place.
The state of a module is determined by the current values of its variables.
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The system state is the product of the individual module states. See [8] for
a fuller description of the PRISM semantics.

In CTMCs, stochasticity is modelled using exponential functions for prob-
ability and timing of transitions between pre- and post-states. The modeller
specifies a rate for each state transition. If in some state s a single transition
is enabled with rate r, then the probability that the system leaves that state
before time t is given by the Cumulative Distribution Function (CDF)

Expx(t) = 1 − e−t/x (1)

where x = 1/r. (The case where multiple transitions are enabled simultane-
ously is discussed below.) This treatment has some very nice mathematical
properties. For example, the expected time that the system will stay in the
pre-state s is x. (The actual transition to a post-state is taken to be instan-
taneous.) If in particular the transition goes from a working state to a failed
state, then r is called a failure rate and x gives the Mean Time To Failure
(MTTF).

For many aspects of our models below, ‘expected time in a state’ is a
more natural concept than ‘rate’ so we tend to use x in preference to r when
explaining the models below. Thus, we talk about sensors having a MTTF
of 5 years, for example, when the transition leading to the failure state has a
constant failure rate of 1 in 5 years. We model different phases of the Press
operational cycle as discrete states, with the expected time spent in each
state defined according to the values given by the Modelica simulation of
plunger behaviour in Table 1 above. Thus for example, the transition from
state ‘plunger falling above PONR’ to state ‘plunger falling below PONR’
has a rate of 1/TTP, which results in an expected time of TTP = 1.78 sec
for being in the state ‘plunger falling above PONR’.

Where transitions in two or more separate modules are synchronised (via
the event label), they take place simultaneously as a single system state
transition. The rate of the combined transition is the product of the rates of
the individual transitions. Synchronised transitions can only be taken if the
guards of all their individual transitions hold.

5.2 Race conditions

According to PRISM’s semantics of CTMCs, when two or more (non-synchronised)
transitions are enabled simultaneously, one of the transitions is selected prob-
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abilistically and then taken: i.e., there is a “race” between the different tran-
sitions, with only one winner. Using the notation of [14], let S be the set of
all states in the full CTMC model and let R : S × S → R≥0 be its transition
rate matrix. The time spent in state s before any transition occurs is prob-
abilistic with cumulative probability given by the CDF in formula 1 above,
with rate r substituted by

E(s)
def
= Σs′∈S R(s, s′)

E(s) is called the exit rate for state s. The probability of making transition
s 7→ s′ is given by

p(s, s′)
def
= R(s, s′)/E(s).

and the expected time spent in the pre-state s is 1/E(s).
Note that this means that the timing behaviours of modules are not

independent: the time that a module spends in one of its states can be
influenced by behaviours of other modules. This lack of “true modularity”
means the modeller needs to be very careful when specifying rates. We
encountered this issue many times during modelling: cf. for example the
discussion of modelling of operator behaviour in Section 5.4, estimation of
Immediate Failure Likelihood in Section 6.2, and the possibility of hazardous
behaviour due to race conditions in Section 6.5.1.

In the following we outline our CTMC model of the Press. This model is
divided into modules corresponding to the main components of the system:
the plunger, the operator, the four sensors, the control logic, and the motor-
drive actuator.

5.3 Plunger behaviour

The plunger has six main physical states, according to its position and di-
rection of travel (see Fig. 3): at bottom (state 1), rising below PONR (state
3), rising above PONR (state 4), at top (state 5), falling above PONR (state
7), and falling below PONR (state 8). Intermediate states 2, 6 and 9 are in-
cluded in order to allow synchronisation of the actions of the different system
components. (PRISM allows only one synchronisation event per transition.)
So for example state 6 corresponds to the case where the motor has been
turned off while the plunger is at the top but the plunger has not yet fallen
quite far enough for the top sensor to detect its changed state. States 10-13
represent hazards H1-H4 respectively and are explained further below.
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module Plunger

state : [1..13] init 1;

[motorOn] state=1 -> state’=2;

[plNotAtBottom] state=2 -> state’=3;

[plAbovePONR] state=3 -> RisingR1:(state’=4);

[motorOff] state=3 -> state’=12; // H3

[plAtTop] state=4 -> RisingR2:(state’=5);

[motorOff] state=4 -> state’=12; // H3

[motorOff] state=5 & stateOp=1 -> state’=10; // H1

[motorOff] state=5 & stateOp=2 -> state’=6;

[plNotAtTop] state=6 -> state’=7;

[plBelowPONR] state=7 & stateOp=1 -> FallingR4:(state’=13); // H4

[plBelowPONR] state=7 & stateOp=2 -> FallingR1:(state’=8);

[motorOn] state=7 -> state’=9; // abort above PONR

[plAtBottom] state=8 -> FallingR2:(state’=1);

[motorOn] state=8 -> state’=11; // H2

[] state=9 -> FallingR3:(state’=4);

endmodule

Figure 3: Plunger behaviour
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ID System failure Description Plunger
state

H1 Uncommanded Motor deactivated while plunger 10
closing at top and button released

H2 Dangerous motor Motor activated while plunger 11
activation falling below PONR

H3 Unexpected Motor deactivated while plunger 12
closing rising

H4 Abort fails Plunger falls past PONR without 13
motor being activated, even
though button was released

Table 4: Modelling of hazardous states

Most of the transitions in our plunger model are guarded by synchroni-
sation events. These are depicted as labels on the transition edges in Fig. 3,
using the convention of adding suffix ‘!’ or ‘?’ according to whether the event
is initiated by this component or by another component. (This notation is
not part of the PRISM language and is used here only to aid understanding.)
For example, the plunger transitions from rising below PONR (state 3) to
rising above PONR (state 4) will synchronise with a change of state in the
PONR sensor module using the event plAbovePONR.

Some transitions from states 5 and 7 are also guarded by a predicate whose
value depends on the current state of the operator module: stateOp=1 in-
dicates that the operator has released the button and stateOp=2 indicates
that the operator is currently pushing the button (see Section 5.4 below).
These guards are used to distinguish normal operation from hazardous be-
haviour. For example, if the motor gets turned off while the Press is open
(state 5) and the operator is pushing the button, this is normal behaviour.
But if the operator is not pushing the button, this is hazardous behaviour
(H1 Uncommanded closing).

The states 10-13 model the occurrence of hazards H1-H4: see Table 4.
These states are terminal states with no outgoing edges, and thus they ab-
stract from any further behaviour of the Press that might occur after the
hazardous state occurs. Modelling the hazards in this way adds some com-
plexity to the model but it makes formalisation in CSL very easy: we simply
check the likelihood that the system reaches one of the hazardous states (see
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Section 6 below).
An abort by the operator is modelled as a transition from state 7 (falling

above PONR) to state 4 (rising above PONR) via an additional state 9
in case the event mOn? is received. This is a slight simplification since
the actual plunger behaviour will depend on how early during closing the
operator releases the button. If button release occurs late (but still before
PONR) then the motor will slow and eventually reverse the plunger’s fall, but
the plunger may pass the PONR in the interim. Rather than complicating
our model by introducing complex timing considerations and force/friction
calculations, we simply ignore this phenomenon, since it does not impact our
main risk calculations. This simplification is valid provided we don’t try to
infer anything about the plunger’s actual position during that phase of Press
operation.

Similarly, we omitted the cases where a mOn? event is received in state
6, or a mOff? event in state 2, in the interests of simplicity. They introduced
loops into the model which significantly complicated the analysis, without
substantively changing the results for the hazards we study.

Timing of the plunger’s behaviour

As explained above, in CTMCs all transitions are probabilistic and the sys-
tem stays in a state for a non-zero period of time before transitioning to a new
state. The exponential CDF describes the timing, which is parametrised by
rates (see equation 1). This section explains the choice of rates in the plunger
module.

The first step is to choose an appropriate unit of time for ‘simple’ (basic)
transitions. In our model we chose to use the time taken to sense and transmit
or process data, which is commonly called the clock rate. The actual choice
of clock rate is a parameter in our model, so that we can test the effects
of different design decisions. Faster clock rates reduce the likelihood of race
conditions, but can be harder or more expensive to achieve in practice, so
being able to evaluate the risk associated with different rates is an important
capability for trade-off analysis in system design. In Section 7.1.1 below we
investigate a range of clock rates from 1,000 per sec to as high a rate as our
PRISM model would feasibly allow. For much of the analysis in the rest of
the paper we settle on 10,000 per sec (clock=10−4). Where a rate is not
explicitly specified in a transition, it is taken to be the unit rate (i.e., the
clock rate).
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ID Plunger state Expected time x x (sec)
RisingR1 3 RTP 1.883
RisingR2 4 TTO − RTP 2.117
FallingR1 7 TTP 1.780
FallingR2 8 TTC − TTP 0.220
FallingR3 9 TTP+TTR−(TTO−RTP) 4.163
FallingR4 – TTP/2 0.890

Table 5: Derivation of rates for plunger transitions

The rates for transitions corresponding to changes in the physical state
of the plunger were chosen so that the expected time spent in a state corre-
sponds to the figures given by the Modelica simulation (see Table 1 on page
9). For example the plunger typically takes RTP=1.883 sec to rise from the
bottom to the PONR with the motor on. The corresponding rate for the
transition from state 3 to state 4 is thus RisingR1 = clock/RTP. The rates
for the other changes of physical state of the plunger were defined similarly
using Table 5. The rate FallingR3 was derived from how long it takes the
plunger to start rising above PONR again if closing is aborted: we use the
worst case scenario from Table 5. The rate FallingR4 was derived based on
the assumption that, if the operator aborts, then the expected time for the
action is halfway through the window of opportunity: i.e., TTP/2.

5.4 Operator behaviour

The operator has two possible states, push and release, according to whether
they are pushing (and holding down) the button or not (see Fig. 4). The
rates associated with operator behaviour are defined in Table 6. The push-
button rate (PushRate) was derived from the expected time the Press spends
in the open state (namely, 60 sec expected cycle time, less the 6 sec it takes
to close and reopen), since pushing the button is what causes the Press to
start closing during normal operation.

PushRate = clock/TAT, where TAT = 60 − (TTC + TTO)
ReleaseRateN = FallingR2
ReleaseRateA = 0.01 * FallingR1

Table 6: Rates for the operator transitions
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module Operator

stateOp : [1..2] init 1; // release(1), push(2)

[pushButton] stateOp=1

-> PushRate:(stateOp’=2);

[releaseButton] stateOp=2 & !(state=5 | state=6 | state=7)

-> ReleaseRateN:(stateOp’=1); // normal release

[releaseButton] stateOp=2 & (state=5 | state=6 | state=7)

-> ReleaseRateA:(stateOp’=1); // abort

endmodule

Figure 4: Operator behaviour

There are two different cases for when (and why) the operator releases the
button. If they release the button while the Press is closing above PONR,
this is an abort and we are told it typically occurs one in a hundred times.
We model this by a transition which is only enabled when the plunger is
in states 5-7 and whose rate (ReleaseRateA) is 0.01 times that associated
with the plunger falling to the PONR (FallingR1). Thus, once the controller
actions are taken, there is a race between the plunger reaching PONR and
the operator releasing the button, which the PONR-reached-first case (i.e.,
no abort operation) is 100 times more likely to win.

The other case is where the operator releases the button normally (i.e.,
not while the Press is open or closing above PONR). In the absence of other
information, for the purposes of analysis we have assumed the operator is
equally likely to release the button before or after the Press has fully closed.
By setting the rate ReleaseRateN to be the same as the rate for the plunger
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transition from falling-below-PONR to at-bottom, this makes the likelihood
that they release the button before the plunger reaches the bottom fifty per
cent, as desired. (There is a small effect on the expected time spent in state
8 in the case where the operator keeps pushing the button because of the
way exit rates are defined in PRISM, but it is negligible for the purposes of
our analysis.)

5.5 Sensor and actuator normal behaviour

Sensors are modelled as simple components that detect a change in the state
of the environment (such as the plunger passing a given position, or the op-
erator pushing or releasing the button) and output a signal to the controller.
Actuators detect signals and cause changes to the environment, e.g., turning
the motor drive on or off.

module TopSensor

stateTS : [0..3] init 0; / high(1), low(3)

[plAtTop] stateTS=0 -> stateTS’=1;

[tsHigh] stateTS=1 -> stateTS’=2;

[plNotAtTop] stateTS=2 -> stateTS’=3;

[tsLow] stateTS=3 -> stateTS’=0;

endmodule

Figure 5: Top sensor behaviour

Fig. 5 shows the module of the top sensor. Initially the top sensor module
is in state 0 and can receive event plAtTop? from the plunger, indicating it
has reached the top. When this event occurs the module transitions to state
1 and sends the event tsHigh! to the controller. The sensor remains in this
state until it receives event plNotAtTop? indicating the plunger has started
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module Controller

stateC : [1..2] init 1; // motor off(1), motor on(2)

ts : [0..1] init 0;

bs : [0..1] init 1;

ps : [0..1] init 1;

button : [0..1] init 0; // released(0), pushed(1)

[buttonP] true -> button’=1;

[buttonR] true -> button’=0;

[psHigh] true -> ps’=1;

[psLow] true -> ps’=0;

[bsHigh] true -> bs’=1;

[bsLow] true -> bs’=0;

[tsHigh] true -> ts’=1;

[tsLow] true -> ts’=0;

[turnMOn] stateC=1 & (bs=1 | (button=0 & ps=0)) -> stateC’=2;

[turnMOff] stateC=2 & ts=1 & button=1 -> stateC’=1;

endmodule

Figure 6: PRISM code of the controller behaviour

to fall. In response the top sensor sends the event tsLow! to the controller
and transitions to state 0 again. All these transitions have unit rate. The
modules for the other sensors and the motor drive actuator are analogous to
the above. They synchronise alternately with the plunger and the controller,
reacting to one and causing a change in the other as a result (at least, when
they are functioning correctly). The PRISM code for the other sensors and
the motor component are listed in Appendix B.

5.6 Controller behaviour

The controller component keeps track of the signals it has received from the
sensors and the state of the motor drive, and sends a signal to the motor
drive as described in Section 3.2 above (see Fig. 6). The controller stores
the current state of the sensors internally using local variables ts, bs, ps,
button. Their values are updated each time a signal is received from the
sensor components via the corresponding synchronisation event.
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module TopSensor

stateTS : [0..6] init 0;

[plAtTop] stateTS=0 -> stateTS’=1;

[tsHigh] stateTS=1 -> stateTS’=2;

[plNotAtTop] stateTS=2 -> stateTS’=3;

[tsLow] stateTS=3 -> stateTS’=0; // as before up to here

[tsFailsHigh] !(stateTS=4 | stateTS=5 | stateTS=6)

-> sensorFail: stateTS’=4;

[tsHigh] stateTS=4 -> stateTS’=6;

[tsFailsLow] !(stateTS=4 | stateTS=5 | stateTS=6)

-> sensorFail: stateTS’=5;

[tsLow] stateTS=5 -> stateTS’=6;

[plAtTop] stateTS=6 -> stateTS’=6;

[plNotAtTop] stateTS=6 -> stateTS’=6;

endmodule

Figure 7: Top sensor behaviour with both failure modes included

5.7 Modelling sensor failures

We illustrate how to model sensor failures on the top sensor case in Fig. 7.
For the purposes of the study we assume all sensors fail at a constant rate
sensorFail (such as 1 in 5 years). We use this failure rate as a parameter of
our model so that we can examine the effects of different failure rates. The
sensor can either fail stuck high (e.g., the tsFailsHigh transition in the top
sensor module) or fail stuck low (e.g., the tsFailsLow transition). At this
point it sends one more signal to the controller (transitioning from states 4

to 6, or 5 to 6, respectively) and thereafter remains stuck in state 6. (The
looping on state 6 is needed to allow the plunger to change states freely after
the sensor has failed.) After the failure the controller receives no further
signals to cause it to change its internal flag for the sensor state. Note that
this way of modelling sensor failures makes no particular assumptions about
the system’s communications protocols, such as whether the sensor writes
to registers in the controller hardware or the controller polls the sensor for
values.

By contrast with all the other synchronisation events used in our model,
tsFailsHigh and tsFailsLow are not actually used in any other part of the
model and therefore these transitions are not synchronised. The event labels
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were introduced to help in debugging and validating the model using the
PRISM simulator and model checker.

When we do FMEA below only one sensor failure mode will be enabled
at a time. Thus for example, when we investigate the risk associated with
bottom sensor failing stuck high, we use the modules for the normal (fault-
free) behaviour of the other sensors (such as Fig. 5 for the top sensor) and
a copy of the module for faulty behaviour for the bottom sensor with the
bsFailsLow failure transition removed. Similarly, when we do analysis of
multiple failure modes, we include only the relevant failure transitions.

6 Risk Analysis

This section describes the basis on which the risk calculations are performed,
including how various system properties can be formalised for model checking
in Continuous Stochastic Logic (CSL) [10], the formal language in which
properties of CTMCs are formulated for model checking in PRISM.

6.1 Hazard probabilities

Ideally we would like to calculate measures such as the likelihood of hazardous
system failure over the Press’ mission life (say, a year of operation) for various
models of the Press design, including models where one or more components
fail. The probability that the Press reaches a state satisfying property φ
within an operation time of T seconds can be calculated using PRISM to
evaluate the following CSL property:

P=? [ true U<=T/clock φ ]

In what follows we let P (Hi, T ) stand for the probability of hazard Hi arising
in T seconds (1 ≤ i ≤ 4): e.g.

P (H1, T )
def
= P=? [ true U<=T/clock (state=10) ]

This specifies the probability that hazard H1 occurs within the first T seconds
of operation. The probability of a hazard occurring is formalised as

P (Hall, T )
def
= P=? [ true U<=T/clock hazard ]

where
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hazard
def
= (state=10 | state=11 | state=12 | state=13)

In assessing risk hazards are usually weighted according to their severity but
here we simply treat them all equally; thus P (Hall, T ) represents the risk of
hazardous system failure in operation up to time T .

Ideally we want to calculate P (Hi, 1yr) under different assumptions about
sensor failure rates, say with a mean time to failure of 5 years each. As shown
in Section 7.1.2 below, however, such calculations are not computationally
feasible for our models. So instead we decompose the problem into two parts
as follows:

• the Immediate Failure Likelihood (IFL) and

• the Mean Time to Failure (MTTF)

where “failure” refers to hazardous system failure in both cases.
Immediate Failure Likelihood is an estimate of how likely the component

failure is to lead to a hazardous system failure in the short term, namely
within 60 sec in what follows. We need to consider a non-zero time frame
because of the continuous-time nature of CTCMs. We chose 60 sec because it
is the length of typical operational cycle of the Press, but other times could
have been used. The notion is defined more precisely in the next section,
together with a method for calculating it.

Mean Time to Failure, on the other hand, is an estimate of the expected
number of operational cycles the system completes before hazardous failure.
For component failures that usually reveal themselves immediately or after
a short delay, the result will be less than 1. But for failures which may
stay hidden for some time after the component fails, and are only revealed
when particular combinations of circumstances arise, the result can be greater
than 1. Hidden failures can be particularly nasty because, although their
likelihood may be low in a single operational cycle, they are in some sense
“just waiting to happen”. The fault propagation mechanisms involved are
often subtle and difficult for the designer to anticipate because they involve
unusual combinations of circumstances, so having a way of identifying their
presence is very valuable. Section 6.3 below describes a method for using
PRISM to calculate MTTF and discusses some of the issues involved.

28



6.2 Revealed failures and Immediate Failure Likeli-
hood

We define the Immediate Failure Likelihood for a given sensor failure mode
and hazard Hi to be

IFL
def
= PM(Hi, 60) (2)

where M is the CTMC model with the particular sensor failure mode enabled
and with a sensor failure rate of 1/60 sec. We show below that IFL is a
reasonable estimate of the likelihood that hazardous system failure Hi occurs
within 60 secs (one typical operational cycle) of the sensor failing.

We need to explain why we use a sensor failure rate of 1/60 sec in PM .
As shown in Section 4, a sensor failure can have different consequences de-
pending on the phase of operation in which it occurs. In the absence of other
information, it is reasonable to assume that a sensor failure is equally likely
to occur any time during the operation cycle, and thereby to use a linear
cumulative distribution function (CDF) for the probability of occurrence.
However, because we are using a CTMC modelling framework, we must in-
stead use the exponential CDF from formula (1) on page 17 and select a
value for the sensor failure rate sensorFail to approximate the linear CDF.
We show below that one per 60 sec gives a reasonable estimate.

First note that, if the failure is equally likely to take place at any time,
then the probability that it occurs during a phase of operation that typically
takes T sec would be T/60. We consider each phase of operation in turn and
show that the above model gives a reasonable approximation to this figure.
We use the notation from Section 5.2.

First consider the case where, apart from the sensor failure transition,
only a single simple unit transition is enabled (e.g., [motorOn] state=1 ->

state’=2). In this case the transition rate relation R(s, .) is dominated by the
unit rate (1 � sensorFail = clock/60), so E(s) ≈ 1. The likelihood that the
failure occurs in this case is p(s, s′) ≈ sensorFail, where s′ is the state where
the sensor has failed. More generally, when R(s, .) is dominated by a single
value η � sensorFail, then E(s) ≈ η and the probability that the failure
occurs is approximately sensorFail/η. (Note also that the expected time
spent in the pre-state is approximately clock/η, no matter which transition
is taken.)

Now consider the case where the plunger is rising below PONR and
all enabled unit transitions have been taken. Inspection by hand, or us-
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ing the PRISM simulator, shows that R(s, .) is dominated by the tran-
sition [plAbovePONR] state=3 -> RisingR1:(state’=4) that takes the
plunger past PONR, with rate RisingR1. Since RisingR1 = clock/RTP �
sensorFail, then E(s) ≈ RisingR1 and the probability that the sensor fails
in this case is approximately sensorFail/RisingR1 = RTP/60, as desired.

Similar calculations show that, for a plunger transition which is expected
to take T seconds with T � 60, the probability that the sensor fails in that
phase is approximately T/60, as desired.

The final case to consider is where the Press is open, waiting for the
operator to push the button. In this case the push-button rate PushRate =
clock/54 is close in value to sensorFail. That means there are two possible
transitions from this state (the button can get pushed or the sensor can fail),
each with approximately the same probability. Thus E(s) ≈ 2× sensorFail
and the probability that the sensor fails is approximately 1/2. The linear
CDF on the other hand gives 54/60 for the probability that the sensor fails
during this phase of operation and we can see that the approximation is not
very good. The trade-off in improving the approximation is to complicate
the model. For the purposes of this paper, we have taken the approach of
keeping the model relatively simple and readable, at the expense of some
precision in this case.

Note also that the expected time spent in the Press-open state before
the next transition occurs is clock/E ≈ clock/(2 × sensorFail) = 30 sec.
Our failure models thus effectively simulate a shorter operational cycle time
than desired. There seems to be no easy way to resolve this problem without
substantially complicating the model. However, since we are only interested
in estimating the relative effects of design changes, and are careful not to
make assertions about absolute probabilities, we prefer to stick with a rel-
atively simple model of components and interactions. This discussion does
however illustrate some of the sometimes unanticipated timing interactions
and subtleties of using CTMCs to model stochastic systems.

The final point to note is that the probability that the sensor actually
fails in the first 60 sec is Exp60(60) = 0.63. Our method of calculating IFL
thus underestimates even this simple possibility. But again there seems to
be no easy way to resolve this issue. In Section 7.2.2 below we perform
a sensitivity analysis to show that, although the approximation can affect
results (e.g., under-reading by as much as 37% in some cases), the Rough
Order of Magnitude (ROM) is not affected. It is thus valid to use the results
to investigate the relative effect of different design choices on the ROM of
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hazardous failures.
In summary, using a sensor failure rate of 1 per 60 sec seems to give

the fairest comparison of the immediate risk, since it makes the likelihood
of occurrence of sensor failure closely proportional to the time spent in the
various phases of operation, other than the Press-open phase. But it is
important to note that IFL is only an approximation, and should not be
regarded as an actual probability of failure.

6.3 Hidden failures and MTTF calculations

The second case of quantitative risk analysis formalised here relates to hidden
failures. These are failures where the fault lies dormant and is only revealed
when suitable co-effectors are present. (Race conditions can also play a part,
when they result in sensor data being received late. These are discussed
further in Section 6.5.1 below.)

To some extent, the likelihood of such failures is already taken into ac-
count in the IFL calculation described above. For example, if the PONR
sensor fails high, then the system appears to behave normally, as long as the
operator does not attempt to abort operation (represented by the coeffector
whereby the button is released while the plunger is falling above the PONR).
The likelihood of the latter (1 in 100) is taken into account in the operator
model in Section 5.4. Thus the likelihood of this case occurring within 60
sec of the sensor failing is taken into account in the calculation of IFL above.
However, the fault will not be revealed until the operator tries to abort oper-
ation, and only then will the system failure (H4 loss of abort) occur – quite
possibly under precisely the circumstances when abort is actually needed for
safety reasons.

To investigate such failures we used PRISM’s rewards mechanism [14]
to calculate the Mean Time to Failure (MTTF) for hazardous failures. We
extend the model with a reward matrix which applies a transition reward of 1
unit each time the Press closes (i.e., when the transition from state 8 to state 1
in the plunger model occurs), representing completion of an operational cycle.
Then the MTTF R is calculated by evaluating the following reachability
reward property [8]:

R
def
= R=? [ F hazard ] (3)

In cases where the probability of not reaching a hazardous state approaches
zero as time increases (e.g., if on any path a hazard can eventually be
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reached), then R evaluates to a finite number representing the expected num-
ber of operational cycles completed before a hazard occurs.

Unlike P (H, T ) above, PRISM is able to estimate R in a reasonably short
time for very low sensor failure rates, and independent of the mission time.
This makes it attractive for use during model development and debugging. As
it turns out however, when low sensor failure rates (such as one per 5 years)
are used, we find that system failures are dominated by race conditions, and
there is not much difference in calculated MTTF between the results for
fault-free behaviour and behaviour when sensor faults may be present. (This
may also be due in part to inaccuracies in the numerical analysis methods
used. Such inaccuracies tend to accumulate in CTMC models when there
are large differences in the rates involved in different transitions [11], such as
in our case.)

Instead or relying on such results, we propose the following heuristic for
determining whether a failure is revealed in the short term or more likely
to stay hidden. Just as for IFL above, we set the sensor failure rate to one
per 60 sec and evaluate R for each failure mode in turn. For failures which
are likely to be revealed within one operational cycle, R will evaluate to less
than 1.0. If R is finite but greater than 1, on the other hand, this indicates
that the system is likely to keep operating, and fail hazardously at some later
time, when the required coeffectors occur.

In this last case, the value of R can often be used to help determine
which coeffector must be involved. If a single coeffector is involved, and it
occurs with probability p per cycle (p � 1), then R will be approximately
1/p. Thus for example, for the PONR sensor stuck high failure noted above,
R is approximately 100 (see Section 7.2.3), which is the expected number
of operational cycles before abort occurs. R thus gives a strong clue as to
what coeffectors to investigate. When R is very high, however, it typically
indicates that race conditions are the issue, and it is necessary instead to
use the PRISM animator (or some other method) to discover what fault
propagation mechanisms are involved.

The success of the approach depends however on the system not having
non-hazardous long-term behaviours with non-zero probability, because in
such cases R evaluates to infinity. For example, if there is a non-zero prob-
ability that the Press will get into a stuck open or stuck closed situation
(such as after a button stuck low failure), then R = ∞ and this method
cannot be used to estimate MTTF. Therefore, the approach does not han-
dle the non-hazardous system failures F1 (stuck open), F2 (stuck closed)
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and F3 (incorrect opening) from Table 2. But conversely, an infinite value
of R for our models indicates that a cycle exists (i.e., the press gets stuck
open or stuck closed), and the PRISM animator can be used to discover the
failure mechanism that gives rise to it. It is not clear to what extent this
phenomenon can be generalised to other models however, since it is seems to
be more due to good luck than good modelling for the Press study.

In summary then, using formula (3) to calculate the mean time to haz-
ardous failure for a sensor failure mode with failure rate 1/60 sec gives a
useful heuristic for discovering hidden failures. But as usual with these kinds
of calculations, the results need careful interpretation. They should not be
interpreted as an accurate estimation of mean time to hazardous system
failure.

6.4 Likelihood of hazardous system failure

Returning to the original problem, the challenge was to estimate the risk of
hazardous failure over a mission time of 1 yr with sensor failure rates of 1
per 5 yr, say. For sensor failure modes that are most likely to be revealed
in the short term (MTTF ≤ 1), the hazard risk likelihood is roughly the
likelihood of sensor failure multiplied by IFL. (When IFL is small, the more
likely outcome is a non-hazardous system failure in this case.) The likelihood
of sensor failure is Exp5yr(1yr) ≈ 0.18 from formula (1) on page 17.

For hidden failures on the other hand (MTTF between 1 and say 1000),
the hazard risk likelihood is simply the likelihood of sensor failure itself, since
the fault condition remains in place until the coeffector occurs, and the latter
can usually be assumed to occur at least once during the rest of the system’s
mission time.

In situations where system failures are dominated by race conditions, the
situation lies somewhere between these two extremes. See Section 6.5.1 for
more discussion.

6.5 Other remarks

Before turning to the results of our PRISM analysis, some further remarks
about strengths and weaknesses of the approach are in order.
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6.5.1 Race conditions in fault-free operation

The first remark concerns the presence of race conditions in our models, in-
cluding our baseline “fault-free” model of Press operation. In many system
states, a “fast” transition (such as involved in data transmission and/or pro-
cessing) can be enabled at the same time as a “slow” transition (such as the
plunger rising from the bottom to the PONR), with a non-zero probability
that the slow transition will be taken first, or instead of, the fast transition.
As a result, hazards can occur with non-zero probability even when all the
components are functioning correctly.

For example, consider the system state immediately after a normal abort:
i.e., [releaseButton] occurs while state=7 & stateC=2 & stateOp=1. In
the first, much more common case, the sequence of subsequent events would
be [buttonR, turnMOn, motorOn], resulting in state=9 and successful
abort. But an alternative sequence of events with non-zero probability is
[plBelowPONR, buttonR, turnMOn, motorOn], which results in state=11

(hazard H2: dangerous motor activation). This corresponds to the case where
the plunger passes PONR before the control system gets a chance to turn on
the motor.

Although to some degree such behaviours are an artifact of the modelling
approach used, they do in fact occur in real life, and should be taken into
account in risk analysis and design for safety [39]. For this reason fault-free
operation (i.e., without sensor failures) is also included in the analysis below.
We note in passing that the methods discussed in this paper can be applied
without considering sensor-update race conditions if desired, by tweaking the
models to give “internal” controller actions priority over other actions. This
is the approach taken in Grunske et al [24] for example.

6.5.2 Modelling non-hazardous system failures

As noted above, PRISM uses CSL as the formal language in which proper-
ties of CTMCs are formulated for model checking. The cause-consequence
relation between component failure events and system hazards was easy to
formulate in CSL because of the way we modelled component failure events
as transitions (e.g. tsFailsHigh) and hazards as absorbing states (although,
as remarked in Section 6.2, modelling of the timing of component failures
presented issues).

One drawback of using CMTCs we encountered, however, was that we
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could find no simple way to capture the non-hazardous system failures F1
(stuck open), F2 (stuck closed) and F3 (incorrect opening) in the model or
in CSL. Part of the difficulty was due to the CTMC way of modelling timing
indirectly using the exponential CDF and rates, and the need to specify a
time frame over which probability is calculated. The fact that an event has
not taken place within x sec does not imply that it will not take place within
x + δ sec. We have not found a way of formulating F1–F3 in CSL, nor were
we able to identify a suitable way of representing F1–F3 as absorbing states
in the plunger model. We investigated PRISM’s steady-state operator [8] as
a possible solution, but calculating the probability of steady-state behaviour
proved computationally infeasible for our model: the model checking process
did not terminate.

As a result we have had to omit some of the sensor failure modes from our
MTTF analysis below, as well as omitting F1–F3 from quantitative analysis
more generally.

6.5.3 Other failure scenarios

As noted above, FMEA is typically conducted only for single component
failures because of the difficulty of analysing system behaviour in the presence
of multiple failures and the combinatorial complexity of considering all the
different cases that arise [4]. One of the advantages of our approach is that
to model multiple failures it is simply a matter of including versions of the
sensor modules with the appropriate failure events enabled.

It is also straightforward to model a wide range of other failure scenarios
such as common cause failures. For example, suppose it is found that the
bottom sensor does not fail randomly but is in fact far more likely to fail
when the plunger hits it. More specifically, suppose that the bottom sensor
fails stuck high when the plunger reaches the bottom with probability 1 in
10,000. This could be modelled by adding the following transition to the
bottom sensor module:

[bsFailsHigh] state=1 & !(stateBS=4 | stateBS=5 | stateBS=6)

-> bsFail: stateBS’=4;

with bsFail = 0.0001. In the rest of the paper however we focus primarily
on risk associated with single sensor failures.
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6.5.4 PRISM settings

In the results reported below we used the Gauss-Seidel iteration setting
with termination epsilon set to 1E-6. This is an iterative numerical solu-
tion method, so 100% accuracy cannot be assumed, especially in computa-
tions which converge slowly (such as for high non-infinite values of reward
R and low non-zero values of IFL) because of cumulative rounding errors
[11]. PRISM provides steady-state detection by default, which in many cases
considerably shortens computation time through use of approximation to
predict convergence. In our modelling and analysis, however, we needed to
deactivate this facility since it gave misleading results in some cases.

All our experiments were performed on a standard PC with an Intel
Pentium 4 CPU 3GHz processor with Ubuntu 7.10 Linux as operating system.
Probability results are rounded to two significant figures in the results below.

7 Results for the initial design of the Press

This section reports the results of our calculation of Immediate Failure Like-
lihood (IFL) and Mean Time To Failure (MTTF) for the Press system as
modelled in Section 5, for normal “fault-free” operation and for the effects
of individual sensor failure modes. It also reports on computation time and
various sensitivity analyses along the way to establishing a baseline reference
model against which the effects of different design decisions will be evaluated
in later sections.

7.1 Fault-free operation

We first consider the case where sensors function correctly. Hazards can
sometimes arise under these circumstances due to race conditions, as dis-
cussed in Section 6.5.1. Using the PRISM animator we found the following
examples of how race conditions could give rise to each of the hazards from
Table 4:

H1 (uncommanded closing) could occur if the operator pushes the button
while the Press is open and then releases it again while the control
system is turning the motor off but before the plunger has dropped
below the top sensor.
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H2 (dangerous motor activation) could occur if the plunger falls past
PONR while the control system is turning the motor on after an abort.

H3 (unexpected closing) could arise if the Press closes as usual but there is
a long delay before the controller receives the plNotAtTop signal, with
the result that if the controller detects the button pushed signal while
the Press is reopening, then it will erroneously turn the motor off while
the plunger is rising.

H4 (abort fails) could occur if the plunger falls past PONR before the
system is able to turn the motor on after an abort.

By selecting a suitably fast clock rate, these race conditions have very low
probability, as shown below.

7.1.1 Effect of clock rate

The speed with which the control system receives and acts on signals from
the sensors has a large effect on the likelihood that race conditions occur.
The faster the clock rate, the more likely it is that the control system will
react in time and carry out the intended operation of the Press.

To illustrate this, consider the H2-after-abort scenario described in Sec-
tion 6.5.1 above. From the state in which the scenario begins, the probability
of taking the [plBelowPONR] transition rather than the [buttonR] transition
is roughly ExpTTP (clock). (The PRISM simulator is excellent for studying
such scenarios step by step.) When clock = 0.001 this probability is 0.0011,
and when clock = 0.0001 it is 0.00011 (rounded to two significant figures):
i.e., an order of magnitude improvement.

Clock rate P (Hall, 60) Comp. time

1E-2 9.2 E-03 1.3
1E-3 1.1 E-03 11
1E-4 1.1 E-04 109
1E-5 1.1 E-05 1080

Table 7: IFL results for fault-free operation, for different clock rates

Table 7 shows the Immediate Failure Likelihood results for different clock
rates, together with the PRISM computation time (in seconds). As can
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be seen, the probability of any of the hazards occurring decreases roughly
linearly with clock rate, whereas the computation time increases roughly
linearly.

Clock rate R (# operations) Comp. time

1E-3 845 14
1E-4 7,582 70
1E-5 39,845 183
1E-6 69,444 244

Table 8: MTTF results for fault-free operation, for different clock rates

Table 8 shows the effect of different clock rates on MTTF, measured as
expected number R of completed operational cycles before hazardous failure.
Note that R increases as the clock rate gets faster, since the likelihood of un-
usual race conditions decreases, as anticipated. In fact, R is roughly inversely
proportional to P (Hall, 60). Another point to note is that the computation
time for R is much less affected by the clock rate than was the computation
time for P (Hall, 60), which suggests that the MTTF approach scales better
than the IFL approach.

Because the purpose of this paper is to explore the potential benefits
and limitations of stochastic model checking, in what follows we have chosen
to focus primarily on a clock rate of 1E-4 per sec: i.e., a unit transition
has an expected duration of 0.0001 sec. The resulting computation time
makes for reasonable turnaround time in experiments. In reality however,
a higher-performance system architecture would probably be chosen for the
Press, using a suitably fast processor, sensors and actuators. Unless explicitly
stated otherwise, 1E-4 per sec is used as the default clock rate below.

7.1.2 Effect of operation time

Table 9 shows the effect of varying the operation time T (given in seconds),
broken down by the different hazards. We consider an operation time T cor-
responding to 1-4 typical operational cycles, respectively. The likelihood of a
hazard occurring within T seconds rises roughly linearly with the operation
time, as we would expect. The longer we observe the system, the more likely
the occurrence of a hazard becomes. Likewise, the computation time (given
in seconds) rises roughly linearly with the operation time. One implication
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T P (Hall, T ) P (H1, T ) P (H2, T ) P (H3, T ) P (H4, T )
Comp.
time

60 1.1 E-04 2.2 E-06 1.0 E-04 1.5 E-09 3.1 E-06 115 - 149
120 2.3 E-04 4.0 E-06 2.2 E-04 3.2 E-09 6.4 E-06 220 - 283
180 3.5 E-04 5.9 E-06 3.3 E-04 4.8 E-09 9.8 E-06 327 - 428
240 4.6 E-04 7.8 E-06 4.4 E-04 6.4 E-09 1.3 E-05 434 - 564

Table 9: Probability of hazard arising in first T seconds of fault-free operation

of the latter observation is that the extent to which it is feasible to use this
approach for calculating risk of failure over a longer time period is very lim-
ited. It would not be feasible to use it to calculate risk over the system’s
mission lifetime (say T = 1yr), for example.

Although there is theoretically no limit specified for the value of T , in
practice the maximum value to be chosen depends on the model in question
and how long the user is willing to wait for results. For high values of T
the accuracy of results can also be degraded due to approximations used in
floating point arithmetic.

7.2 Failure Modes and Effects Analysis

This section summarises and discusses the results of model checking for each
of the sensor failure modes. In what follows we assume we are working with
a model M in which a single sensor failure is enabled.

7.2.1 Immediate Failure Likelihood

Table 10 shows the IFL results for the different sensor failure modes. The
results for fault-free operation are also included for comparison. The com-
putation time for the failure-mode experiments is of the order of 300-700
seconds. The boldface entries indicate the sensor failure modes that lead to
substantially increased hazard risk over fault-free operation.

The results provide valuable insights into the relative likelihood of the
different scenarios. The boldface cases correspond closely to the hazardous
cause-consequence relationships revealed in Table 3 on page 15 (with the
additional remarks in Section 4.3). Some of these cases are discussed in more
detail below. The cases where the hazard probabilities in the presence of
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Failure mode P(Hall,60) P(H1,60) P(H2,60) P(H3,60) P(H4,60)

None 1.1 E-4 2.2 E-6 1.0 E-4 1.5 E-9 3.1 E-6

Button high 6.3 E-1 6.3 E-1 6.2 E-5 9.4 E-10 1.6E-4
stuck low 6.8 E-5 1.5 E-6 6.4 E-5 9.4 E-10 1.9 E-6
Bottom high 6.5 E-2 4.9 E-6 2.1 E-3 6.2 E-2 1.9 E-6
stuck low 9.8 E-5 1.7 E-6 9.4 E-5 9.4 E-10 2.8 E-6
Top high 1.7 E-1 1.7 E-6 9.7 E-5 1.7 E-1 2.9 E-6
stuck low 6.8 E-5 1.5 E-6 6.4 E-5 9.4 E-10 1.9 E-6
PONR high 3.5 E-3 2.2 E-6 6.2 E-5 1.5 E-9 3.5 E-3
stuck low 1.6 E-1 2.0 E-6 1.6 E-1 1.5 E-9 2.9 E-6

Table 10: IFL results for Press with initial design

sensor failures are less than for fault-free operation correspond to the cases
where non-hazardous system failures are the more likely outcome.

Some of the inaccuracies due to the approximations used in calculating
IFL noted in Section 6.2 become evident here. For example, if the button
sensor is equally likely to fail high at any time during an operational cycle
of the Press, then its likelihood of failing while the Press is open is about
54/60; this case will lead immediately to hazard H1 (uncommanded closing).
In fact, H1 is the most likely outcome in all cases of this failure mode, other
than when it fails while falling above PONR and the user aborts, in which
case H4 will occur instead. The actual probability of H1 should thus be close
to 1 for this case, whereas the IFL calculation gives a likelihood of 0.63. The
difference is due to the possibility that the sensor may not fail at all withint
the first 60 sec.

Perhaps the most surprising result is that H3 (unexpected closing) is
quite likely to occur if the bottom sensor fails high. The Modelica model
simply predicted that the Press would get stuck open in this case. Further
reflection (and using PRISM’s animator) reveals the following race-condition
scenario under which H3 can occur: The Press starts closing as usual (event
plNotATTop) but before the controller receives and acts on the top-sensor low
signal (event tsLow), it instead thinks the Press is closed (because bs=1) and
so turns the motor on, resulting in the plunger passing through states 7 and
9 to 4 as though closing was being aborted; but then finally the controller
reacts to tsLow and turns the motor off, resulting in H3. This is a good
example of how model checking can reveal hazardous behaviours that could

40



otherwise easily be overlooked.
Returning to the main conclusions to be drawn from Table 10, it is evident

that this design for the control system is not robust against sensor failures,
and that the safety of the Press system relies to too great a degree on the
reliability of the individual sensors. One way of mitigating this in design
would be to use replicated sensors (e.g., triple modular redundancy [6]).
Another way would be to use fault tolerant design techniques in the control
logic design. In Section 8 we modify the logic to add extra guards on critical
transitions, such as checking for infeasible sensor signal combinations and
failing safe if detected. We then repeat stochastic analysis to see how well
the new design mitigates hazards.

7.2.2 Effects of time of occurrence of component failure

As noted in Section 6.2, the phase of operation during which a sensor fails can
have a critical effect on the outcome. This section examines the sensitivity
of IFL results to the choice of sensor failure rate sensorFail. The IFL
calculations in most of this paper use a constant rate of once per 60 sec in
order to approximate the case where the failure is equally likely to occur
anytime in a typical operational cycle. This section considers how IFL is
affected by this choice of rate. We also contrast it with the case where the
failure is present from the start of operation.

PRISM uses exponential function of formula (1) to model the Cumulative
Distribution Function (CDF) for probability of a transition being taken. Fig-
ure 8 shows ExpX for different values of X (30, 60 and 90 sec), together with
the linear CDF c. The first thing to note is that exponential CDF Exp60 un-
derestimates the probability that a failure will occur at all within the first op-
erational cycle by about 37% compared to the linear CDF (Exp60(60) = 0.63,
which explains the result of P (H1, 60) = 0.63 in the case where the Button
is stuck high as shown in Section 7.2.1).

Table 11 compares the results returned by PRISM for the different cases of
single sensor failure modes and different failure occurrence-time models. The
column marked ‘from start’ represents the case where the failure is present
from the start of operation.

As can be seen, the occurrence-time model has a large effect on the hazard
likelihood in most cases. In the case where the failure is present from the
start of operation, some sensor failures do not lead to hazards at all. For
example, if the button sensor is stuck low, then the Press simply fails open.
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Figure 8: Some models of CDF for time of failure occurrence in operational
cycle

Using the ‘from start’ model of sensor failure thus completely overlooks the
case where the button sensor fails low during closing, which could in turn
lead to hazard H4 (abort fails). In the case of the button being stuck high,
Exp30, representing behaviour where the failure is more likely to occur early
in the operational cycle (expected time = 30 sec), gives a higher estimate of
risk than Exp60, where the failure is likely to occur later in the operational
cycle. If the button is likely to fail early in the cycle then hazard H1 is more
likely to occur. On the other hand, Exp30 leads to a lower estimate in the
button stuck low case than Exp60 because an early occurrence of this failure
leads to the Press failing open rather than a hazard.

But the important thing to note is that the rough order of magnitude
(ROM) is the same in each case other than the ‘from start’ case. As argued
in Section 6.2 above, using a sensor failure rate of one per 60 sec to calculate
IFL is the most reasonable compromise.

7.2.3 Mean Time To Failure

Table 12 shows the Mean Time To Failure for hazardous failures, as explained
in Section 6.3. The result was ∞ for the cases that are missing from the table
(button, bottom and top sensor stuck low): in such cases there are non-
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Model: Exp1 Exp30 Exp60 Exp90 from
Failure mode start

Button stuck high 1.0 E+0 8.6 E-1 6.3 E-1 4.8 E-1 1.0 E+0
Button stuck low 3.3 E-7 4.5 E-5 6.8 E-5 7.9 E-5 0.0 E+0
Bottom stuck high 1.6 E-1 9.9 E-2 6.5 E-2 4.8 E-2 1.6 E-1
Bottom stuck low 7.5 E-5 9.2 E-5 9.8 E-5 1.0 E-4 3.7 E-5
Top stuck high 4.3 E-1 2.6 E-1 1.7 E-1 1.3 E-1 4.4 E-1
Top stuck low 3.3 E-7 4.5 E-5 6.8 E-5 7.9 E-5 0.0 E+0
PONR stuck high 8.8 E-3 5.4 E-3 3.5 E-3 2.6 E-3 8.8 E-3
PONR stuck low 3.8 E-1 2.4 E-1 1.6 E-1 1.2 E-1 3.8 E-1

Table 11: Sensitivity of PM(Hall, 60) to models for time of failure occurrence
in cycle

Sensor MTTF 1 min 10 min 100 min 5 yr

Fault-free operation 7,581

Button stuck high 0.9 10 98 7,560
Bottom stuck high 0.9 10 98 7,560
Top stuck high 2.8 12 100 7,560
PONR stuck high 102 111 199 7,560
PONR stuck low 1.9 11 99 7,560

Comp. time (secs) 2-7 3-7 8-12 145-211

Table 12: MTTF for initial design measured in number of cycles, with dif-
ferent sensor reliability values

hazardous long-term behaviours with non-zero probability, such as when the
Press gets stuck open or stuck closed.

The MTTF figures in Table 12 have been calculated for different sensor
reliability values, namely, mean times to sensor failure of 1 minute, 10 min-
utes, 100 minutes and 5 years (the target value for our overall risk analysis).
For the moment however we focus on the 1 min case since we use it to identify
hidden failures, as discussed in Section 6.3.

As anticipated from the preliminary hazard analysis in Table 3 in Sec-
tion 4, the ‘button sensor stuck high’ failure leads almost immediately to a
hazardous system failure. This is confirmed by the result that, with a sensor
failure rate of 1 per 60 sec, the expected time to system failure is also approx-
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imately 1 operational cycle. (Likewise when the sensor MTTF is increased
to 10 min then the system MTTF increases to 10 cycles, as expected.)

By contrast, system failures typically take longer to occur in the case ‘top
sensor stuck high’ and the two PONR sensor failures, confirming that they
are hidden failures. The result for the case ‘PONR sensor stuck high’ is 102,
which is consistent with the fact that the operator typically aborts operation
in only 1 in 100 cycles. Likewise, the coeffector for the ‘PONR sensor stuck
low’ hazardous case is that the operator releases the button after PONR but
before the Press fully closes, which we have assumed happens 50% of the
time; hence a MTTF of approximately 2. As discussed in Section 6.3, the
value of MTTF in both these cases gives a strong hint as to which coeffector
is involved.

The ‘top sensor stuck high’ case is perhaps the most surprising result. The
coeffector noted in Table 3 is that the button gets pressed while the Press is
opening, which has low probability in our model (roughly Exp54(4) = 0.07)
and thus might be expected to lead to an MTTF ≈ 14. The calculated
MTTF is roughly 3 operational cycles instead. The reason is that there are
abort-like cycles with small but non-zero probability in the CTMC model
which end in hazards but which get zero reward. These cycles drag down
the calculated MTTF value. (For similar reasons it is important to note
that MTTF < 1 does not imply hidden failures are not possible. They may
simply be outweighed by the possibility of non-hazardous failures on other
branches.)

It is interesting to note why the ‘bottom sensor stuck high’ case yields
a non-infinite reward, despite leading to the Press becoming stuck open in
the Modelica experiment in Section 4. Closer inspection reveals that the
motor will actually turn off momentarily if the operator pushes the button
and immediately turn back on. This “window of opportunity” opens the
possibility of a hazard occurring, as discussed in Section 7.2.1, and this in
turn enables a reward to be calculated for paths beyond such a point. The
reward is giving a measure for such cases (which will be zero, if the Press
doesn’t close before the hazard occurs). In effect the fact that the calculated
overall reward is less than 1 says that, if a hazardous behaviour is going to
result, then the expected time is “within the same operational cycle” as the
sensor failure. Thus MTTF calculated this way gives at best an indirect hint
at what coeffectors might be involved.

As a final remark, it is interesting to note the effect that sensor reliability
values have on the mean time to hazardous failure. The results indicate that,
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for relatively high sensor failure rates (say, once per hour or once per day),
the above patterns of immediate system failure and hidden failures apply,
but as sensor reliability increases then race conditions start to dominate.
As noted above, once MTTF becomes very large however, their accuracy
cannot be trusted due to cumulative error in the numerical solutions involved.
The main value of calculating the expected reward for individual component
failure modes is thus likely to be in the insights it yields about hidden failures,
complementary to what IFL reveals about criticality of component failures
over shorter time frames.

7.3 Multiple failures

We conducted an experiment to measure the effect on computation time
when multiple failures are injected. As explained in Section 6.5.3 this can be
achieved simply by enabling the appropriate failure transitions in the sensor
modules in our model. Table 13 shows the results when faults were injected
in the following order: bottom sensor stuck high; button sensor stuck high;
PONR sensor stuck high; top sensor stuck high. The complexity of the model
rose 2-3 fold each time a new fault was injected, and this was reflected in
increases in computation time.

# failures IFL R with sensor R with sensor
(Hall case) MTTF = 1 min MTTF = 5 yr

0 109 68 68
1 392 4 161
2 1,047 7 362
3 2,940 17 844
4 7,802 71 2,126

Table 13: Computation time (sec) for multiple failures

7.4 Summary and discussion

The analysis above indicates that the initial control system design is not
sufficiently robust against sensor failures and race conditions. In fault-free
operation (i.e., with the sensors functioning correctly) the presence of race
conditions yields an Immediate Failure Likelihood of about 10−4, mostly due
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to hazard H2 (dangerous motor activation). This estimate clearly depends
to a great degree on the stochasticity assumptions underlying the model,
and in particular on the assumption that sensor-update timing failures are
possible (and follow an exponential CDF rule). Nevertheless the analysis
yields valuable insights into the relationship between race conditions and the
clock rate, and suggests it would be better to use a faster clock rate than
that used here (10−4 per sec), to reduce IFL to a more reasonable value (see
Table 8). Section 9 explores another way of reducing the risk of hazard H2,
by modifying the system design to move the PONR sensor slightly higher,
which reduces the likelihood of the race condition.

Turning to FMEA, the deficiencies of the original (naive) control logic
become even more apparent. Four of the sensor failure modes yield IFL
probability estimates greater than 0.05, for example. That is, if a sensor
fails in one of the given ways, then it is highly likely to lead to a hazard.
Moreover, the MTTF calculations revealed that three of the sensor failure
modes are hidden failures, and only require certain environmental conditions
before they lead to hazardous system failures. Section 8 explores a way of
modifying the control logic to make it more robust against sensor failures.
We show that the change reduces the IFL of many of the sensor failure modes
significantly (including two of the four critical modes) and almost eliminates
the risk of hidden failures.

The analysis yielded insights into fault propagation mechanisms over and
above those revealed by simulation (cf. Table 3). For example, in Section 7.2.1
we saw how a race condition could combine with the bottom sensor stuck high
failure to give rise to hazard H3 (unexpected closing). The MTTF results
gave good clues as to which coeffectors were involved in the hidden failure
cases. Such insights can help the designer improve system design for safety.

8 Press with error-detecting control logic

The design change considered in this section is to modify the control logic
to detect sensor failures where possible and fail safe [13]. We show that it
is easy to modify the model and rerun the PRISM analysis to check if (and
how well) the change mitigates hazard likelihood.

46



8.1 Modified control logic

We first modify the control logic to include all relevant sensor conditions
in the guards, to avoid the problem noted in Section 7.2.1 above. Thus
for example, rather than simply activating the motor drive when a ‘bottom
sensor high’ signal is received, we shall also check that the PONR sensor
signal is high and the top sensor signal is low. We also check for infeasible
sensor value combinations, such as the top and bottom sensor signals being
high simultaneously, and fail safe if such combinations are detected [13].

module Controller

stateC : [1..4] init 1;

... // sensor value updates as before

[turnMOn] stateC=1 &

((bs=1 & ps=1 & ts=0)|(button=0 & ps=0 & bs=0)) -> stateC’=2;

[] stateC=1 &

(((bs=1|ps=1)& ts=1) | (bs=1 &(ps=0|ts=1))) -> stateC’=3;

[turnMOff] stateC=2 & ts=1 & button=1 & ps=0 & bs=0 -> stateC’=1;

[] stateC=2 &

(((bs=1|ps=1)& ts=1) | (bs=1 &(ps=0|ts=1))) -> stateC’=4;

endmodule

Figure 9: Control logic revised to include error-detection

The revised control logic is shown in Figure 9. The rest of the model re-
mains unchanged. The infeasible sensor value combinations are (bs=1|ps=1)
& ts=1 and bs=1 & (ps=0|ts=1). If an infeasible sensor value combination
is detected we simply fail safe by leaving the motor actuator in its current
state. This is achieved by adding new states 3 and 4 to the Controller, cor-
responding to leaving the motor permanently off or on, respectively. Thus, if
the failure is detected as the Press is closing, then the Press will be allowed
to close but then remain closed thereafter. Similarly, if the failure is detected
while the Press is opening or open, then the Press will be allowed to open
fully and then remain open thereafter.

To calculate MTTF we modify the reward property of formula (3) to take
the failed-safe states into account:

R′ def
= R=? [ F (hazard | stateC = 3 | stateC = 4) ]
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Error-detecting Design Initial Design

Clock rate R′

(# operations)
Comp.
time

R
(# operations)

Comp.
time

1E-3 369 15 845 14
1E-4 3,512 81 7,582 70
1E-5 24,760 292 39,845 183
1E-6 62,778 492 69,444 244

Table 14: MTTF for fault-free Press with and without error detection, for
different clock rates

The change is required since R = ∞ in the presence of the new reachable
absorbing controller states 3 and 4.

8.2 Results: fault-free operation

Recall that, in the fault-free case for the initial Press control system design,
it was the presence of race conditions that gave rise to hazards. For the most
part those race conditions have not been addressed in the redesign, except
for the one described in Section 7.2.1 above, whereby hazard H3 could arise
if the control system was slow in detecting and acting on the ‘top sensor
signal low’ condition. The particular combination of events that gave rise
to this case has been eliminated in the redesign by instead failing safe if the
top sensor value is still low when the bottom sensor value goes high. The
reduced risk is confirmed by recalculating P (H3, 60): the result has dropped
from 1.5E-9 in Table 10 to 3.3E-13 in Table 15 below. However, the other
immediate-failure likelihood results are virtually unchanged for the fault-free
case: the offending race conditions are still present.

Table 14 shows the effect the revised logic has on MTTF in the fault-free
case. As perhaps expected, the revised Press has a slightly shorter MTTF
due to higher likelihood of failing safe because of race conditions.

8.3 With sensor failures

Table 15 shows the Immediate Failure Likelihood results for each sensor
failure mode if they diverge from the results for the original Press design
as given in Table 10. Cases where the results are not (or only marginally)
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Failure mode P(Hall,60) P(H1,60) P(H2,60) P(H3,60) P(H4,60)

None ≈ ≈ ≈ 3.3 E-13 ≈

Button high ≈ ≈ ≈ 3.5 E-13 ≈
stuck low ≈ ≈ ≈ 2.1 E-13 ≈
Bottom high 2.2 E-03 1.4 E-06 ≈ 2.1 E-13 1.6 E-04
stuck low ≈ ≈ ≈ 2.9 E-13 ≈
Top high 2.5 E-03 ≈ ≈ 2.4 E-03 ≈
stuck low ≈ ≈ ≈ 2.1 E-13 ≈
PONR high 2.2 E-04 ≈ ≈ 2.1 E-13 1.6 E-04
stuck low ≈ ≈ 1.4 E-01 2.9 E-13 ≈

Table 15: Diverging results for IFL for Press using the error-detecting control
logic

affected by the design change are indicated using the ≈ sign. The dominant
failures that have changed are shown in boldface. As seen by comparing with
Table 10, many of the dominant failures have been mitigated significantly.
For example, the likelihood that ‘bottom sensor stuck high’ leads to H3, as
described in Section 7.2.1, has all but been eliminated (reduced from 6.2E-
2 to 2.1E-13). The likelihood that ‘top sensor stuck high’ leads to H3 has
been reduced by two orders of magnitude (from 1.7E-1 to 2.4E-3), and the
likelihood that ‘PONR sensor stuck high’ leads to H4 has been reduced by
an order of magnitude (from 3.5E-3 to 1.6E-4).

However, the design modification has had very little effect on the likeli-
hood that ‘PONR sensor stuck low’ leads to H2, and no effect on the like-
lihood that ‘button sensor stuck high’ leads to H1 (which is not surprising,
because we cannot detect button failures this way). The likelihood that
‘bottom sensor stuck high’ leads to H4 has actually increased (from 1.9E-6
to 1.6E-4), but this is probably a small anomaly due to the likelihood of
getting stuck open being reduced in the new design.

Table 16 shows the Mean Time To Failure (in expected number of op-
erational cycles completed) for hazardous and fail-safe failures in the case
of different sensor reliability values, and gives the corresponding results for
the initial design from Table 12 for comparison. The result was ∞ in the
sensor failure-mode cases not shown in the table. As discussed in Section 6.3,
these are cases where the press gets stuck open or stuck closed but without
entering a fail-safe state.
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Error-detecting Design Initial Design

Fault-free operation 3,511 7,581

Sensor MTTF 1 min 10 min 5 yr 1 min 10 min 5 yr

Button stuck high 0.9 9.6 3,507 0.9 10 7,580
Bottom stuck high 0.9 9.9 3,507 0.9 10 7,560
Top stuck high 0.9 9.9 3,507 2.8 12 7,560
PONR stuck high 0.9 9.9 3,507 102 111 7,560
PONR stuck low 1.4 10.4 3,507 1.9 11 7,560

Comp. time (secs) 3-6 5-7 190-216 2-7 3-7 145-211

Table 16: MTTF for Press design with and without error detection, for
different sensor MTTF values

As can be seen from Table 16, the risk of failures remaining hidden has
been significantly mitigated by the revised control logic. Both ‘top stuck
high’ and ‘PONR stuck high’ now have expectation of being revealed within
one operational cycle. ‘PONR stuck low’ is revealed when the plunger hits
bottom, which counts as completion of an operational cycle and explains why
MTTF is greater than 1 in its case.

8.4 Summary and discussion

Modifying the control logic has had a very beneficial effect, in terms of signif-
icantly reducing the risk of hidden failures, as well as significantly reducing
the likelihood of the race condition discussed in Section 7.2.1 above. Of the
remaining risks, the dominant failures are ‘button sensor stuck high’ leading
to H1 (uncommanded closing) and ‘PONR sensor stuck low’ leading to H2
(dangerous motor activation).

There are several different ways that the ‘button sensor stuck high’ failure
could be mitigated in the design. One way would be to reduce the severity of
the failure by introducing a means for detecting if anyone is in the vicinity of
the Press (such as infrared detection), and preventing closing in such a case.
This would of course also involve moving the button location to outside of
the danger zone. Another solution would be to introduce a second button,
and to require that both buttons be pushed before the motor would switch
off [12]. Yet another solution would be to check that the button signal is low
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when the plunger reaches the top and fail safe otherwise. This would involve
a change to the operational procedure so that the operator was required to
release the button before the plunger reaches the top.

All of these solutions can be modelled in our framework. To demon-
strate, we focus on the ‘PONR sensor stuck low’ failure mode and show how
stochastic model checking can further inform design-for-safety. The next
section investigates the effect of raising the PONR sensor above its nominal
position, in order to reduce the likelihood of the race condition that leads to
H2 during fault-free operation.

9 Raising the Point of No Return sensor

The second design change we consider involves moving the PONR sensor
higher, in order to reduce the effect of the race condition that led to the
motor drive being activated late (hazard H2) in fault-free operation.

9.1 Modified sensor layout

We modify the Press design so that the PONR sensor is raised higher than
the plunger’s actual (physical) point of no return. This way, if there is a delay
in activating the motor drive after a late abort, the delay will hopefully be
absorbed while the plunger is still falling above the physical PONR, and
the motor drive will be activated before the plunger reaches that point. We
call the new PONR sensor position the operational PONR (i.e., the point
after which it is no longer possible to abort closing) and denote its value by
oPONR in what follows.

The modified design is modelled by tweaking the model from Section 8
(see Figure 10). States 3, 4 and 7 are now interpreted as rising below, ris-
ing above and falling above oPONR, respectively. The state “falling below
oPONR” is split into state 8 (falling below PONR) and new state 14 (falling
between oPONR and PONR). States 9 and 15 represent the plunger state
after the motor drive is activated in states 7 and 14 respectively. In both
cases the plunger’s fall will be slowed – without reaching the bottom – and
then reversed, and the plunger will eventually move into state 4 as before.
The hazards are defined as before.

In the PRISM code we achieve this by replacing transition

[plBelowPONR] state=7 & stateOp=2 -> FallingR1:(state’=8);
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Figure 10: Behaviour of plunger with raised PONR sensor

in the plunger module with

[plBelowPONR] state=7 & stateOp=2 -> FallingR1a:(state’=14);

[] state=14 -> FallingR1b:(state’=8);

and adding transitions

[motorOn] state=14 -> state’=15;

[plAbovePONR] state=15 -> FallingR3:(state’=4);

We set FallingR1a = clock/TTOP and FallingR1b = clock/(TTP-TTOP)

where Time To Operational PONR (TTOP) is the time it normally takes the
plunger to fall to oPONR. Note that events plAbovePONR and plBelowPONR

in the revised model are triggered by the plunger passing the PONR sensor,
and thus occur at oPONR rather than PONR. Strictly speaking we should
change the values of rate RisingR1 and Rising R2, but the change is too
small to affect the results significantly.

In what follows we report results for two different cases: one where the
PONR sensor is raised only slightly (to 1.5m from 1.44m, with TTOP=1.773)
and the other where it is raised significantly (to 5.25m, with TTOP=1.0).
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P(Hall,60) P(H1,60) P(H2,60) P(H3,60) P(H4,60) Comp.
time
(sec)

D1 1.1 E-04 2.2 E-06 1.0 E-04 1.5 E-09 3.1 E-06 109-140

D2 1.1 E-04 2.2 E-06 1.0 E-04 3.3 E-13 3.1 E-06 244-304

D3 6.7 E-06 2.2 E-06 1.5 E-06 3.3 E-13 3.1 E-06 294-360

D4 4.1 E-06 2.2 E-06 1.4 E-07 3.3 E-13 1.8 E-06 272-334

Table 17: IFL for fault-free operation for different Press designs: (D1) initial
design; (D2) with error detection; (D3) with PONR raised to 1.5m; (D4)
with PONR raised to 5.25m

The Modelica model was used to derive the values of height of oPONR and
TTOP.

9.2 Results: fault-free operation

Table 17 shows the Immediate Failure Likelihood for fault-free operation for
the revised design for the two different oPONR heights. The corresponding
results for the initial design, with and without error detection are given for
comparison. As can be seen, raising the PONR sensor reduces the IFL of dan-
gerous motor activation (hazard H2) by 2-3 orders of magnitude in fault-free
operation, without increasing the likelihood of the other hazards. Table 18
also shows marked improvement in the long-term risk of H2, confirming that
raising the PONR sensor significantly reduces the likelihood of the main race
condition that gave rise to H2, without introducing new hidden failures.

9.3 With sensor failures

Although raising the PONR sensor improves safety in the fault-free case, it
has little or no effect on the IFL results in the cases where sensors may fail.
The results are so similar to those in Table 15 above that they are not given
here. In almost every case they are the same as, or slightly lower than, the
results for the error-detecting design in Section 8. The only exception is that
the likelihood of H2 increases from 2.1E-3 to 9.1E-3 in the “bottom sensor
stuck high” case when TTOP=1, which is probably due to reduced likelihood
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Error-detecting Raised PONR
TTOP=1.773

Raised PONR
TTOP=1

Fault-free Sensor
MTTF=5yr

Fault-free Sensor
MTTF=5yr

Fault-free Sensor
MTTF=5yr

MTTF 3,511 3,507 16,404 16,304 14,882 14,799

Comp.
time

82 190-216 263 598-685 242 583-656

Table 18: MTTF for three different Press designs, for fault-free and fault-
prone operation

of some of the hazards that would normally precede the H2 case.
Likewise, the MTTF results are almost identical to those for the error-

detecting design given in Table 16, at least for the relatively low values of
sensor reliability (1–100 mins). As seen from Table 18 above however, for
higher values of sensor reliability (in this case, 5yrs) the revised design has
a longer meant time to hazardous failure, due to reduction of risk due to the
race condition around the time the plunger passes the PONR.

10 Summary and Conclusions

The paper presented an approach to risk analysis using stochastic model
checking – or more specifically, using Continuous Time Markov Chains
(CTMC) models and the PRISM tool. The approach was illustrated on the
Industrial Press case study. Although relatively simple, the Press exhibits a
wide range of different behaviours, including hidden failures and subtle race
conditions. We illustrated the use of quantitative analysis in support of Fail-
ure Modes and Effects Analysis – in this case, the effects of sensor failures
on hazardous system behaviour.

Even with such a relatively simple system, a brute force computation of
risk over a 1 year mission lifetime proved computationally infeasible. (This
holds true for much shorter mission times also, such as for example in the
case where a thorough inspection and test is carried out weekly.)

The main contribution of the paper was to provide computationally fea-
sible methods for quantitative assessment of cause-consequence relations.
Section 6 introduced two complementary analysis techniques: the first for
estimating the likelihood of short-term failures (i.e., those which typically
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manifest themselves within one operational cycle of the Press); and the sec-
ond for identifying hidden failures (i.e., those which only manifest themselves
only under specific sets of environmental conditions, which may themselves
be comparatively rare). Together these two techniques yield valuable in-
sights into which aspects of system design need more attention for safety.
The short-term failure analysis method yields a quantitative relationship be-
tween component failures and their consequences at system level akin to a
criticality measure. The heuristic for identifying hidden failures provides a
good clue as to the conditions under which the hazard will arise, although
subtle race conditions can sometimes confound the situation.

Our system models were based on CTMC models derived almost directly
from the operational concept for the system. (A Modelica simulation was
used to derive values for key rates in the model.) We demonstrated an ap-
proach to injecting faults directly into a CTMC model of the system. This
has the advantage of facilitating analysis of changes to system design simply
and quickly, and of deriving consequences of component failures directly from
the model. This contrasts with most other forms of FMEA and criticality
analysis, whereby models of fault propagation are constructed or generated
separately and then have quantitative analysis performed on them. Our ap-
proach is more agile and more directly aligned with the system development
process, since it does not require new fault propagation models to be con-
structed when the system model changes. We also included the possibility
of sensor-update timing failures (one of the sources of race conditions in our
model) and investigated the effect of data processing rates on hazard likeli-
hood.

One downside of the approach to fault injection is that it may alter some of
the stochastic properties of the system model being studied (cf. Section 6.2).
Through careful mathematical analysis and sensitivity analysis experiments
we showed that the side-effects are relatively minor in our case study, and that
the order of magnitude of probability estimates is not affected. It remains
an open question however to what degree this approach generalises to other
systems. We anticipate that the kind of argument given in Section 6.2 would
transfer to most systems with natural “cycles of operation” (such as many
manufacturing systems).

Another unanticipated difficulty we encountered was not being able to
express some of the interesting system properties in CSL. As well as limit-
ing the kinds of properties for which Immediate Failure Likelihood could be
calculated, it also prevented detection of hidden failures in cases where such
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behaviours had non-zero probability.
The paper is rare in presenting a detailed study of the possibilities and

challenges of stochastic model checking for safety related systems. We show
that CTMCs are a reasonably natural way of modelling system behaviour
and component failures, and that the PRISM approach has some very useful
features for assisting in quantitative risk analysis.

At the same time, however, CTMCs provide challenges in representing
the timing behaviour of the system accurately. For future work it would be
interesting to investigate how other models of stochastic processes compare,
such as Probabilistic Timed Automata (which separate the notion of prob-
ability from that of timing) [40] or Interactive Markov Chains [41] (which
allow probabilistic transitions as well as non-deterministic choices between
transitions). At the moment, however, the tool support for these notation is
not as advanced as that for CTMCs.

The PRISM simulator was very helpful for debugging our models and dis-
covering the scenarios under which component failures led to system failures,
and the fault propagation mechanisms involved. Counterexample visualiza-
tion [25] is a promising technology that could improve the analyst’s ability to
determine which fault propagation mechanisms contribute most significantly
to risk. It would be interesting to see if the approach could be extended to our
method for calculating mean time to failure, to improve the analyst’s abil-
ity to determine which fault propagation mechanisms are involved in hidden
failures.
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A Modelica model of the Press

This is the model for normal (fault-free) operation of the Press:

class Press

constant Integer M = 50;

constant Integer H = 7;

constant Integer F = 850;

constant Real g = 9.81;

constant Real Fr = 6.31;

constant Real PONR = 1.44;

Boolean userpushbutton;

Real h, v;

Boolean topsensor, bottomsensor, ponrsensor, buttonsensor;

Integer motoron(start=2);

equation

der(h) = v;

when {h < 0, h > H} then reinit(v, 0); end when;

der(v) =

if motoron == 1 then

if h < H then

F/M-g + (if v>0 then -Fr else Fr)

else 0

else

if h > 0 then

-Press.g + (if v>0 then -Fr else Fr)
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else 0;

topsensor = h >= H;

ponrsensor = h <= PONR;

bottomsensor = h <= 0;

buttonsensor = userpushbutton;

switchon = bottomsensor or

(not buttonsensor and not ponrsensor);

switchoff = topsensor and buttonsensor;

motoron = if pre(motoron) == 2 and switchon then 1

else if pre(motoron) == 1 and switchoff then 2

else pre(motoron);

end Press;

Before executing the model it is necessary to add equations that describe the
operator behaviour. For example, the case where the operator pushes the
button after 58 sec and releases it again 3 sec later would be defined by:

userpushbutton = if 58 < time < 61 then true else false;

To model the case where for example the top sensor fails stuck high from 5
sec into operation, the equation for topsesnor above would be replaced by:

topsensor = if time < 5 then h >= H else true;

B Prism model

The following modules were omitted from Section 5 in the interests of space,
so are included here for completeness.

module BottomSensor

stateBS : [0..6] init 2; // High(1), Low(3)

[plAtBottom] stateBS=0 -> stateBS’=1;

[bsHigh] stateBS=1 -> stateBS’=2;

[plNotAtBottom] stateBS=2 -> stateBS’=3;

[bsLow] stateBS=3 -> stateBS’=0;
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[bsFailsHigh] !(stateBS=4 | stateBS=5 | stateBS=6)

-> SensorFail: stateBS’=4;

[bsHigh] stateBS=4 -> stateBS’=6;

[bsFailsLow] !(stateBS=4 | stateBS=5 | stateBS=6)

-> SensorFail: stateBS’=5;

[bsLow] stateBS=5 -> stateBS’=6;

[plAtBottom] stateBS=6 -> stateBS’=6;

[plNotAtBottom] stateBS=6 -> stateBS’=6;

endmodule

module PONRSensor

statePS : [0..6] init 0; // High(1), Low(3)

[plAbovePONR] statePS=0 -> statePS’=1;

[psLow] statePS=1 -> statePS’=2;

[plBelowPONR] statePS=2 -> statePS’=3;

[psHigh] statePS=3 -> statePS’=0;

[psFailsHigh] !(statePS=4 | statePS=5 | statePS=6)

-> SensorFail: statePS’=4;

[psHigh] statePS=4 -> statePS’=6;

[psFailsLow] !(statePS=4 | statePS=5 | statePS=6)

-> SensorFail: statePS’=5;

[psLow] statePS=5 -> statePS’=6;

[plAbovePONR] statePS=6 -> statePS’=6;

[plBelowPONR] statePS=6 -> statePS’=6;

endmodule

module Button

stateB : [0..6] init 0; // pushed(1), released(3)

[pushButton] stateB=0 -> stateB’=1;

[buttonP] stateB=1 -> stateB’=2;

[releaseButton] stateB=2 -> stateB’=3;

[buttonR] stateB=3 -> stateB’=0;

[buFailsHigh] !(stateB=4 | stateB=5 | stateB=6)

-> SensorFail: stateB’=4;

[buttonP] stateB=4 -> stateB’=6;

[buFailsLow] !(stateB=4 | stateB=5 | stateB=6)

-> SensorFail: stateB’=5;

[buttonR] stateB=5 -> stateB’=6;
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[pushButton] stateB=6 -> stateB’=6;

[releaseButton] stateB=6 -> stateB’=6;

endmodule

module Motor

stateM : [0..3] init 0; // on(1), off(3)

[turnMOn] stateM=0 -> stateM’=1;

[motorOn] stateM=1 -> stateM’=2;

[turnMOff] stateM=2 -> stateM’=3;

[motorOff] stateM=3 -> stateM’=0;

endmodule
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