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ABSTRACT

Even in a universe that is homogeneous on large scales, local density fluctuations can imprint a systematic
signature on the cosmological inferences we make from distant sources. One example is the effect of a local
underdensity on supernova cosmology. Also known as a Hubble–bubble, it has been suggested that a large enough
underdensity could account for the supernova magnitude–redshift relation without the need for dark energy or
acceleration. Although the size and depth of the underdensity required for such an extreme result is extremely
unlikely to be a random fluctuation in an on-average homogeneous universe, even a small underdensity can
leave residual effects on our cosmological inferences. It is these small underdensities that we consider here.
In this paper, we show that there remain systematic shifts in our cosmological parameter measurements, even
after excluding local supernovae that are likely to be within any small Hubble–bubble. We study theoretically
the low-redshift cutoff typically imposed by supernova cosmology analyses and show that a low-redshift cut of
z0 ∼ 0.02 may be too low based on the observed inhomogeneity in our local universe. Neglecting to impose any
low-redshift cutoff can have a significant effect on the cosmological parameters derived from supernova data. A
slight local underdensity, just 30% underdense with scale 70 h−1 Mpc, causes an error in the inferred cosmological
constant density ΩΛ of ∼4%. Imposing a low-redshift cutoff reduces this systematic error but does not remove
it entirely. A residual systematic shift of 0.99% remains in the inferred value ΩΛ even when neglecting all
data within the currently preferred low-redshift cutoff of 0.02. Given current measurement uncertainties, this
shift is not negligible and will need to be accounted for when future measurements yield higher precision.
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1. INTRODUCTION

To estimate global properties of the universe, such as the
average matter density, we make models that include those
properties as parameters and test which parameter values best
fit the data. The simplest cosmological model that provides
a good fit to supernova data is the ΛCDM model, in which
the universe is assumed to be homogeneous and dominated by
cold dark matter and a cosmological constant, parameterized
by their normalized densities ΩM and ΩΛ. The assumption
of homogeneity, however, is only valid over large scales.
Evidently, on the scales of stars, galaxies, and clusters of
galaxies, the matter distribution is far from homogeneous. Such
inhomogeneities give rise to varying expansion rates in different
parts of the universe and varying gravitational potentials.

Thus, as light makes its journey from source to observer,
it experiences not a cosmological redshift due to a single rate
of expansion H̄ (t), but rather varying degrees of cosmological
redshifts determined by the local rate of expansion H(r, t). In
addition, the spatially varying gravitational potential contributes
differing gravitational red and blueshifts, as the light travels
through underdense and overdense regions.

To a large extent, these effects cancel each other out over
the path of the photon. In a flat universe containing only
matter, the canceling is exact; however, in the presence of
other contributions, such as from dark energy or curvature, the
potential wells evolve as the light passes through them in such
a way so as to alter the total redshift. This effect is known as
the Integrated Sachs–Wolfe (ISW) effect and has been recently
used to detect the presence of dark energy from temperature

enhancements in the cosmic microwave background (CMB)
correlated with the density of galaxies along the line of sight
(Giannantonio et al. 2008).

Nevertheless, the ISW effect is small (an order of magnitude
below the level of the primordial fluctuations in the CMB) and
as we look over a range of directions we benefit from spatial av-
eraging which further smooths any variation due to density fluc-
tuations along any particular line of sight. Spatial averaging also
compensates for the overdensity or underdensity at the sources.

The one irreducible effect comes from any density fluctuation
inside which we happen to reside. Then the absolute depth of
the potential (rather than just the change in depth during a light-
crossing time) comes into full effect. In that case, the photon
has no chance to climb back out of the potential well and feels
the full brunt of the density fluctuation. Whether we are in an
underdense or an overdense region, it is clear that the fluctuation
that light travels through immediately before reaching us is not
compensated for, as it would have been were the light left to
continue its journey.

This final redshift will add a systematic shift in the
magnitude–redshift data to which we fit our homogeneous mod-
els, and may impede our ability to deduce the average density
of the universe outside our local bubble.

We are therefore motivated to study the possible effect of
a local inhomogeneity on our cosmological inferences. In this
paper, we focus on supernova cosmology. We generate simulated
data with a local underdensity then fit it with a homogeneous
cosmological model to test whether the derived parameters
match the input parameters for the average density outside
the local void (Section 4). Supernova cosmologists typically
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reject low-redshift data on the basis that peculiar velocities
are relatively high compared to the cosmological recession
velocities and Hubble–bubble effects, most prominent. We
therefore implement a low-redshift cutoff, denoted z0, and
investigate how well the fit converges to the input model as
this low-redshift cutoff changes (Section 5).

Initially, we use a large void in a matter-only universe to
demonstrate the concept clearly, then in Section 4.2 introduce
a cosmological constant as well. In Section 4.3, we assess the
likely impact of voids of the size we expect to find in random
fluctuations in a standard ΛCDM cosmology. Our conclusions
are analyzed in Section 7. We now begin by first discussing the
nature and sizes of voids in our universe.

2. VOID SIZES

The word “void” has been used in the literature to mean sev-
eral different things. The “voids” we refer to here are Gaussian
underdensities, of the kind you might expect to naturally occur
as random fluctuations in a generally homogeneous universe.
While very large voids are non-Gaussian in nature, as a first
approximation, and for small voids, the assumption of Gaus-
sianity should hold. Our motivation is to study the possible
effect of a local density fluctuation of a size that is likely to
occur in a standard ΛCDM cosmology. We choose to concen-
trate on underdensities rather than overdensities because of the
interest they have already generated in the community: first due
to the possibility of mimicking a cosmological constant (for
very large-scale underdensities) and second because of the ob-
servational indications from supernova cosmology and galaxy
surveys that there may be a local void (a “Hubble–bubble”).

The evidence for a local Hubble–bubble was first found by
Zehavi et al. (1998), in which the supernova data appeared
to show that the H0 within 70 h−1 Mpc was 6.5% ± 2.2%
higher than the value outside that distance (presuming a flat
ΩM = 1.0 model). They explained this by a 20% underdensity
surrounded by a dense shell and noted that this size corresponds
roughly to the size observed for local large-scale structure
(Geller et al. 1997), such as the “great walls.” Jha et al.
(2007) refined this observation with more supernovae and
considered a void embedded in a ΛCDM universe. They find
that the significance of the Zehavi et al. (1998) result drops to
δH = (Hin −Hout)/Hout ∼ 4.5% ± 2.1% in the ΛCDM case and
find a similar value of 6.5% ± 1.8% with their new data.

These results have since been challenged by several papers,
such as Conley et al. (2007) who showed that using a different
light-curve-fitter with a different color treatment can remove
the evidence of a void. Data from other distance measure-
ment techniques do not find a significant Hubble–bubble.
Tully–Fisher measurements by Giovanelli et al. (1999) find a sta-
tistically insignificant Hubble–bubble of δH ∼ 1% ± 2 % while
Hudson et al. (2004) use the peculiar velocity field within
120 h−1 Mpc to find modest evidence of locally enhanced
Hubble expansion with δH ∼ 3% ± 1.3%.

These observations have all been measurements of the local
expansion rate. Alternatively, one can look to large galaxy red-
shift surveys and measure directly from the observed structure
the typical size of voids in the galaxy distribution. Hoyle &
Vogeley (2004) found, using the Two-degree-Field Galaxy
Redshift Survey (2dFGRS), that 35% of the universe consists
of voids larger than 10 h−1 Mpc, with a mean galaxy underden-
sity of δ̄gal = (ρin − ρout)/ρout = −0.94 ± 0.02. Fluctuations
in the dark matter density will be less extreme than this, since
this is a measurement of the galaxy density fluctuation, which

is enhanced due to galaxy bias (galaxies are at the denser parts
of the dark matter distribution).

Perhaps the most relevant observations are those of our local
universe. In a survey of our local universe, out to a redshift of
z ∼ 0.15, Geller et al. (1997) find evidence for inhomogeneity
on the 100 h−1 Mpc scale. Earlier, Geller & Huchra (1989)
noted that voids of 50 h−1 Mpc with a density of only ∼20%
of the mean are ubiquitous to all surveys, and the largest local
structure, the “Great Wall”, has dimensions at least 60 h−1 Mpc
by 170 h−1 Mpc.

Theoretical calculations of the void size that is likely in
a ΛCDM universe (e.g., Furlanetto & Piran 2006) find void
sizes and density contrasts somewhat smaller than these and
than the 2dFGRS survey observations. This remains a point
of tension. Moreover, recent observations of bulk flows in the
universe, such as those by Kashlinsky et al. (2008) using the
Sunyaev–Zeldovich effect in the CMB, show that large-scale
motions also appear to be larger than predicted by theoretical
ΛCDM calculations and simulations.

This tension between observation and theory, married with the
hint of a Hubble–bubble in the supernova data and the observed
distance to the “great walls” of our local structure, suggests that a
void as large as 70 h−1 Mpc is a reasonable, and interesting, void
size to test. The wide range of density contrasts considered in the
literature makes it difficult to define a “typical” underdensity.
The depth of underdensity depends strongly on the size of void
considered. We choose a value of δ = −0.3 (corresponding to
ρin = 0.7ρout) for all the simulated voids in this paper. The
typical peculiar velocity corresponding to such a void is of the
order of 100 km s−1. Taking this as a monopole velocity at a scale
of 70 h−1 Mpc, it is a typical (an ∼1σ–1.5σ level) fluctuation
in a standard ΛCDM model (Haugbølle et al. 2007), and having
the additional coincidence of being near the center of the void
with correlated monopole velocities out to at least 70 h−1 Mpc
does not lower this probability much more than to the 2σ level.

The precise value of the size and density contrast of the void
we test is not of prime importance. We focus on the qualitative
results which remain roughly the same regardless of choice of
void size. In particular, we concentrate on how a void of any
size affects supernova cosmology and whether we can remove
its effect by neglecting data within the void.

An alternative cosmological model has recently emerged (see,
e.g., Enqvist 2008, and references therein), where we are at
the center of a gigaparsec-sized void embedded in an
Einstein–de Sitter universe. It has been shown that while we
have to give up the Copernican Principle, and fine tuning is
needed to have the observer very near the center of the void,
such a model is viable when compared to current state-of-the-
art cosmological observations (Alnes et al. 2006; Garcı́a-Bellido
& Haugbølle 2008a, 2008b, 2009; Zibin et al. 2008; Clifton
et al. 2008; Alexander et al. 2009). That includes not only su-
pernova, but also CMB and BAO observations (Garcı́a-Bellido
& Haugbølle 2009), and a void of such dimensions would be
difficult to spot in galaxy redshift surveys due to the small gradi-
ent in the density profile. The model is attractive because there
is no dark energy and the observed late-time acceleration is a
consequence of a larger Hubble rate near the center of the local
underdensity. The main drawback is the required coincidence of
having the Milky Way near the center to make the CMB radia-
tion from the surface of last scattering appear close to isotropic
(Alnes & Amarzguioui 2006).

We begin by considering a large void of scale size r0 =
700 h−1 Mpc to demonstrate the concept clearly. A void of
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Figure 1. Snapshot at t0 of the radial profile of the matter density ΩM(r, t0) used
to generate the simulated data sets in Sections 4.1–4.3.

Table 1
Void Models Used

Void Model Ωout
M Ωout

Λ hout r0 (Mpc/h) δ a

Large ΩM 1.0 0.0 0.7 700 −0.3
Large Λ 0.3 0.7 0.7 700 −0.3
Small Λ 0.3 0.7 0.7 70 −0.3

Note. a δ ≡ (Ωin
M − Ωout

M )/Ωout
M .

this order of magnitude is what would be required to explain
the supernova data without a cosmological constant (Alexander
et al. 2009). We embed this large void in both a flat Ωm = 1.0
universe (without a cosmological constant; Section 4.1), and in
a ΛCDM universe with (ΩM, ΩΛ) = (0.3, 0.7) (Section 4.2).
We assess the likely impact of a more realistic-sized void of
r0 = 70 h−1 Mpc in Section 4.3. A summary of the void sizes
we consider appears in Table 1 and is depicted in Figure 1.

3. INVESTIGATING THE HOMOGENEOUS UNIVERSE IN
THE PRESENCE OF A LOCAL UNDERDENSITY

In this section, we explain the method we use to measure the
effect of a local inhomogeneity on the cosmological parameters
derived using supernova cosmology. We generate simulated data
containing an underdense region at the origin, and then investi-
gate the impact of neglecting to account for the underdensity by
fitting the data with a homogeneous ΛCDM model. The impact
of the void is the difference between the best-fit cosmological
parameters derived using the homogeneous model and those we
input into the Lemaı̂tre–Tolman–Bondi (LTB) simulation.

3.1. Modeling a Local Underdensity

The model we use to describe a local void is an LTB model,
which is isotropic but inhomogeneous. The metric of our model
can be written as

ds2 = −dt2 +
(a′r + a)2

1 − k(r)r2
dr2 + a2r2dΩ2 , (1)

where a(r, t) is an effective scale factor, k(r) describes the
curvature as a function of coordinate distance r, and the prime
denotes differentiation with respect to r.

Defining the transverse and longitudinal Hubble parameters
H (r, t) ≡ ȧ

a
and HL(r, t) ≡ ȧ′r+ȧ

a′r+a
from the Einstein equations,

one can construct an effective Friedmann equation (see Garcı́a-

Bellido & Haugbølle 2008a)

H 2(r, t) = H 2
0 (r)

[
ΩM(r)

(
a0(r)

a(r, t)

)3

+ (1 − ΩM(r)

− ΩΛ(r))

(
a0(r)

a(r, t)

)2

+ ΩΛ(r)

]
, (2)

where H0(r) = H (r, t0) and a0(r) = a(r, t0) = 1 is a gauge
freedom giving the scale factor at t0. The total matter density
ΩM(r) and the cosmological constant ΩΛ(r) are related to H0(r),
the curvature k(r), and the physical matter density ρM at t = t0
as

ΩM(r) = 8πG

H 2
0 (r)a3

0(r)r3

∫ r

0
dr ′r ′2ρM (r ′, t0), (3)

ΩΛ(r) = 8πG

3H 2
0 (r)

ρΛ, (4)

k(r) = H 2
0 (r)(ΩM(r) + ΩΛ(r) − 1)a2

0(r). (5)

The time to big bang as a function of distance is a function
of radius, which can be seen by integrating Equation (2) with
respect to a(r, t), but only models with a constant time to big
bang give a well-motivated growing void profile as a function of
time (Zibin et al. 2008). Below we only consider such models.

Using the scale factor we can determine the time of emission
for light at a given redshift by solving the redshift equation,

dt

d(log (1 + z))
= − 1

HL(r(z), t(z))
. (6)

We can also determine the luminosity distance (and hence
apparent magnitude) from

dL(z) = (1 + z)2a[r(z), t(z)]r(z). (7)

The distance modulus is given by μ = 5 log10(dL(z)) + 25, with
the luminosity distance measured in Mpc.

In our model, the matter distribution at large distances is a
constant Ωout

M , but nearby the density decreases to Ωin
M at the

origin. Thus, the LTB model reproduces the important features
we are investigating: an on-average homogeneous universe in
which we reside within a local Hubble–bubble. The LTB model
can accept any density profile for the local inhomogeneity. We
choose to implement a simple Gaussian according to

ΩM(r) = Ωout
M +

(
Ωin

M − Ωout
M

)
e−r2/r2

0 , (8)

= Ωout
M

(
1 + δe−r2/r2

0
)
, (9)

where δ = (Ωin
M − Ωout

M )/Ωout
M = (ρin

M − ρout
M )/ρout

M is the
density contrast of the void. Given the density profile, the
Hubble parameter, now H0(r), is uniquely defined up to a
proportionality, due to the requirement of a constant time to
big bang (Garcı́a-Bellido & Haugbølle 2008a). We consider
models in which the homogeneous universe outside the void
consists exclusively of matter (Ωout

M = 1.0), as well as models
in which the universe exterior to the void is a homogeneous
ΛCDM, (Ωout

M , Ωout
Λ ) = (0.3, 0.7).

In the latter case, the mass density distribution is still given by
Equation (9), and the asymptotic cosmological constant density
is

ΩΛ(r → ∞) = 0.7 . (10)

Close to the center of the void, the Hubble expansion rate is
higher, while the value of the cosmological constant, ρΛ, is by
construction constant, giving lower values for ΩΛ(r).
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3.2. Fitting a Homogeneous Model in the Presence of an
Underdensity

The redshift and distance modulus calculated from
Equations (6) and (7) are the output from the LTB model, which
we treat as the data we would collect if we were indeed situated
at the center of a Hubble–bubble in an otherwise homogeneous
(over large scales) universe. Explicitly, we input a set of z val-
ues, which we take to be the redshifts of a set of supernovae,
we are observing, numerically integrate along a null geodesic in
the LTB spacetime to obtain the position and time of emission
from the source at redshift z, and then use this position and time
to calculate a distance modulus from Equations (2) and (7). To
solve the equations, we use an extended version of the easyLTB
program (Garcı́a-Bellido & Haugbølle 2008a) that can handle
an arbitrary mixture of dark matter and cosmological constant
in the void.

For the sake of finding the best-fit cosmological parameters,
we do not add simulated observational errors to the “correct”
distance modulus, the reason for which is explained at the end of
this section. To perform the χ2 minimizing fit, we simply assign
an uncertainty to the distance modulus of ±0.2 mag, which is a
typical uncertainty in the measurement of distance modulus for
supernovae.

We then fit a set of parameterized homogeneous models to
the LTB data and find which ΛCDM cosmology is the best fit
(by minimizing χ2). This process is entirely analogous to the
methodology which cosmologists use to measure cosmological
parameters from real data. The homogeneous models are pa-
rameterized by the values of (ΩM, ΩΛ, w) and we marginalize
over H0 as per the standard procedure in supernova cosmology
(Kim et al. 2004).

If the local inhomogeneity had no effect on our deductions
we would then find that the best-fit set of ΩM and ΩΛ would
match the Ωout

M and Ωout
Λ that we had input into our LTB model.

When we come to consider the goodness of fit (GoF) of the
best-fit models in Section 6.1, it is necessary to generate a set
of observational errors to obtain realistic values of GoF. We
generate observational errors according to a normal distribution
with a standard deviation of 0.2 mag and add them to the
distance modulus. We repeat the procedure for different sets of
normally distributed errors and average the result to get a mean
GoF, mean best-fit matter density, mean best-fit cosmological
constant, and mean best-fit equation of state. Note that the
errors are normally distributed and therefore the mean best-
fit values of each parameter should converge (with infinite sets
of different normally distributed errors) to the value obtained
when no normally distributed errors were added. This is the
reason why we only need to add the observational errors when
we want to estimate the GoF, and why in Sections 4.1–4.3
we can avoid running multiple fits by performing a single fit
without simulated errors, but giving each data point a 0.2 mag
observational uncertainty.

3.3. Sensitivity of Result to Size of Data Set

It is important to note that the measure we use for the GoF will
go down rapidly for the homogeneous model as the number of
data points is increased and/or the precision of each data point is
improved. This is because an incorrect model (the homogeneous
model in this case) cannot mimic the correct model in the limit
of infinite data (or vanishing uncertainty).4

4 As long as the model does not include the correct model in some limit of its
parameters.
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Figure 2. Hubble diagram plotting distance modulus relative to the empty
universe against redshift. This shows the ΛCDM model (dashed line) that is the
best fit to the magnitude–redshift data generated from the LTB model (dotted
line) with r0 = 0.7 h−1 Gpc and Ωin

M = 0.7 as used in Section 4.1. The data
were given an uncertainty of 0.2 mag.

This also means that the best-fit parameters change as the
number of data points varies. When a model is a good description
of the data, the data points will be evenly distributed above and
below the theoretical curve. However, when the model does not
reflect the data there will be regions in which all data points
lie above (or below) the theoretical curve. (See the low-redshift
regions of Figure 2 for an example.) Increasing the number
of data points therefore gives more weight to the regions in
which the model is the worst fit since these regions have the
most significant impact on χ2. The best-fit theoretical curve
becomes distorted toward the data in the poor-fitting regions, at
the expense of moving further away from the data in regions
where the theoretical curve was a better fit.

Thus, when the test model is not an accurate representation of
the system, as in our case of fitting a ΛCDM model to LTB data,
the cosmological parameters we infer will change depending on
how many data points we choose to use.

We have chosen to use 301 data points spread out uniformly
with redshift over the redshift range 0 < z < 1.7, since that
is approximately the number available to current supernova
surveys (e.g., Kessler et al. 2009).5 As more supernova data are
collected, and our uncertainty in their measurements reduces, it
will become increasingly apparent whether an inhomogeneous
or homogeneous model gives the better fit.

4. RESULTS: NEGLECTING TO ACCOUNT FOR A
LOCAL UNDERDENSITY

4.1. Large Void in Matter-only Universe

We begin by setting the void size to an extremely large
r0 = 700 h−1 Mpc. This is far larger than the expected
scale of inhomogeneities in the standard ΛCDM model, but
is approximately the minimum size required to explain the
supernova data without invoking a cosmological constant. We
use it here to clearly demonstrate the effect an underdense region
can have on our cosmological inferences.

5 We could also choose to weigh the redshift distribution according to the
number of supernovae currently observed at each redshift, but that is
unnecessary given the general nature of the analysis here.
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Figure 3. Hubble diagram showing the ΛCDM model (dashed line) that is
the best fit to the magnitude–redshift data generated from the LTB model
containing a cosmological constant(dotted line) with r0 = 0.7 h−1 Gpc and
(Ωin

M, Ωout
M ) = (0.21, 0.3) as used in Section 4.2.

We fit the standard ΛCDM cosmology to our simulated void
data and find the best fit to be (ΩM, ΩΛ) = (0.83 ± 0.08, 0.39).
This model is plotted against the LTB data in Figure 2.

The best-fit matter density, ΩM = 0.83, is significantly lower
than the actual value of Ωout

M = 1.0 for the external universe
in the LTB model. This simplified example demonstrates that
a Hubble–bubble creates the illusion of a lower matter density
than the true density outside the void.

The best-fit model also has a significant cosmological con-
stant, ΩΛ = 0.39, whereas the input model had none, Ωout

Λ =
0.0. In Section 6.1, we demonstrate that this extra parame-
ter improves the GoF significantly compared to a model with
ΩΛ = 0.0. This demonstrates that the addition of an extra pa-
rameter (the cosmological constant) will be strongly supported
when falsely attempting to fit a homogeneous model to data
with such a large local void.6

4.2. Large Void in ΛCDM Universe

Having demonstrated the systematic shift that occurs if
observations are made from a region of ΩM lower than the
surroundings, we now show that the same behavior is expected
in a universe with a cosmological constant.

The model we now consider consists of an underdense region
embedded in the currently preferred ΛCDM universe with
(ΩM, ΩΛ) = (0.3, 0.7), which is a situation we may indeed find
ourselves in if ΛCDM is the correct description of the universe.
However, this model is still not “realistic” in the sense that we
still use a large void size, r0 =700 h−1 Mpc, which is much
larger than is likely to occur in a ΛCDM universe, so the model
is not self-consistent. We use this model for comparison with
the large void considered in the previous section.

Figure 3 depicts the best-fit ΛCDM model, which has
(ΩM, ΩΛ) = (0.28, 0.86). This corresponds to a systematic er-
ror of 6.7% and 23%, respectively. This example differs from
the pure matter model tested in the previous section, because the
homogeneous model we are fitting to the data has the same num-
ber of parameters as the simulated data exterior to the local void.

6 Note that we chose a void of this size specifically because of this feature. To
recover the ΛCDM parameters (ΩM, ΩΛ) = (0.3, 0.7) some fine tuning is
required on the shape of the void. The shape must be made sharper than our
Gaussian profile allows.

Table 2
Improvements in χ2 by Allowing Λ and w to Vary

Input Model Fitted Model ΩM ΩΛ w χ2 dof χ2/dof AIC

Large ΩM CDM 0.87 0 −1 302.8 301−1 1.009 304.7
Large ΩM ΛCDM 0.85 0.41 −1 297.2 301−2 0.994 301.2
Large Λ CDM 0.18 0 −1 331.9 301−1 1.106 332.8
Large Λ ΛCDM 0.29 0.86 −1 297.6 301−2 0.995 301.5
Small Λ CDM 0.21 0 −1 320.1 301−1 1.067 322.0
Small Λ ΛCDM 0.31 0.72 −1 299.0 301−2 1.000 303.0
Small Λ wCDM 0.25 0.75 −1.7 298.2 301−3 1.001 306.2
Small Λ Flat wCDM 0.30 0.70 −1.1 298.8 301−2 0.999 304.8

We find that in this case a non-zero Λ is even more important
to the fit than when there was no external Λ in the simulation.
In Table 2, we show the results for the best fits of homogeneous
models7 with and without Λ. In each case, we show the χ2 val-
ues, indicating the GoF. In all cases, the χ2 is much worse when
no cosmological constant is included (as expected since adding
parameters always allows a better fit), but the improvement in
fit is more dramatic when the simulated universe included Λ.
That is as expected since in this case Λ actually does relate to
something real in the model. In Section 6.1, we study in more
detail how much the additional parameters improve the fits and
whether the improvements are enough to fool us into believing
false parameters.

The obvious question arises as to whether a local void can
dupe us into believing in a dark energy equation of state that
differs from the cosmological constant value of w = −1. When
we consider the more realistic-sized voids in the next section,
we also fit a dark energy model in which w is allowed to vary,
wCDM. This again restores us to the position of having one
extra parameter that may allow a better fit. In essence, we are
exchanging the r0 parameter, which describes the size of the void
in our input LTB model, with a false parameter, a free w. The
extra parameter is guaranteed to allow a better fit to the data. The
crucial point for us is whether the fit is improved so much that
the extra parameter appears justified. If so, then a local void is a
significant danger for misleading our cosmological inferences.

4.3. Small Void in ΛCDM Universe

Having demonstrated that the Hubble–bubble alters the in-
ferred external matter density and cosmological constant den-
sity, we now investigate the magnitude of this effect for a more
modest sized underdensity, of the kind that is predicted in self-
consistent models of structure formation in ΛCDM and seen in
the typical size of structures actually observed in our universe.
The exact size of typical underdensities in our universe is the
topic of ongoing debate, which we summarized in Section 2.
We have chosen to test a void with r0 =70 h−1 Mpc and density
contrast δ = −0.3, as a representative of the “likely” under-
density we may find ourselves in. This corresponds to having
a maximal monopole velocity of 120 km s−1 inside the void,
which is a typical monopole velocity for a shell in a standard
ΛCDM model (Haugbølle et al. 2007).

Imprinting this void on a flat (Ωout
M , Ωout

Λ ) = (0.3, 0.7) back-
ground, we find that the best-fit ΛCDM model has parameters
(ΩM, ΩΛ) = (0.299, 0.73). The error in the best-fit parameters is
vastly reduced for the realistic-sized underdensity model com-
pared to the large void model examined in Section 4.2, but is still

7 Note that in Table 2 we have used a different fitting methodology where we
simulate observational errors giving slightly different best-fit parameters. The
difference is within the estimated uncertainties of our best-fit parameters.
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Figure 4. Effect of successively allowing extra parameters to vary. The dashed
line shows the best-fit model where only ΩM is allowed to vary, the dashed-
dotted line where (ΩM, ΩΛ) vary, and the solid line where all (ΩM, ΩΛ, w) are
free to vary.

large enough to be of concern. The errors in the best-fit matter
density and best-fit cosmological constant density are 0.3% and
4.3%, respectively. These errors must be evaluated in the context
of the current uncertainty in the cosmological parameters. Us-
ing a combination of CMB, BAO, and SN data, Komatsu et al.
(2008) report ΩMh2 = 0.1358+0.0037

−0.0036 and ΩΛ = 0.726 ± 0.015
(Table 1; WMAP+BAO+SN mean values). These correspond to
errors of 2.7% and 2%, respectively.

Compared to the observational error in the cosmological
constant density, the error incurred by fitting an inadequate
model can be significantly larger. The corresponding systematic
error in the matter density is small but not negligible compared
to the current uncertainty, and as measurements become more
precise the relative importance of this potential systematic error
will increase. In Section 5, we discuss how this error is mitigated,
but not removed, by introducing a low-z cutoff on the data.

4.3.1. Allowing w �= −1

One further cosmological inference on which we investigated
the possible implications of residing in an underdense part of
the universe was the equation of state of dark energy. This is
characterized by the parameter w, which relates the pressure and
density of dark energy via p = wρc2, such that ρ ∝ a−3(1+w).

For dark energy that behaves as a cosmological constant,
the value of w is −1. This value is supported by supernova
observations, for example, Wood-Vasey et al. (2007) use the
ESSENCE supernova survey to constrain the value of w to
1.07 ± 0.09 (see also Astier et al. 2006; Kowalski et al. 2008).
(Although see Kessler et al. 2009; Sollerman et al. 2009,
for recent developments showing a potential deviation from
w = −1.) Here, we examine whether a void could significantly
change the inferred value of w from the actual value.

The LTB model we used as a description of our universe
was the same as that used in Section 4.3, with Ωin

M = 0.21,
Ωout

M = 0.3, ΩΛ = 0.7, and r0 = 70 h−1 Mpc. In this LTB
model the equation of state of dark energy is w = −1, so if
upon fitting models with varying w, we find a best fit different
from w = −1, we can say that this is solely due to the local
underdensity.

At first, we simply add an extra parameter w to our fitted
models, so that each of ΩM, ΩΛ, and w are allowed to vary freely
and independently. The error in w is very large, 44%, and the
models fitted correspond very poorly to the external universe, the

best-fit parameters being (ΩM, ΩΛ, w) = (0.314, 0.53,−1.44).
Such parameters are preferred since the low value of w leads to
a sharp drop in distance modulus as z goes to zero. This mimics
to some degree the effect of the void, depicted in Figure 4.

Since fitting for variable w using only supernovae with no
other constraints has large degeneracies, we now go on to
demonstrate the behavior of the fitted value of w under certain
prior constraints.

First, we adapt our fitting process to more closely correspond
to conventional methodology. When determining the value of w,
it is common practice to assume a flat universe. We introduce the
constraint ΩM + ΩΛ = 1, such that ΩΛ is no longer allowed to
vary freely. With this restriction the error in w is much reduced to
only 7%. The constraint on ΩM and ΩΛ means that low values
of w can no longer combine with the required (ΩM, ΩΛ) to
mimic the void at low redshifts, hence this undesirable behavior
is avoided and the errors in w are far smaller.

Thus, we find that using a prior from other observations that
constrains the wCDM model to be flat makes the result more
robust to low-z density fluctuations than fitting a general wCDM
model with no prior. However, one must also ensure that the prior
used would not be rendered invalid by a putative local void.

We note that the effect of a local void for the unconstrained
and flat wCDM models is to push the best-fit value of w down,
and so could give the illusion of phantom-like dark energy
(w < −1) if the true value of w = −1.

Second, we include a prior constraint on the value of ΩM =
0.27±0.03. This is included in our fits by modifying the χ2

estimate to χ2
total = χ2

SN(ΩM, ΩΛ, w)+χ2
prior(ΩM), where χ2

prior =(ΩM−0.27
0.03

)2
. The best-fit parameters under this constraint are

(ΩM, ΩΛ, w) = (0.27, 0.86,−0.85). Unlike the two previous
varying-w fitted models, the inferred w increases and no longer
suggests a phantom-like dark energy.

5. THE LOW-REDSHIFT CUTOFF

When fitting cosmological models to supernova data, it is
common practice to remove data points of supernovae below a
certain redshift. One reason is that at low redshifts the peculiar
velocities of galaxies are a significant fraction of their recession
velocities. Peculiar velocities therefore add a large amount of
scatter about the magnitude–redshift relation at low redshifts.
Typically, supernova studies have neglected data from sources
with a redshift below z0 ∼ 0.02 (Wood-Vasey et al. 2007; Astier
et al. 2006; Kessler et al. 2009), since at this redshift the mean
peculiar velocities contribute less than 5% scatter about the
mean recession velocity.

A potentially more significant reason from the perspective
of the discussion in Section 1 is that light from nearby sources
does not give a good indication of the average density of the
homogeneous universe, since much of its path has been through
the local Hubble–bubble, should one exist. This is potentially
more significant than random peculiar velocities because it
introduces a systematic shift onto all redshifts, not just a scatter.
The value of redshift below which we neglect data is referred
to as the low-z cutoff, and we denote it by z0. Figure 17 of
Jha et al. (2007) shows that the derived value for the equation of
state of dark energy, w, can change by as much as 20% when the
low-redshift cutoff is changed from z0 ∼ 0.008 to z0 ∼ 0.025
in the presence of a void that extends to the larger of those two
redshifts.

A commonly held notion is that by neglecting data from
sources that could be situated within a Hubble–bubble, we
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Figure 5. Plots of distance modulus (normalized to the empty universe) showing how the best-fit model changes as the low redshift cutoff changes. Four models are
plotted. In each case, they are plotted as a solid line over the range of redshifts used in the fit, and then extrapolated as dotted lines over the range of redshifts that
were excluded from the fits. As we implement progressively stronger low-z cutoffs, it is clear how the best-fit model deviates ever more strongly from the data in the
nearby underdense region.

remove the impact of a local void (e.g., Jha et al. 2007,
footnote 20). By neglecting nearby data, the remaining light
will have originated in, and primarily traveled through, the
external region and thus should give a good indication of the
external density. Here, we investigate whether this low-z cutoff
is sufficient to satisfactorily mitigate the distorting effect of
the local Hubble–bubble. We want to know whether neglecting
enough low-z data allows us to recover the correct matter density
for the homogeneous region outside the void in our simulated
data.

We put this notion to the test by introducing a low-z cutoff,
and gradually increasing it to see if the derived cosmological
parameters converge to the input parameters outside the void.

We note from the outset that even the light originating from
far away has to traverse the underdense region before being
observed, so removing nearby sources will not completely
remove the effect of a void.

Figure 5 shows four examples of different models that best
fit the data as we move to progressively higher low-z cutoffs,
z0 = [0.06, 0.105, 0.195, 0.4] (large-ΩM case). It is clear that,
as expected, the parameters of the best-fit ΛCDM models are in
better agreement with the asymptotic values of the LTB model
as we progressively neglect more low-z data. What may not

be expected is that the best-fit cosmological parameters do not
converge to the known external density even after all data from
within the Hubble–bubble have been rejected.

We summarize this in Figure 6 which shows how the best-fit
ΩM changes with z0. We see that as we remove data from sources
within the Hubble–bubble, we do indeed get a better indication
of the external matter density (which from our model we know
to be Ωout

M = 1.0). However, this figure also shows that the
best-fit ΩM asymptotes to a value less than Ωout

M . Regardless of
how much data we remove, we cannot deduce the true external
density in this manner.

We repeat this analysis for the Small-Λ case. Figure 7(a)
shows that for this smaller underdensity, the best-fit mass density
and cosmological constant density asymptote to the actual
external densities as the low-z cutoff is increased. However,
at the low redshift cutoff currently in use, z = 0.02, the error in
ΩM is 0.06%, and the error in ΩΛ is 0.99%, the latter of which
remains significant.

An error of 0.06% in ΩM is not likely to be a significant
fraction of the observational error in the foreseeable future,
but the error of 0.99% in ΩΛ is already comparable to the
observational error. This suggests that a higher low-z cutoff
may be advisable. Figure 8 shows the low-z cutoff needed to
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Figure 6. Upper: as we progressively remove data points from low-z, the
estimation of the external matter density improves, but does not converge to the
true value. Lower: ΛCDM models with cosmological constants give a good fit
to LTB models, despite there being no cosmological constant in the LTB model.
However, as we remove low-redshift data points, this spurious cosmological
constant is reduced.

reduce the errors in ΩM and ΩΛ to 0.1% of the exterior value.
Assuming a void size of 70 h−1 Mpc (∼100 Mpc), a low-z
cutoff of about 0.035 Mpc is needed to reduce the error in ΩΛ
to 0.1%. Of course, this is very dependent on the size of void
we choose to test. We show in Figure 9 how the best-fit ΩM
and ΩΛ values change with the low-z cutoff for a range of void
scales.

Finally, Figure 10 shows the best-fit value of w as a function
of z0. As was the case for ΩM and ΩΛ, the best-fit value is
different from the true value, but converges to the true value as
we increase z0. When all three of ΩM, ΩΛ, and w are allowed
to vary freely, the error in w can be reduced from 44%, with
no low-z cutoff, to 1.2% with a low-z cutoff of 0.035. At the
currently preferred low-z cutoff of 0.02 there remains an error
of 8.5% (again this is dependent on the void size chosen). When
we impose flatness by setting ΩM + ΩΛ = 1.0, we effectively
reduce the number of free parameters by one and as shown
previously, the error even with z0 = 0 is much reduced at 6.7%.
When we also add a low-z cutoff of 0.02 this is reduced to a
1.4% error and a low-z cutoff of 0.035 reduces the error to just
0.2%.
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Figure 7. Same as Figure 6, but for the realistic-sized void considered in
Section 4.3. The effect is smaller, but even for this void size the error is not
negligible given the expected precision of upcoming surveys.
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Figure 8. Low-z cutoff needed to reduce the error in ΩM and ΩΛ to 0.1% for
various sized voids. The more stringent constraint comes from ΩΛ.

6. DISCUSSION

6.1. Likelihood of Drawing Incorrect Conclusions

We have seen throughout that the each time we allow a
new parameter to vary, a better fit is found, but that the
best-fit parameters are altered such that they do not give an
accurate representation of the cosmological parameters outside
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Figure 9. How the best-fit values of ΩM and ΩΛ change with low redshift cutoff
for a range of void sizes. As the void size increases, the low-redshift cutoff
needed to reduce the systematic error below a certain threshold increases. The
vertical lines represent the cutoffs needed to reduce the systematic error below
0.1% in each case. Void sizes tested range from 25 to 200 Mpc, and in each case
the density contrast is taken to be δ = −0.3. These are considered amongst the
plausible range of density fluctuations for our universe.

(A color version of this figure is available in the online journal.)

the underdense region. For example, in the matter-only LTB
model, allowing ΩΛ to vary improves the fit but results in an
ΩΛ �=0, despite the LTB model having ΩΛ = 0.

It is important to consider whether a cosmologist making such
fits would consider an improvement in agreement with the data
upon varying a new parameter to be strong evidence for a value
of that parameter different from that when it is not allowed to
vary. Fitting an additional parameter, as opposed to setting it
to a fixed value, will always improve the GoF of a test model,
regardless of whether this parameter is physically motivated.
For example, a higher order polynomial will always give an
equal or better fit than a linear function to any data set, even
when the extra parameters are spurious.

Clearly, it does not give any extra insight to include extra
parameters without any physical meaning. So, to determine
whether a parameter, or a particular value of a parameter does
indeed well reflect the system under consideration, one can
look at the improvement in the GoF resulting from varying
the parameter. Here, we use the definition of GoF as χ2/dof,
where dof is the number of degrees of freedom (number of data
points minus number of parameters). If the GoF improves by a
large amount upon allowing a parameter to differ from a certain
value, then this is taken as strong evidence that the underlying
system is described by a parameter with a value different from
the previously set value. However, if the GoF improves only a
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Figure 10. As with ΩM and ΩΛ, the underdensity leads to an error in the best-fit
value of the parameter w, which is lessened as z0 increases. When the model
is constrained to be flat the error in the best-fit w is smaller, primarily because
the uncertainty in w becomes larger. Given the increased uncertainty in the
curved case, the error is no more significant than the error when the model is
constrained to be flat.

little, then it is likely that the improvement is simply due to the
extra freedom granted by the variation of the parameter for a
model to fit the data set and its associated errors.

This is often quantified in “Information Criteria”, such as
the Akaike information criterion, AIC = −2 lnL + 2k, where L
represents the likelihood, k represents the number of parameters,
and for Gaussian errors, −2 lnL = χ2 (Akaike 1974). An
ΔAIC > 6 between two models is considered significant
evidence that any extra parameters in the model with the lower
AIC are well justified by the improvement in the fit. In other
words, it is unlikely that such a large improvement to the fit
would occur unless the extra parameter described a genuine
feature of the data. For a discussion of information criteria in a
cosmological context and the more rigorous Bayesian evidence,
see Liddle (2004) and Liddle et al. (2006).

To yield GoF calculations using our simulated data that would
match those made by a cosmologist in an LTB universe, we fist
add a normally distributed random error with standard deviation
0.2 mag to the distance modulus at each redshift; this replicates
the observational error a measurement would incur. As before,
we then assign an uncertainty to this measurement of distance
modulus of 0.2. With this simulated data we can then calculate
the best-fit cosmological parameters and the associated GoF.
To remove the dependence of the value of GoF and the best-fit
cosmological parameters on the particular set of random errors
generated, we repeat this process 25 times with different sets of
normally distributed random errors to get an average GoF.

We first consider the model in Section 4.3, a small underden-
sity embedded in a universe with both matter and cosmologi-
cal constant. The best-fit ΛCDM to this model is (ΩM, ΩΛ) =
(0.305, 0.72), with χ2/dof = 1.00. We note that the best-fit
matter and cosmological constant densities are slightly dif-
ferent from those stated in Section 4.3 since here we have
added many different sets of observational errors and taken
an average; in Section 4.3 we neither added observational er-
rors, nor performed multiple runs. If we fit a set of models
with only matter, ΩM = 0, we find that the best-fit CDM is
(ΩM, ΩΛ) = (0.214, 0.0), with χ2/dof = 1.07. Here, we see
that by allowing ΩΛ to vary from 0, the GoF is much improved
(ΔAIC = 19) and the cosmologist would conclude that there is
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strong evidence that the universe has a cosmological constant
with ΩΛ �= 0, which is indeed the case. This shows that a model
with ΩΛ = 0 is unable to give a good fit to the LTB model with
cosmological constant, and allowing ΩΛ to vary is both required
in order to obtain a good fit and does shed light on the nature
of the actual universe, i.e., predicts a non-zero cosmological
constant.

Next, we give a counter example, where an improved fit
should not be considered significant. In Section 4.1, we obtained
the best-fit ΛCDM model to a matter-only LTB model. With
simulated errors, the average best-fit parameters are (ΩM, ΩΛ) =
(0.85, 0.41), where we have allowed ΩΛ to vary from 0,
despite the LTB model having ΩΛ = 0. For this ΛCDM, the
χ2/dof is 0.994 (AIC= 301.2). Fitting a matter-only model (by
setting ΩΛ = 0), we obtain best-fit parameters of (ΩM, ΩΛ) =
(0.87, 0.00), and a χ2/dof of 1.009 (AIC = 304.7). As before,
there is a clear improvement in the GoF by allowing ΩΛ to vary
from 0, despite the fact that the model that generated the data had
ΩΛ = 0. This is a case in which, solely due to the presence of
the local underdensity, the astronomer may incorrectly conclude
that there is evidence for a cosmological constant with density
ΩΛ �= 0. However, the ΔAIC between the two models is only
3.5, which should only be considered weak evidence in support
of the better fit. In this case, the AIC indicates that there is a
non-negligible chance that the extra parameter is spurious.

Finally, we consider whether the presence of a local un-
derdensity would induce an astronomer to incorrectly con-
clude that the equation of state of dark energy was different
from w = −1. Using the Small-Λ model as the data set, in
Section 4.3 we fitted a model where w is fixed as −1. Doing
so again and including observational errors, we obtain a best-
fit universe of (ΩM, ΩΛ, w) = (0.305, 0.72,−1) and a (χ2,
χ2/dof) of (299.0, 1.000). Allowing w to vary away from −1,
the best-fit model, as described in Section 4.3.1, is now one with
parameters (ΩM, ΩΛ, w) = (0.246, 0.75,−1.65) and the χ2 is
reduced to 298.2, while the χ2/dof basically stays constant (it
worsens very slightly to 1.001). Despite the drastic deviation
from the w = −1 model, the best fit is only a small improve-
ment and ΔAIC= −3.2. Thus, we would conclude that there is
no evidence for an equation of state with w �= −1, but rather
evidence that the extra parameter gave too much freedom to the
model, leaving it poorly constrained.

Thus, we conclude that a void gives a high risk of fooling us
into believing an incorrect ΩΛ but gives a low risk of fooling us
into believing w �= −1. However, once we constrain to flatness
we note that the Flat-wCDM and ΛCDM have the same number
of parameters and are equally good fits to the data, and so we
have no statistical reason to prefer one over the other.

Table 2 summarizes the results presented in this section. They
show the improvement in GoF for each extra parameter added,
which as discussed gives an indication of our susceptibility to
be deceived by the void.

6.2. Intuitive Understanding of the Void Effect

The underdense region has two effects on light passing
through it. First, the lower density gives rise to a greater rate of
expansion, Hin > Hout, because of less gravitating mass. Thus,
light traveling through this region is cosmologically redshifted
more than it would have been had it traveled through a medium
of ΩM = Ωout

M . In addition, the underdense region is at a higher
gravitational potential than the external medium, so it causes an
additional gravitational redshift to the light immediately before
we observe it. Both these effects cause incoming light to be
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Figure 11. An underdensity in the local universe redshifts all incoming data.
This is why removing the low-z data that come from inside the void does not
allow us to completely recover the correct model. By effectively shifting all the
points in the magnitude redshift diagram to higher redshift, the void has changed
the slope of the relation, which is the feature we are fitting. Therefore, as we
progressively remove data points from low z, the estimation of the external
matter density improves, but does not converge to the true value.

more redshifted than had it simply traveled through a homoge-
neous medium of density ΩM = Ωout

M . Hence, the ΛCDM model
we fit to this data will be one that redshifts light more than the
one with ΩM = Ωout

M . This behavior is characteristic of a model
with ΩM < Ωout

M and ΩΛ > 0. Thus, by not accounting for
a Hubble–bubble, we mistakenly deduce a lower-than-actual
matter density together with the existence of a cosmological
constant.

In Figure 11, we show diagrammatically how a low-z cutoff
is inherently incapable of removing the effect entirely. The
extra redshift due to the void will be the same for all light
sources situated outside the void. The effect is to shift the
magnitude–redshift relation along in the positive z-direction. In
this figure, we see that at each value of z the magnitude–redshift
relation distorted in this way has a gradient more similar to that
of a ΛCDM model with a lower ΩM.

This graphical interpretation of the effect is equivalent to
realizing that even high redshift sources are affected by the
underdense region. This is apparent from the outset, since
light from far away still has to pass through the underdense
region in order to reach us and be observed, and hence will
incur a greater than expected redshift, if we do not take the
local inhomogeneity into account. Thus, it is evident that
the current practice of neglecting sources at low redshifts
in the hope of removing the effect of the void is optimistic,
but as we have shown quantitatively, this approach does have
the desired effect provided that the underdensity is of the scale of
the observed inhomogeneity in our universe. For larger voids,
removing supernova observations from low redshifts will not
remove the effect of the void, regardless of how much data we
neglect, as demonstrated in Sections 4.1 and 4.2.

Although we have only simulated underdensities in this paper,
the same principle applies to overdensities.

We have also tested whether the asymptotic value of ΩM
relates to any average matter density in the volume we can
define, including the lower density of the void. The answer is no.

7. CONCLUSION

We have shown that a local density fluctuation can leave a
significant systematic error on our cosmological inferences from
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distance measurements. This applies not only to supernovae, as
discussed here, but also to measurements of angular diameter
distance such as baryon acoustic oscillations and the CMB. The
low-z cutoff imposed on supernova data is absolutely crucial
to avoid significant systematic errors, far above the statistical
uncertainty in current observations. This is particularly true for
the cosmological constant, whose form can mimic that of a local
void. We have shown that for an underdensity with a scale and
depth typical of voids in the current standard model and the
low-z cutoff currently in use, z = 0.02, a systematic error of
0.99% remains in the deduced value of ΩΛ, and hence a slightly
higher low-z cutoff of 0.035 is advisable, at which the error
drops to a negligible 0.1%. The equation of state of dark energy
is less susceptible to bias induced by a void than a cosmological
constant because it does not easily mimic the void effect, but
a local underdensity can still induce wild discrepancies in the
best-fit values.

We have also shown that introducing a low-z cutoff can reduce
but not remove the systematic error on the inferred cosmological
parameters. Thus, a void imprints an irreducible error that can
only be removed by fitting the extra parameters needed to allow
for a local density fluctuation. The magnitude of this bias is small
compared to the current observational uncertainty on ΩM, ΩΛ,
and w. Nevertheless, as our cosmological inferences become
more precise, this bias will no longer be negligible and will
need to be accounted for.
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