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In reply to the Comment by Kennett regarding our article �Phys. Rev. B 77, 235123 �2008��, we clarify the
key points at which we disagree with Kennett’s derivation of the interlayer magnetoconductivity in layered
metals and argue that our original derivation of this quantity is valid.
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In his Comment, Kennett claims that our derivation1 of
the interlayer magnetoconductivity in quasi-two-dimensional
�2D� and quasi-one-dimensional �1D� metals with a
momentum-dependent scattering potential is incorrect. He
presents an alternative derivation, obtaining a different final
expression for the conductivity ����. The discrepancy arises
in the simplest case of dc conductivity ��=0�, and occurs in
exactly the same way for 2D and 1D metals.2 To most clearly
illustrate the disagreement, we focus on the derivation of the
dc conductivity in a 2D metal, commenting briefly on finite
frequencies near the end.

In two unnumbered equations below Eq. �2K�, then in Eq.
�3K� of the Comment, Kennett writes the relevant electronic
equation of motion and the Boltzmann equation, respec-
tively. �We indicate an equation in Kennett’s Comment by
using the letter “K” after the equation number. An equation
number without a K will always refer to an equation in this
reply. Equation numbers in our original article will not be
referenced.�. As he notes, for dc fields these equations are the
same as those appearing in our article.1 So, our derivations
proceed from an identical starting point.

The equations of motion are

d�

dt�
= �C

dkz

dt�
= kf�C tan �B sin � , �1�

where �C is the cyclotron frequency, kf the radius of �the
quasicylindrical� Fermi surface, and �B the orientation of
magnetic field.

The general solution of this 2D equation of motion con-
tains two arbitrary constants �here taken to be the initial val-
ues of the coordinates � and kz� and can be written

��t�� = ��0� + �Ct�,

kz�t�� = kz�0� − kf tan �B�cos���t��� − cos���0��� . �2�

The rest of our derivation proceeds as follows �we refer to
the same numbered steps when we discuss Kennett’s deriva-
tion below�: �I� substitute kz�t�� into the interlayer velocity
appearing in the Boltzmann equation, which is

�g

�t�
+ �C

−1I�g� = − eEz�C
−1vz�kz� . �3�

So the velocity vz�kz� becomes vz�kz�t���. Thus, the distribu-
tion g formally depends on three variables: t�, ��0� and kz�0�
�i.e., all three appear in the Boltzmann equation that deter-
mines g�. �II� Solve Eq. �3� for g���0� ,kz�0� , t�� via Fourier
transform of all three variables. �III� Insert g���0� ,kz�0� , t��
into the expression for the current jz. The current is an inte-
gral over all momenta so kz�0� and ��0� are integrated to
obtain a t�-dependent jz�t��. The dc conductivity is obtained
by taking a time-frequency Fourier transform and the �
→0 limit.

At intermediate steps of this derivation, we employ a
Fermi surface distribution function of three independent vari-
ables: g���0� ,kz�0� , t��. Kennett states that this is not valid
and, in his derivation, takes the distribution to depend on
only two Fermi-surface momentum variables, which he calls
� and kz

0. However, since he started from the same 2D equa-
tion of motion that we did, he reaches his two-variable de-
scription by dropping an initial constant from the general
solution of this equation. We believe that this is carried out in
an arbitrary manner and leads him to an incorrect result for
the conductivity. Thus, while we acknowledge that there are
subtleties in our calculation �discussed below� we contend
that our approach is on a more solid mathematical footing
than Kennett’s and that our final expression for the conduc-
tivity is more plausible. We justify our approach below. First
we criticize Kennett’s derivation.

As a solution to the equation of motion for kz, Eq. �1�,
Kennett finds

kz��� = kz
0 − kf tan �B cos � . �4�

He makes the connection with the general solution above by
assigning the variable kz

0 the value

kz
0 = kz�0� + kf tan �B cos���0�� with � = ��0� + �Ct�

�5�

so the quantities kz
0 and � depend on the three parameters of

the general solution.
Now, Kennett performs step I. But by using the quantity

kz
0 and making the additional substitution � /�t�→�C� /�� he

obtains a Boltzmann equation that appears to involve only

PHYSICAL REVIEW B 82, 037102 �2010�

1098-0121/2010/82�3�/037102�3� ©2010 The American Physical Society037102-1

http://dx.doi.org/10.1103/PhysRevB.77.235123
http://dx.doi.org/10.1103/PhysRevB.82.037102


two momentum variables: kz
0 and �. �This is his Eq. �3K�,

with the first term absent for dc fields—note that Kennett’s t
variable is used only in the case of ac fields, which we are
not discussing yet.� He seeks a two-variable distribution
function g�� ,kz

0� as the solution of the Boltzmann equation.
But because � and kz

0 are functions of the three independent
parameters originating from the Eq. �1�, there is an implicit
ambiguity in this description.

To illustrate the consequences of this ambiguity, consider
the Fourier expansion �Eq. �4K�� used in step II

g�kz
0,�� = �

mn

gmn exp�imckz
0 + in�� , �6�

where c is the lattice constant. If we substitute the expression
for kz

0 in terms of kz�0� and ��0�, then it is clear that different
choices of the parameter ��0� will give different values for
the expansion coefficients. Indeed, it is easy to obtain the
relation

gmn���0�� = exp�− imkfc tan �B cos���0���gmn��/2� . �7�

So the expansion of the distribution function is not specified
unless the value of ��0� is fixed. By dropping the factor
appearing on the right side of Eq. �7�, Kennett is tacitly set-
ting ��0�=� /2, though he gives no justification for this
choice.

Kennett proceeds through step III where he does the mo-
mentum integral in the current jz by integrating over kz

0 and
�. This procedure amounts to integrating over one of the
initial coordinates that appeared in the general solution of the
equation of motion, while arbitrarily fixing the other. We see
no mathematical justification for such an inconsistent treat-
ment of two initial values that arose from the same source.
We regard this as a flaw in Kennett’s derivation and claim
that his subsequent result for ���� is not valid.

We now discuss the reasoning beyond our “three-
variable” calculation. The general approach, and particularly
the meaning of the time variable t� that appears in Eq. �1�, is
discussed in Ref. 3. There, it is noted that while the physical
time appears in the equation of motion, dk /dt=−ev�B
−eE, the auxiliary time variable t� appears in the correspond-
ing equation without the electric field. In the presence of a
strong magnetic field and weak electric field there will exist
a time scale over which electrons undergo cyclotron motion
driven by the magnetic field without feeling any effect of the
electric field. On this time scale, the auxiliary time variable
t� will correspond exactly to the physical time t.

Equation �1� describes the real cyclotron motion of each
thermally excited quasiparticle on this short time scale. The
distribution function describes the population of all such or-
biting electrons. On the Fermi surface g���0� ,kz�0� , t�� may
be described as a function of three variables: two static mo-
mentum variables ��0� and kz�0� and one time variable to
describe the phase of the cyclotron motion. �Of course, peri-
odic time dependence driven by the magnetic field does not
threaten the stability of a steady state solution. A distribution
can be time-independent on the long time scales over which
the acceleration in the electric field, and compensating relax-
ation due to scattering, is relevant. This is enough to ensure a
steady state.� Following this approach, as described above,

one solves for the time-dependent distribution and current
and takes a time-frequency Fourier transform to obtain dc
magnetotransport coefficients.

We have confirmed that this approach can be used to ob-
tain the established magnetoconductivity for metals in sev-
eral geometries. As one example, it yields the known result4

for the interlayer conductivity in layered metals in the limit-
ing case of isotropic scattering, where the relaxation-time
approximation �RTA� can be used. Kennett’s conductivity
expression also captures this limiting case, though the differ-
ent manner in which our expression and his reduce to the
RTA result is illuminating.

When the RTA is used in our derivation, cancellations of
t�-dependent factors result in a current that is independent of
t�. So, within the RTA, the �-t� Fourier transform is trivial
and the resulting conductivity has a single factor of a squared
Bessel function that originates from the integral over ��0�.
When we go beyond the RTA and use the full collision inte-
gral, jz�t�� becomes �periodically� t�-dependent. Upon carry-
ing out the time-frequency Fourier transform and �→0
limit, one obtains an extra squared Bessel function convo-
luted with the first �the first squared Bessel comes from the
��0� integral, the second from the t� integral�.

This result has an appealing physical interpretation. When
one goes beyond the RTA, the effectiveness of a scattering
process becomes dependent on the difference in the distribu-
tion at the initial and final scattering momenta. Thus, it is
reasonable that one should find such an additional convolu-
tion of squared Bessel factors—a reflection of the fact that
the conductivity is now sensitive to the value of the distribu-
tion at two different positions of the Fermi surface �in the
RTA only a single k value of the distribution is relevant�.
Going beyond the RTA comes at considerable computational
cost in our formulation �the cost of going from a single to a
double summation of convoluted Bessel functions�.

In contrast, Kennett’s conductivity in the case of the gen-
eral collision integral is of exactly the same form as that
found within the RTA. Both are given by a single sum over
squared Bessel functions �to go beyond the RTA and incor-
porate a full collision integral into his expression, one simply
has to replace a constant scattering rate with one that de-
pends on the momentum index�. There is no additional con-
volution of Bessel components. This form results from the
usage of a two-variable distribution. It implies that one pays
no penalty for going beyond the RTA. This is in stark con-
trast to virtually all other results in Boltzmann transport
theory where one finds that going beyond the RTA entails a
significant increase in the complexity of the calculation.5

We now briefly address the extension to finite frequency.
In Eq. �3K�, Kennett writes down a well-known3 version of
the Boltzmann equation that is appropriate for ac fields that
differs from the one we used �by the addition of its first term
on the left-hand side, mentioned above�. Below we justify
our use of the simpler equation. However, we must first em-
phasize that this point is not related to the central disagree-
ment between Kennett’s results and our own. As shown
above, the discrepancy between our derivations occurs at the
level of the dc calculation. Indeed, when one compares the
relationship between our expressions for the dc and ac con-
ductivities, one sees that it is analogous to the corresponding

COMMENTS PHYSICAL REVIEW B 82, 037102 �2010�

037102-2



relationship between Kennett’s expressions. That is, the dis-
crepancy occurring in the dc calculation propagates to the ac
calculation.

We restricted ourselves to the consideration of vanish-
ingly weak ac electric fields and strong, static magnetic
fields. In this case, the dominant influence on electron mo-
tion is the magnetic field that drives cyclotron motion. The
additional electric field is a weak correction that is nonethe-
less responsible for the interlayer electric current. By drop-
ping the first term included in Kennett’s Boltzmann equation,
we make the assumption that the quasiparticle distribution,
and interlayer current, can be determined to lowest order in
electric field by only incorporating the ac electric field into
the current source term �which is the only term in which the
electric field must be included to obtain finite current�. We
explicitly described our approach in the article.1 We concede
that there is a valid point of criticism to be made about our
calculation—one might be concerned that the omitted term
would have a significant effect on our results for the
frequency-dependent conductivity. Inclusion of this term
would make the calculation far more difficult, however. Ken-
nett is able to incorporate this term into his analysis because
of his simpler treatment of the dc current source. But we
cannot regard his result for the ac conductivity as an im-
provement over our expression. It has, we claim oversimpli-
fied, properties analogous to those of the dc expression, as
we now briefly mention.

The key feature of the ac conductivity expressions ob-
tained in our article and in Kennett’s Comment are the reso-
nant peak widths, which contain information about the Fou-
rier components of the scattering potential. According to
Kennett’s Comment, individual components can simply be
read off �as they follow a one-to-one correspondence� from

the widths of peaks in the ac conductivity. Our result instead
suggests that such peak widths are produced by weighted
sums over all possible scattering components �low-frequency
peaks being more heavily weighted toward long-wavelength
scattering components�. We would argue that the latter be-
havior, in which all allowable scattering processes are en-
tangled in the measurable spectral peaks, more closely fol-
lows one’s physical intuition for scattering effects. A full
discussion of the implications of our ac conductivity expres-
sion is given in Ref. 1.

In conclusion, we have replied to Kennett’s criticism of
our derivation of the interlayer magnetoconductivity in 1D
and 2D metals. On the one hand, we have justified our cal-
culation by discussing how it follows a general approach,
which successfully accounts for well-known results in mag-
netotransport, and arguing that our final expression has
physically reasonable features. On the other, we have identi-
fied what we see as a critical issue in Kennett’s alternative
derivation: the questionable treatment of initial constants
arising from the electronic equation of motion, which is done
to reduce from three to two the number of variables in the
distribution function. We have also pointed out unusual prop-
erties of his final expression. While we appreciate that there
are subtle issues at play �especially in the interpretation of
the time-dependent distribution and the respective roles of a
time-dependent electric field and the cyclotron motion within
a static magnetic field� we claim that we have demonstrated
that the results of our original article are on a sound theoret-
ical footing, whereas those of Kennett’s Comment are more
difficult to justify.
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