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Evaluation of two different entanglement measures on a bound entangled state
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We consider the mixed three-qubit bound entangled state defined as the normalized projector on the subspace
that is complementary to an unextendible product basis [C. H. Bennett et al., Phys. Rev. Lett. 82, 5385 (1999)].
Using the fact that no product state lies in the support of that state, we compute its entanglement by providing
a basis of its subspace formed by “minimally entangled” states. The approach is in principle applicable to any
entanglement measure; here we provide explicit values for both the geometric measure of entanglement and a
generalized concurrence.
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I. INTRODUCTION

Entanglement measures quantify how much entanglement
is contained in a quantum state, which plays a fundamental
role in quantum information and computation tasks (for a
recent review, see [1]). For example, distillable entanglement
quantifies how many Bell states one can asymptotically
obtain from target states under local operations and classical
communications (LOCC) [2]; in particular, there exist bound
entangled states, whose distillable entanglement vanishes
under LOCC [3]. Many entanglement measures have been
proposed to characterize multipartite states. These measures
include the relative entropy of entanglement [4], the geometric
measure of entanglement [5], and the generalized concurrence
[6]. Multipartite entangled states are a useful resource for
promising quantum information tasks, such as one-way quan-
tum computation [7] and multiuser quantum communications
[8]: it is therefore essential to be able to characterize their
entanglement. In practice, some entanglement measures can
be estimated from experimental data [9], or via the efficient
method of direct measurements, which can be turned into a
verification test in experiments [10].

However, entanglement measures are usually difficult to
estimate, especially for multipartite mixed states [11–16]. In
this article we study the three-qubit mixed bound entangled
state defined as the normalized projector on the subspace
complementary to an unextendible product basis (UPB) [17].
This is a typical example of a multipartite mixed state whose
entanglement can be detected by entanglement witnesses built
from local observables [18]. Recently, a scheme for studying
local distinguishability of three-qubit UPB states has also been
proposed [19]. Here we use a unified strategy to compute two
measures, namely, the geometric measure of entanglement and
the generalized concurrence. We find in particular that the
optimal decompositions for both measures are different. Our
strategy is quite general and could in principle be applied to
all entanglement measures.

The article is organized as follows. In Sec. II we introduce
the target state and its relation with an UPB, as well as
the strategy of computing the two entanglement measures in
the following sections. In Sec. III we analytically derive the
geometric measure of entanglement. In Sec. IV we give a

numerical lower bound and an analytical upper bound on the
generalized concurrence. Finally, we conclude in Sec. V.

II. THE STATE AND THE STRATEGY

A. Unextendible product basis and bound entanglement

Consider the following four three-qubit states:

|ϕ0〉 = |0〉A |0〉B |0〉C,

|ϕ1〉 = |1〉A |+〉B |−〉C,
(1)

|ϕ2〉 = |−〉A |1〉B |+〉C,

|ϕ3〉 = |+〉A |−〉B |1〉C.

They form an UPB [17]: No product state can be found
orthogonal to the four states in (1). In other words, if P is
the subspace generated by the four vectors (1), there is no
product state in the complementary space Q = 11 − P .

The state defined as the uniform mixture on the space
complementary to an UPB is always a bound entangled state
[17,20]. In our case, this state reads

ρQ = 1

4

(
11 −

3∑
i=0

|ϕi〉〈ϕi |
)

, (2)

ρQ = 1

8

{
11 − 1

2
[11 ⊗ σ+ ⊗ σ− + (cyclic)]

− 1

2
√

2
(σ+ ⊗ σ+ ⊗ σ+ + σ− ⊗ σ− ⊗ σ−)

}
, (3)

with σ± = (σz ± σx)/
√

2 [21]. It is convenient to review
rapidly its remarkable properties.

By definition, ρQ is entangled: There is no product state in
its support, so a fortiori it will be impossible to decompose it
on product states. It can also be easily verified [17] that one
can complete the basis (1) with four vectors such that the first
two qubits are entangled and the third one is separable; in other
words, ρQ can be decomposed in the form

ρQ = 1

4

3∑
i=0

|�i〉AB〈�i | ⊗ |� ′
i〉C〈� ′

i |. (4)

1050-2947/2010/82(1)/012327(6) 012327-1 ©2010 The American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/15094423?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevLett.82.5385
http://dx.doi.org/10.1103/PhysRevA.82.012327


BRANCIARD, ZHU, CHEN, AND SCARANI PHYSICAL REVIEW A 82, 012327 (2010)

This means that the state is not three-partite entangled.
Moreover, from this decomposition it is obvious that the
reduced states ρAC and ρBC are separable; even more, no
measurement of B can prepare an entangled state between
A and C, and no measurement of A can prepare an entangled
state between B and C. At first sight, one might hope that ρAB is
entangled, or at least that a measurement of C could prepare an
entangled state between A and B. However, this is not the case.
Indeed, by construction of the basis (1), ρQ is invariant under
cyclic permutations A → B → C → A. Therefore, we can
rewrite (4) with states |�i〉BC |� ′

i〉A and repeat the preceding
reasoning. In conclusion, the entanglement that has to be
invested to create ρQ is nowhere to be recovered, whichever
partition and LOCC strategy is envisaged.

The state ρQ is thus a paradigmatic example of bound
entanglement. Since it is not symmetric under all permutations,
but only the cyclic ones, it does not fall in the family of states
for which general studies of entanglement measures have been
made [15,16,22,23]. Here we shall show how one can compute
the value of entanglement for such a state. The main idea is
presented in the next paragraph.

B. Quantifying entanglement

Entanglement measures are normally defined on pure states.
For bipartite pure states, there is only one measure, namely the
entropy of the reduced density matrix. For multipartite states,
the situation is much less well understood and there are several
candidates for entanglement measures. Still, they are usually
computable on pure states.

The definition of an entanglement measure E on pure states
can be extended to any mixed state ρ as follows:

E(ρ) = min
{pi ,|ψi 〉}

∑
i

piE(|ψi〉), (5)

where the minimum is to be taken among all possible pure-state
decompositions of ρ in the form ρ = ∑

i pi |ψi〉〈ψi |. There is,
however, no general recipe for computing this minimum.

An obvious lower bound is given by

E(ρ) � min
|ψ〉∈supp(ρ)

E(|ψ〉), (6)

where supp(ρ) is the support of ρ. For many mixed states, this
lower bound is trivial, because there will be a product state in
the support of ρ and therefore the right-hand side is simply 0.
However, for ρQ the right-hand side of (6) is not zero, because
we know that there is no product state in its support.

In addition, for the two measures of entanglement con-
sidered below, we shall show that one can find a complete
orthonormal basis {|ψ0〉, . . . ,|ψ3〉} ofQ formed by “minimally
entangled” states, that is, such that

E(|ψi〉) = min
|ψ〉∈Q

E(|ψ〉) (7)

for all i = 0, . . . ,3. As ρQ = 1
4

∑ |ψi〉〈ψi | for any orthonor-
mal basis {|ψi〉} of Q, this implies that, for these two measures
at least,

E(ρQ) = min
|ψ〉∈Q

E(|ψ〉). (8)

This is the simple but crucial insight that will allow us to
compute the entanglement of ρQ. A similar insight was used
for the Smolin state, a permutation invariant four-qubit bound
entangled state [11]. In the next two sections, we compute the
right-hand side of (8) and exhibit a full basis that reaches
this value for two measures of multipartite entanglement,
the geometric measure of entanglement [5] in Sec. III and
a generalized concurrence [6] in Sec. IV.

III. GEOMETRIC ENTANGLEMENT OF ρQ

We start by considering the geometric measure of entan-
glement [5]. For an N -partite pure state |ψ〉, this measure is
defined as

EG(|ψ〉) = 1 − max
|φ〉∈�

|〈ψ |φ〉|2, (9)

where � is the set of all N -partite pure product states |φ〉 =
|φ1〉 ⊗ · · · ⊗ |φN 〉.

Following the strategy defined previously, we compute

EG(ρQ) = 1 − 3
√

6

8
� 0.081 44. (10)

For comparison, in the case of three qubits, the largest value
of geometric measure of entanglement is achieved for the W

state and is EG(|W 〉) = 5
9 [13,14].

A. Calculating min|ψ〉∈Q EG(|ψ〉)

From the definition (9) of EG, we have

min
|ψ〉∈Q

EG(|ψ〉) = min
|ψ〉∈Q

(1 − max
|φ〉∈�

|〈ψ |φ〉|2)

= 1 − max
|φ〉∈�

max
|ψ〉∈Q

|〈ψ |φ〉|2. (11)

Now, for a given |φ〉 ∈ �, the closest state to |φ〉 in the
subspace Q is simply the projection of |φ〉 onto Q. Denoting
with Q̃ the projector onto the subspace Q, we get

max
|ψ〉∈Q

|〈ψ |φ〉|2 = 〈φ|Q̃|φ〉, (12)

so that

min
|ψ〉∈Q

EG(|ψ〉) = 1 − max
|φ〉∈�

〈φ|Q̃|φ〉

= min
|φ〉∈�

〈φ|P̃|φ〉, (13)

where P̃ denotes the projector onto the subspace P . We show
in Appendix A how to calculate min|φ〉∈�〈φ|P̃|φ〉 analytically.
We obtain

min
|ψ〉∈Q

EG(|ψ〉) = 1 − 3
√

6

8
. (14)

B. A whole basis reaching min|ψ〉∈Q EG(|ψ〉)

As also shown in Appendix A, the minimum
min|φ〉∈�〈φ|P̃|φ〉 can be attained by the four states
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|φi〉 = |ai〉|bi〉|ci〉 (i = 0, . . . ,3), with

|ai〉 = cos
αi

2
|0〉 + sin

αi

2
|1〉, (15)

|bi〉 = cos
βi

2
|0〉 + sin

βi

2
|1〉, (16)

|ci〉 = cos
γi

2
|0〉 + sin

γi

2
|1〉, (17)

and for the following values of αi,βi,γi [24]:

|φ0〉 : α0 = θ0, β0 = θ0, γ0 = θ0,

|φ1〉 : α1 = π + θ0, β1 = π
2 − θ0, γ1 = 3π

2 − θ0,

|φ2〉 : α2 = 3π
2 − θ0, β2 = π + θ0, γ2 = π

2 − θ0,

|φ3〉 : α3 = π
2 − θ0, β3 = 3π

2 − θ0, γ3 = π + θ0,

(18)

where θ0 = arccos(−
√

6−2
2 ).

Let |ψi〉 (i = 0, . . . ,3) be the normalized states correspond-
ing to the projection of |φi〉 onto Q:

|ψi〉 = 1√
3
√

6
8

Q̃|φi〉. (19)

On the one hand, it can be checked that these four states form
an orthonormal basis of Q; they thus provide a decomposition
ρQ = 1

4

∑3
i=0 |ψi〉〈ψi |. On the other hand, by construction,

EG(|ψi〉) = 1 − max
|φ〉∈�

|〈ψi |φ〉|2 = 1 − |〈ψi |φi〉|2

= 1 − 3
√

6

8
. (20)

This concludes the proof of (10).
As a remark: The four states |ψi〉 turn out to be three-partite

entangled. As we mentioned in Sec. II A, there exist bases ofQ
made of bipartite entangled states. It is interesting to note that
such bases are not those that minimize the geometric measure
of entanglement.

IV. GENERALIZED CONCURRENCE OF ρQ

The second measure of entanglement that we consider is a
generalization of the concurrence defined as [6]

EC(|ψ〉) = 21−N/2
√

2N − 2 −
∑

j

Tr ρ2
j , (21)

where the multi-index j runs over all (2N − 2) subsets of the
N subsystems and ρj is the reduced density matrix of the
corresponding subset.

Following the strategy defined earlier, we prove that

EC(ρQ) =
√

897

52
� 0.575 96. (22)

In fact, analytically, we prove only EC(ρ) �
√

897
52 , but we have

strong numerical evidence that this is indeed the exact value
of EC(ρ).

In comparison, in the case of three qubits, the largest value
of this measure of entanglement is reached for the GHZ state
[for which all the reduced states ρj in (21) are maximally
mixed] and is EC(|GHZ〉) = √

3/2 � 1.2247.

A. Calculating min|ψ〉∈Q EC (|ψ〉)

Consider first states that lie in the symmetric subspace

of (C 2)
⊗3

, denoted S. Among these states, we can find
analytically the one that minimizes EC(|ψ〉). The analytical
calculations are detailed in Appendix B, and the final result is

min
|ψ〉∈Q∩S

EC(|ψ〉) =
√

897

52
. (23)

We have not been able to prove analytically that this value
defines the minimum of EC(|ψ〉) over the whole subspace Q;
however, a brute-force numerical minimization reaches exactly
the same value. Therefore, up to the conjecture that there exists
a symmetric state |ψ ′

0〉 that reaches the minimum, backed by
numerical evidence, we can assert that

min
|ψ〉∈Q

EC(|ψ〉) =
√

897

52
. (24)

B. A whole basis reaching min|ψ〉∈Q EG(|ψ〉)

We also exhibit in Appendix B three other states |ψ ′
1〉,|ψ ′

2〉,
and |ψ ′

3〉, that form an orthonormal basis of Q together with
|ψ ′

0〉, and that are such that

EC(|ψ ′
1〉) = EC(|ψ ′

2〉) = EC(|ψ ′
3〉) =

√
897

52
= EC(|ψ ′

0〉). (25)

Up to the conjecture mentioned earlier, this concludes the proof
of (24).

Note that, as was the case for geometric measure of
entanglement, all these four states are three-partite entangled.

V. CONCLUSION

We found a way to estimate the entanglement of the
state ρQ. The entanglement of this state is quantified in
terms of geometric measure of entanglement and generalized
concurrence [25]; and it is found to be strictly positive,
while the state is bound entangled and not fully three-partite
entangled.

The remarkable property of ρQ that allowed us to estimate
its entanglement is the possibility to decompose it into a
mixture of minimally entangled states. This was at least
possible for both the geometric measure of entanglement and
the generalized concurrence; we do not know whether this
necessarily holds for all entanglement measures. Nevertheless,
our results also illustrate the fact that the two measures of
entanglement that we considered are quite different: The
optimal decomposition of ρQ as a mixture of pure states is
not the same for these two measures of entanglement.

Our technique can be applied to other states, whenever such
a decomposition into minimally entangled states is possible.
As further examples, we give in Appendix C numerical
results for the bound entangled state constructed out of the
generalized three-qubit “GenShifts” UPB defined in [17,20].
As our technique is scalable, it could as well be extended
to higher-dimensional systems, consisting of more than three
subsystems. It would also be interesting to apply our approach
to different entanglement measures.

012327-3



BRANCIARD, ZHU, CHEN, AND SCARANI PHYSICAL REVIEW A 82, 012327 (2010)

ACKNOWLEDGMENTS

We acknowledge discussions with Robert Hübener and
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APPENDIX A: CALCULATIONS FOR EG(ρQ):
ANALYTICAL CALCULATION OF min|φ〉∈�〈φ|P̃|φ〉
Any state |φ〉 ∈ � can be written as |φ〉 = |a〉|b〉|c〉, with

|a〉 = cos
α

2
|0〉 + sin

α

2
eiϕa |1〉, (A1)

|b〉 = cos
β

2
|0〉 + sin

β

2
eiϕb |1〉, (A2)

|c〉 = cos
γ

2
|0〉 + sin

γ

2
eiϕc |1〉, (A3)

and where α,β,γ ∈ [0,2π ]; ϕa,ϕb,ϕc ∈ [0,π ]. With these
notations, we find

〈φ|P̃|φ〉 = 1
8 (1 + cosα)(1 + cos β)(1 + cosγ )

+ 1
8 (1 − cosα)(1 + sinβ cos ϕb)(1 − sinγ cos ϕc)

+ 1
8 (1 − sinα cos ϕa)(1 − cosβ)(1 + sinγ cos ϕc)

+ 1
8 (1 + sinα cos ϕa)(1 − sinβ cos ϕb)(1 − cosγ ).

(A4)

The preceding expression being linear in cos ϕa , its minimum
can be attained for either ϕa = 0 or ϕa = π . As the expression
is also invariant under the transformation (α ↔ 2π − α,ϕa ↔
π − ϕa), then its minimum can be attained for ϕa = 0.

Similar arguments can be applied to ϕb and ϕc, which allows
us to write

min
|φ〉∈�

〈φ|P̃|φ〉 = min
α,β,γ∈[0,2π]

F (α,β,γ ), (A5)

where

F (α,β,γ ) = 1
8 (1 + cos α)(1 + cos β)(1 + cos γ )

+ 1
8 (1 − cos α)(1 + sin β)(1 − sin γ )

+ 1
8 (1 − sin α)(1 − cos β)(1 + sin γ )

+ 1
8 (1 + sin α)(1 − sin β)(1 − cos γ )

= 1 − 1
16 det M, (A6)

with

M =

⎛
⎜⎝

cos α − sin α cos α + sin α −2

cos β + sin β −2 cos β − sin β

−2 cos γ − sin γ cos γ + sin γ

⎞
⎟⎠ .

Now, the Hadamard inequality applied to the row vectors of
M gives

|det M| � 6
√

6, (A7)

from which we conclude that

F (α,β,γ ) � 1 − 3
√

6

8
. (A8)

The equality is obtained if the three row vectors of M are
mutually orthogonal. The following four sets of values for
α,β,γ , with cos θ0 = −

√
6−2
2 , all satisfy this condition:

|φ0〉 : α0 = θ0, β0 = θ0, γ0 = θ0,

|φ1〉 : α1 = π + θ0, β1 = π
2 − θ0, γ1 = 3π

2 − θ0,

|φ2〉 : α2 = 3π
2 − θ0, β2 = π + θ0, γ2 = π

2 − θ0,

|φ3〉 : α3 = π
2 − θ0, β3 = 3π

2 − θ0, γ3 = π + θ0.

(A9)

Interestingly, the four states |φi〉 defined by the corresponding
values of αi,βi,γi (and with ϕa = ϕb = ϕc = 0) also form an
UPB of the “GenShifts” type [17,20].

These four states all attain the previous lower bound for
F (α,β,γ ), so that for i = 0, . . . ,3,

〈φi |P̃|φi〉 = min
|φ〉∈�

〈φ|P̃|φ〉 = 1 − 3
√

6

8
. (A10)

APPENDIX B: CALCULATIONS FOR EC (ρQ)

1. Calculation of min|ψ〉∈Q∩S EC (|ψ〉)

For convenience, let us start by defining a basis for Q. A
possible choice is the following:

|q0〉 = 1√
2

(| + ++〉 − |− −−〉),

|q1〉 = 1√
2

(| + 10〉 − |− 0 1〉),
(B1)

|q2〉 = 1√
2

(|0 + 1〉 − |1 − 0〉),

|q3〉 = 1√
2

(|10+〉 − |0 1−〉).

A generic symmetric state in Q can then be written as

|ψ〉 = cos θ |q0〉 + sin θeiγ |q1〉 + |q2〉 + |q3〉√
3

, (B2)

with θ,γ ∈ [0,π ].
The sum in the definition (21) of EC(|ψ〉) can be explicitly

calculated and is found to be∑
j Tr ρ2

j = 1
3 (10 + 25 cos2 θ − 26 cos4 θ )
− 4 cos2 θ sin2 θ (1 − cos 2γ ).

(B3)

The maximum of this two-variable function is obtained for
cos2 θ = 25

52 , cos 2γ = 1. We get

min
|ψ〉∈Q∩S

EC(|ψ〉) =
√

897

52
, (B4)
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and the minimum can be reached by two different symmetric
states, one of these being

|ψ ′
0〉 = 1

2
√

13
(5|q0〉 + 3|q1〉 + 3|q2〉 + 3|q3〉). (B5)

2. Three other orthogonal states with the same value of EC

One can easily check that the following three states,

|ψ ′
1〉 = 1

2
√

13
(3|q0〉 − 5|q1〉 + 3|q2〉 − 3|q3〉),

|ψ ′
2〉 = 1

2
√

13
(3|q0〉 − 3|q1〉 − 5|q2〉 + 3|q3〉), (B6)

|ψ ′
3〉 = 1

2
√

13
(3|q0〉 + 3|q1〉 − 3|q2〉 − 5|q3〉),

all have the same value of EC as |ψ ′
0〉, and that, together with

|ψ ′
0〉, they form an orthonormal basis of Q; they thus provide

a decomposition of ρQ.

APPENDIX C: ENTANGLEMANT OF THE BOUND
ENTANGLED STATE CONSTRUCTED OUT OF THE

THREE-QUBIT “GENSHIFTS” UPB

In this appendix we apply our approach to the three-qubit
bound entangled state ρQ(φ) constructed out of the generalized
“GenShifts” UPB [17,20], and show numerical results for the
values of EG[ρQ(φ)] and EC[ρQ(φ)].

For a single-qubit state |φ〉 and its orthogonal state |φ⊥〉,
the “GenShifts” UPB consists of the four states

|ϕ0〉 = |0, 0, 0〉,
|ϕ1〉 = |1,φ,φ⊥〉,

(C1)|ϕ2〉 = |φ⊥,1,φ〉,
|ϕ3〉 = |φ,φ⊥,1〉.

ρQ(φ) is then defined as the uniform mixture on the comple-
mentary subspace Q(φ):

ρQ(φ) = 1

4

(
11 −

3∑
i=0

|ϕi〉〈ϕi |
)

. (C2)

Note that the state ρQ studied in the main text is a particular
case of ρQ(φ), corresponding to |φ〉 = |+〉.

We checked numerically that the critical properties of ρQ
that we used to estimate its entanglement are still satisfied
by ρQ(φ): For all choices of |φ〉, one can again find two
(different) orthonormal bases {|ψi〉} and {|ψ ′

i 〉} ofQ(φ) formed
by minimally entangled states, that is, such that

EG(|ψi〉) = min
|ψ〉∈Q(φ)

EG(|ψ〉), (C3)

EC(|ψ ′
i 〉) = min

|ψ〉∈Q(φ)
EC(|ψ〉), (C4)

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

|〈0|φ〉|2

E
G

(ρ
Q

(φ
))

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

|〈0|φ〉|2

E
C

(ρ
Q

(φ
))

FIG. 1. Numerical calculations of the values of EG[ρQ(φ)] (top)
and EC[ρQ(φ)] (bottom).

for all i = 0, . . . ,3. We then conclude that

EG[ρQ(φ)] = min
|ψ〉∈Q(φ)

EG(|ψ〉), (C5)

EC[ρQ(φ)] = min
|ψ〉∈Q(φ)

EC(|ψ〉). (C6)

Figure 1 displays the numerical results we obtained for
the entanglement of ρQ(φ) measured by EG and EC , as
a function of the overlap |〈0|φ〉|2. Not surprisingly, the
maxima of EG[ρQ(φ)] and EC[ρQ(φ)] are found when
|〈0|φ〉|2 = |〈1|φ〉|2 = 1

2 , which is in particular the case for
ρQ = ρQ(+).
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