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The coherence properties of degenerate Bose gases have usually been expressed in terms of spatial correlation
functions, neglecting the rich information encoded in their temporal behavior. In this article we show, using a
Hamiltonian classical-field formalism, that temporal correlations can be used to characterize familiar properties
of a finite-temperature degenerate Bose gas. The temporal coherence of a Bose-Einstein condensate is limited
only by the slow diffusion of its phase, and thus the presence of a condensate is indicated by a sharp feature in the
temporal power spectrum of the field. We show that the condensate mode can be obtained by averaging the field
for a short time in an appropriate phase-rotating frame, and that for a wide range of temperatures, the condensate
obtained in this approach agrees well with that defined by the Penrose-Onsager criterion based on one-body
(spatial) correlations. For time periods long compared to the phase diffusion time, the field will average to zero,
as we would expect from the overall U(1) symmetry of the Hamiltonian. We identify the emergence of the first
moment on short time scales with the concept of U(1) symmetry breaking that is central to traditional mean-field
theories of Bose condensation. We demonstrate that the short-time averaging procedure constitutes a general
analog of the “anomalous” averaging operation of symmetry-broken theories by calculating the anomalous
thermal density of the field, which we find to have form and temperature dependence consistent with the results
of mean-field theories.

DOI: 10.1103/PhysRevA.82.013621 PACS number(s): 03.75.Hh

I. INTRODUCTION

The precise experimental characterization of the properties
of Bose-condensed gases has motivated the development of
theoretical methodologies that can provide accurate and com-
prehensive descriptions of the condensed gas behavior. The
fundamental theoretical framework is provided by many-body
quantum field theory, but in general this becomes tractable only
within approximation schemes, of which the most common are
based around Bogoliubov’s idea of representing the condensed
atoms by a classical mean field. In the very simplest form,
this gives rise to the ubiquitous Gross-Pitaevskii equation,
where the mean field is interpreted as the wave function of
the condensate. The solution of the Gross-Pitaevskii equation
has provided a useful first approximation to a wide range
of equilibrium and dynamical phenomena, but the equation
describes only the condensate and neglects all spontaneous
and incoherent processes. There are many situations where
the condensate is accompanied by a component of thermal
atoms which can have an important influence on the system
properties and behavior, and the early mean-field treatments
have been extended to give some level of description of the
noncondensed atoms, by employing factorization approxima-
tions to the thermal component of the quantum field [1–3].
Such self-consistent mean-field theories are built on the fic-
tional [4] but convenient and intuitively appealing assumption
that Bose condensation breaks the U(1) phase symmetry
of the underlying quantum field Hamiltonian, resulting in
the appearance of anomalous moments of the field; namely,
moments of the field operator [such as the mean field 〈�̂(x)〉],
which are formally zero in a state of fixed particle number,
but which acquire nonzero values in the symmetry-breaking
approximation. These treatments have provided an improved

description of a range of equilibrium or near-equilibrium
phenomena, but suffer from internal consistency problems,
and have had limited success in describing the dynamics of the
condensate at higher temperatures (see Ref. [5] and references
therein). We note that many of the equilibrium predictions of
the symmetry-breaking mean-field descriptions are regained in
more careful, number-conserving approaches [6–9]; however,
those methods have not provided a broadly tractable approach
for dynamical or higher temperature systems.

In recent years, a set of techniques has been developed that
provides a unified nonperturbative description of both equilib-
rium and dynamical behavior of Bose gases for a temperature
range from zero to close to the critical temperature. These
so-called classical-field (or c-field) techniques [10–12] have
been used to provide a quantitative description of a number
of key experimental results and regimes beyond mean-field
theory (see [11] for a summary of the broad range of recent
applications). While the treatment superficially resembles the
zero-temperature Gross-Pitaevskii theory, the interpretation of
the central object of the theory, the classical field ψ(x), is
very different: rather than the condensate wave function, it is
an approximation to the Bose field operator and provides a
means to evaluate quantum-mechanical correlation functions
and their time development. These correlation functions
can be calculated by ensemble methods [13,14] or, for the
case of equilibrium Bose-gas thermodynamics, by ergodic
Hamiltonian methods [15].

In this article, we demonstrate that rich information is
encoded in the temporal behavior of Hamiltonian classical-
field trajectories. Indeed, in [16] we found that the temporal
correlations of a classical field revealed a strong signature of a
quasicondensate-like structure in a spatially disordered (vortex
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liquid) phase. Here, we consider the temporal correlations of
a classical field containing a true condensate. The phase of
a condensate is, by definition [17], rigid across the spatial
extent of the condensed mode, and the only condensate-phase
fluctuations are global ones, which imply a diffusion of the
phase over time (see Ref. [18] and references therein). This
diffusion restores the U(1) phase symmetry of the system in the
ergodic (microcanonical) density of the field, and anomalous
moments such as 〈ψ(x)〉 evaluated in this density therefore
have vanishing values, consistent with the formal many-body
theory for conserved particles. However, the time scale of this
phase diffusion is typically long compared with the correlation
times of thermal modes in the field [18], and we thus find
that the condensate can be identified from the short-time
average of the field in a frame phase-rotating uniformly at the
underlying (mean) phase-rotation frequency of the condensate.
In this way, phase-symmetry breaking emerges naturally from
the Hamiltonian classical-field formalism. We demonstrate
that this averaging procedure constitutes a general analog
of the “anomalous” averaging operation of symmetry-broken
theories [1] by calculating the anomalous thermal density,
which characterizes pairing correlations in the noncondensed
component of the field, which are induced by the interacting
condensate.

This article is organized as follows: In Sec. II we give a
brief outline of the equilibrium classical-field formalism we
use here and review its usual interpretation as a microcanonical
formalism. In Sec. III, we discuss the emergence of a mean
(first moment) of the classical field, and make a quantitative
comparison to the condensate defined by the Penrose-Onsager
measure of one-body coherence. In Sec. IV, we consider the
anomalous second moments, which comprise the classical-
field pair matrix, and construct the anomalous thermal density
of the field. In Sec. V, we summarize and present our
conclusions.

II. FORMALISM

A. PGPE formalism

The general formalism of (projected) classical-field meth-
ods has recently been reviewed at length in [11] but, for the
reader’s convenience, we will outline the projected Gross-
Pitaevskii equation (PGPE) formalism we use in this work.
The dynamics we study are governed by the well-known
classical-field Hamiltonian defined as

HCF =
∫

dx ψ∗(x)

[
Hsp + U0

2
|ψ(x)|2

]
ψ(x), (1)

where the single-particle Hamiltonian is

Hsp = −h̄2∇2

2m
+ m

2

[
ω2

r (x2 + y2) + ω2
zz

2
]
, (2)

and the interaction strength U0 = 4πh̄2a/m, with m the
atomic mass and a the s-wave scattering length. The projected
classical field is given by ψ(x) = ∑

n∈L anYn(x), where the
sum is over the finite set of single-particle eigenmodes

[HspYk(x) = εkYk(x)] with eigenvalues εn � ER , where ER

is the single-particle cutoff energy. Defining the projector

Pf (x) ≡
∑
n∈L

Yn(x)
∫

dy Y ∗
n (y)f (y), (3)

we can express the Hamilton’s equation for ψ(x) obtained
from Eq. (1) as

ih̄
∂ψ(x)

∂t
= P{[Hsp + U0|ψ(x)|2]ψ(x)}, (4)

which is the projected Gross-Pitaevskii equation [11]. The
Hamiltonian HCF is invariant under the U(1) (gauge) transfor-
mation ψ(x) → ψ(x)eiθ and has no explicit time dependence,
so the evolution described by Eq. (4) conserves both the nor-
malization Nc[ψ] = ∫

dx |ψ(x)|2 of the classical field and the
classical-field energy defined by HCF. In the microcanonical
approach of the PGPE that we follow here, finite-temperature
equilibrium configurations of the classical field are obtained
by evolving in real time randomized initial configurations
constructed with a particular energy E[ψ] = HCF[ψ], such
that the field naturally approaches thermal equilibrium because
of the ergodic nature [19] of the classical-field system.

B. System parameters

In the remainder of this article we will specify quantities
in the characteristic units of the radial trapping potential,
quoting frequency in units of ωr , distance in units of r0 =√

h̄/(mωr ), time in units of ω−1
r , and energy in units of h̄ωr .

We consider a system with ωz = √
8ωr (representing a typical

three-dimensional trap geometry), and interaction strength
NcU0 = √

2 × 500h̄ωr/r3
0 . The corresponding ground (Gross-

Pitaevskii) eigenstate of the system has energy E ≈ 9Nch̄ωr ,
and we choose the cutoff ER = 31h̄ωr . We form random initial
states [11,15] with energies in the range E ∈ [9.5,24.0]Nch̄ωr ,
which we allow to equilibrate by evolving them in real time
for a period of 120ω−1

r , and we perform our analysis on their
subsequent evolution.

C. Microcanonical interpretation

Here we briefly remind the reader of the microcanonical
(ergodic) interpretation of the PGPE applied to equilibrium
systems [11,15,20]. The method exploits the (empirical) fact
that the PGPE trajectories are ergodic and thus provide a
sampling of the microcanonical density:

P [ψ ; E] =
{

const HCF[ψ] = E

0 HCF[ψ] 
= E.
(5)

The trajectories ψ(x,t) cover the density P [ψ ; E] densely,
and so averages in the density P [ψ ; E] are increasingly
well approximated by time-averages along trajectories ψ(x,t)
of increasing length. The implications of this for PGPE
simulations are two fold: First, a theorem due to Rugh [21]
shows that the temperature of a microcanonical system can be
expressed as an average in its microcanonical density and thus
can be calculated from a time average. Second, equilibrium
correlation functions of the classical field can similarly be
defined as averages in the density (5) and thus can be evaluated
from time averages.
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A correlation function of particular interest for characteriz-
ing condensation in the classical field is the covariance matrix
defined as

ρ(x,x′) ≡ 〈ψ∗(x)ψ(x′)〉µ
=

∑
j

njχ
∗
j (x)χj (x′), (6)

[where 〈· · ·〉µ denotes a microcanonical average, i.e., an
average in the ensemble with density given by Eq. (5)],
which forms the classical-field analog of the one-body density
matrix. In the second line we have used the fact that ρ(x,x′)
is Hermitian to express it in a diagonalized form, where the
coefficients {ni}, indexed in order of decreasing magnitude,
are the occupations of the corresponding modes {χi(x)}. By
analogy to the criterion of Penrose and Onsager (PO) [17],
condensation in the field is signaled by the most highly occu-
pied mode χ0(x) having an occupation n0 which is significantly
larger than all other occupations ni . This definition in terms of
correlations in the microcanonical density is an unambiguous
measure of condensation in the simple equilibrium regimes
in which it is applicable. Generalizations of this procedure
based on short-time fluctuation statistics have been applied
to more general scenarios involving, for example, broken
rotational symmetries and nonequilibrium fields [15,22–24].
In the remainder of this article, we will simply refer to the
classical-field covariance matrix Eq. (6) as the one-body
density matrix and to the identification of its most highly
occupied mode as the condensate as the PO approach to
quantifying condensation in the field.

It is important to note that the microcanonical density
[Eq. (5)] inherits the invariance under gauge transformations
ψ(x) → ψ(x)eiθ of the Hamiltonian Eq. (1). Consequently,
only the averages of quantities which are invariant under
such transformations are nonzero in the microcanonical
density, which correspond of course to averages of operators
which conserve particle number in the corresponding second-
quantized field theory [25]. Sinatra and Castin [18] have
shown in a homogeneous geometry (where the condensate
mode is a priori the k = 0 plane-wave state), that the
classical-field condensate undergoes a slow phase diffusion.
This diffusion ensures that the gauge symmetry is restored in
the microcanonical density. In this article, we show that, on
time scales short compared to the characteristic time scale of
phase diffusion, the condensate is resolvable as the mean of the
field in an appropriate frequency-shifted frame. Furthermore,
we show that higher anomalous moments can be similarly
defined in terms of short-time averages of fluctuations about
this mean field.

III. TEMPORAL COHERENCE

A. Temporal coherence and the emergence of a nonzero
first moment

1. Identification of the first moment

We begin by quantifying the coherence of the time-
dependent field ψ(x,t) via its temporal power spectrum
evaluated at different spatial locations x [16]. We define the

temporal power spectrum of the classical field ψ at position x
evaluated over a period of length T as

H (x; 
) = |FT {ψ(x,t)}|2, (7)

where FT {f (t)} denotes the Fourier coefficient taken from
some arbitrary time origin

FT {f (t)} ≡ 1

T

∫ T

0
f (t)ei
tdt. (8)

In [16] we applied this procedure to a classical field in a
disordered vortex-liquid state in which spatial order of the
system was strongly suppressed and found a narrow peak
in the power spectrum. The appearance of such a peak is
consistent with analytical results obtained by Graham [26],
which suggest that (quasi-)long-range spatial order of the
Bose field is accompanied by (quasi-)long-range temporal
correlations which decay in a functionally equivalent way.
Here, we calculate the power spectrum for a classical field
with the trapping and interaction parameters of Sec. II and
energy E = 12.0Nch̄ωr . By using the PO approach, we find
that this field exhibits a (true) condensate, with condensate
fraction fc ≡ n0/Nc = 0.70. We choose a sampling period of
40ω−1

r and approximate the integral in Eq. (8) by a discrete
sum over 1000 equally spaced samples of the classical field.
In practice, we calculate the power spectrum at points in
the z = 0 plane and average it over the azimuthal angle
in this plane to smooth out fluctuations. We thus obtain
the averaged power spectrum as a function of the radius r ,
which we present in Fig. 1(a). The oscillation frequencies

 that we measure in the time-dependent field correspond,
of course, to energies ε = h̄
 in the quantum mechanical
system.

For comparison, on the same figure we also plot the
profile of the harmonic trapping potential V (r)/h̄ in this
plane [parabolic green (gray) line], the cutoff energy ER/h̄

(horizontal line), and the classical turning point (vertical line)
of the low-energy region L defined by their intersection.
The most prominent feature in this plot is the strong peak
in the power spectrum centered on 
 = 11.4ωr , which is a
signature of the long-lived temporal phase coherence in the
classical field. We identify the frequency λ0 of this peak as the
condensate frequency. The broad, lower-intensity background
spectrum represents the thermally occupied excitations in the
classical-field system. It is worth pointing out that, in the
central region of the trap (r <∼ 4r0), the background spectrum is
strongly distorted by the presence of the condensate, with pos-
itive frequency components extending to approximately λ0 +
ER/h̄, and negative frequency components appearing with
energies extending down to approximately λ0 − ER/h̄ [27].
Similar behavior was observed in Ref. [16], and represents
the restructuring of the excitation spectrum of the trap by
an interacting (quasi-)condensate, which distorts the single-
particle excitations of the system into the familiar Bogoliubov
particle-hole pairs [7,28,29].

The temporal coherence that we observe results from the
quasiuniform phase rotation of the condensate—the phase of
the condensate exhibits a uniform rotation at frequency λ0

superposed with a slow diffusion. The width of the power
spectrum peak here is thus determined by the rate of this global
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FIG. 1. (Color online) (a) Power spectrum H (x; 
) of the clas-
sical field on the plane z = 0 (azimuthally averaged). Green (gray)
lines indicate the trapping potential, cutoff energy and corresponding
classical turning point of the trap. (b) Space-integrated power
spectrum N (
) of the field [see Eq. (11)] as a function of the
phase-rotation frequency 
. Parameters of the classical field are given
in the text.

condensate-phase diffusion. On time scales short compared
with the characteristic time scale of phase diffusion, the
condensate has an approximately constant phase in a frame
co-rotating at frequency λ0; that is, short-time averages in
this frame yield a nonzero first moment 〈ψ〉 of the classical
field. A key observation of this article is that time averages
constructed in this way are analogous to the anomalous
averages which arise in symmetry-broken descriptions of Bose
condensation [1], where the appearance of nonzero values
for expectations of non-gauge-invariant quantities (i.e., the
breaking of the phase symmetry) signals the presence of
condensation in the field. We thus consider the classical field
frequency shifted by 
:

ψ̃(x,t ; 
) = ei
tψ(x,t), (9)

and consider time averages of this quantity formed from the
same set of samples used to construct the power spectrum in

Fig. 1(a). We define the time-averaged field as

φ(x; 
) ≡ 〈ψ̃(x,t ; 
)〉t
[ = FT {ψ(x,t)}], (10)

where 〈· · ·〉t denotes a time average over a given period
T (40ω−1

r in this case). The time-averaged field φ(x; 
) is
therefore the component of the classical field which phase-
rotates like e−i
t , and its norm square quantifies the total (i.e.,
space-integrated) power contained in the field at frequency 
;
that is,

N (
) ≡
∫

dx |φ(x; 
)|2 =
∫

dx H (x; 
). (11)

In Fig. 1(b) we plot this power as a function of the frequency

, and note that it exhibits a prominent peak at 
 = 11.38ωr .
We identify the frequency at which the norm square of the
time-averaged field (equivalently, the space-integrated power
of the field) is maximized as the condensate frequency λ0,
and the corresponding time-averaged field φ(x; λ0) as the
classical-field condensate or mean field [30]. A nonzero time-
averaged field occurs because the condensate has a reasonably
well-defined phase on short time periods. We identify this
quasidefinite phase as an analog of the condensate phase which
emerges in symmetry-broken descriptions of Bose-Einstein
condensation; in this viewpoint, the first moment φ(x; λ0)
is the analog of the condensate wave function 〈�̂(x)〉 in
such mean-field theories of Bose condensation. For notational
convenience, we introduce the norm square of the mean field
N0 ≡ N (λ0), and the normalized mean-field mode function
φ0(x) ≡ φ(x; λ0)/

√
N0. The norm square N0 corresponds to

the population of the mean-field condensate mode, and we
indeed find N0/Nc = 0.706, in close agreement with the
PO value for the condensate fraction (fc = 0.70). To further
compare this temporal-coherence method of identifying the
condensate with the PO approach, we calculate the overlap of
φ0(x) with the eigenvector χ0(x) obtained by the PO procedure.
We find 1 − |〈φ0|χ0〉| ≈ 1.4 × 10−4; that is, the condensate
orbitals obtained by the two different procedures agree to a
very high accuracy.

2. Temporal coherence and sample length

The results obtained for the mean field have an important
dependence on the averaging time. As discussed by Sinatra
and Castin, the condensate phase exhibits diffusive evolution
with time in the classical microcanonical ensemble [18].
Consequently, we expect the power in the classical field
measured at the condensate frequency to decay with time,
exhibiting a power-law tail N (λ0; T ) ∼ 2/(γ T ) at long times,
as discussed in the Appendix. We illustrate this issue using the
same simulation (E = 12Nch̄ωr ) as in the previous section.
Increasing the sampling period to T >∼ 50ω−1

r , the condensate
frequency is more accurately resolved as λ0 = 11.39ω−1

r .
We assume this value as a best estimate for the condensate
frequency, and calculate the power at this frequency as a
function of the measurement period T , up to a maximum
measurement period of 4000ω−1

r . In Fig. 2, we plot the power
measured at frequency λ0 (solid line) and find that it decays in a
nonuniform way with increasing T . However, the (normalized)
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FIG. 2. (Color online) Norm square N0 of the time-averaged
field (i.e., space-integrated power of the classical field measured at
the condensate frequency) as a function of the sampling period T .
The solid line shows the value obtained from a single contiguous
sampling of the classical field over period T . Circles (with error
bars) show the mean (and standard deviation) of estimates N0

measured on 10 individual 400ω−1
r subperiods of the 4000ω−1

r time
series. The dashed line shows the expected (ensemble averaged)
power, extrapolated from a least-squares fit to the means of the
short-time estimates. Parameters of the classical field are given in
the text.

mean-field orbital φ0(x) that we obtain at frequency λ0 satisfies
1 − |〈φ0|χ0〉| <∼ 10−4 for all averaging periods T that we
consider; that is, although the measured occupation of the
condensate decays with increasing averaging period due to the
diffusion of the condensate phase, the mode shape we obtain is
relatively unaffected. The nonuniform decay of the mean-field
orbital’s occupation that we observe is to be expected for a
single trajectory, whereas we expect the scaling N ∼ 2/(γ T )
to emerge from an average over a large ensemble of similarly
prepared classical-field trajectories (cf. [18]). It is possible,
however, to infer γ from a single trajectory, as we now
show. We divide the total 4000ω−1

r (105-sample) period of
the classical-field trajectory into 10 consecutive subperiods
of length 400ω−1

r (each of 104 samples), and regard these
subperiods as an ensemble of 10 distinct trajectories. For each
member of the ensemble, we calculate the power N (λ0; T )
as a function of T � 400ω−1

r . We then average over these
10 ensemble members to obtain a mean power estimate for
each sampling period T . The means and standard deviations
of these measurements are indicated by circles with error bars
in Fig. 2, and by performing a least-squares fit of the expected
power 〈N (λ0; T )〉 at the condensate frequency [Eq. (A4) in
the Appendix] to these mean power estimates, we estimate the
phase-diffusion coefficient γ ≈ 10−4ωr [31]. The dashed line
in Fig. 2 extrapolates the expected behavior of 〈N (λ0; T )〉
to later times. Given this decay of the peak power with
T , a rigorous estimate of the condensate population would,
in principle, be obtained by forming estimates 〈N (λ0,Ti)〉
for multiple sampling-period lengths Ti , and extrapolating
the resulting trend back to T = 0 to estimate the “true”

condensate population. However, because of the weak linear
decay of the power spectrum peak at short sampling periods,
we can accurately estimate the condensate population as
the magnitude of the dominant peak in the power spectrum
obtained over a short sampling period for all but the smallest
condensate fractions (see Sec. III B2).

B. Dependence of the first moment on the field energy

In the ergodic classical-field (PGPE) method, equilibrium
field configurations of different temperatures can be formed
simply by varying the (conserved) energy of the random
initial field configuration [20]. In this section, we investigate
the behavior of the first moment introduced in Sec. III A
as the energy (and thus temperature) of the classical-field
equilibrium is varied, and we compare its mode shape φ0(x)
and occupation N0 with the Penrose-Onsager condensate
orbital χ0(x) and occupation n0, respectively. We further
compare the condensate frequency λ0 to the microcanonical
chemical potential µ of the field that is obtained using the
methodology of [21,32,33].

1. Condensate fraction

We consider here the norm square N0 of the first moment
φ(x; λ0) defined as in Sec. III A, for various values of the
classical-field energy E[ψ]. In Fig. 3(a), we present estimates
N0 for a range of classical-field energies and compare
them with the condensate occupations calculated by the
PO approach. The corresponding classical-field temperatures,
calculated using the Rugh methodology [21,32,33], are also
included in the figure. In practice, we calculated the PO
condensate by constructing the one-body density matrix
[Eq. (6)] from 3000 equally spaced samples of the classical
field taken from a period of 1200ω−1

r of the field evolution.
We then divided this period into 30 consecutive subperiods
of length 40ω−1

r , which we sampled at a higher resolution
(1000 samples per subperiod), from which we obtained 30
separate estimates of the classical-field first moment φ(x; λ0).
In each subperiod, we obtain the mean field as the time-
averaged field of maximal norm, and we obtain (generally)
distinct estimates of N0, φ0(x), and λ0 from each series. In
this way, we exploit the ergodic character of the classical
field to emulate sampling from an ensemble of similarly
prepared trajectories (see Sec. III A2). The red (gray) data
points in Fig. 3(a) and their error bars represent in each case
the mean and standard deviation, respectively, of the norm
squares of the 30 estimates of the mean-field. We observe that
these estimates agree very closely with the PO condensate
fractions fc (blue circles) throughout the range of energies
presented.

We also compare the mean-field orbitals obtained from
the time-averaging procedure with the condensate orbitals
obtained from the PO approach (see Sec. III A1). In Fig. 3(b)
we plot the quantity 1 − |〈φ0|χ0〉| (averaged over the 30
estimates) as a measure of the discrepancy between the
two orbitals. We observe that for the energies presented
(E � 20Nch̄ωr ), the mean discrepancy is <10−2. At higher
energies (corresponding to condensate fractions fc < 0.1), our
temporal-coherence approach to identifying the condensate
begins to break down—the mean-field orbital φ0(x) fails
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FIG. 3. (Color online) (a) Condensed fraction of the classical
field, as determined by the Penrose-Onsager procedure (circles)
and by the time-averaging procedure (dots with error bars). The
plus symbols indicate the microcanonical temperature of the field.
(b) Discrepancy 1 − |〈φ0|χ0〉| between the (unit-normalized) first
moment φ0(x) and the most highly occupied natural orbital χ0(x)
of the one-body density matrix.

to match the PO orbital χ0(x) (i.e., |〈φ0|χ0〉| < 0.9) in an
increasing fraction of estimates as the condensate fraction
fc → 0, and so for clarity we have not presented estimates
for these energies here. This point is discussed further in
Sec. III B2.

2. Condensate frequency

We consider here the dependence of the condensate
frequency λ0 on the energy of the classical field. By our
analogy between the first moment of the classical field
and the condensate wave function in mean-field theories
(Sec. III A), we associate this condensate frequency with the
condensate eigenvalue appearing in such theories, which is
itself closely related to the thermodynamic chemical potential
of the degenerate Bose-gas system [8]. In Fig. 4(a), we plot
estimates of the condensate frequency (red crosses), together
with the thermodynamic chemical potential µ (blue circles
with connecting line) of the classical field obtained from
the Rugh analysis. At the very highest energies, we present
results only for ensemble members for which our first moment
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FIG. 4. (Color online) (a) Condensate frequency obtained from
the time-averaging procedure (red crosses), and microcanonical
chemical potential of the classical field (blue circles), for classical-
field equilibria with different energies. Black plus symbols plot the
right-hand side of Eq. (12). (b) Norm square of the first moment as
a function of the phase-rotation frequency of the frame in which it is
constructed (i.e., the space-integrated power spectrum of the field),
for classical-field simulations with different energies.

analysis and the PO approach agree (i.e., φ0 and χ0 overlap
to within 10%). We observe that the condensate frequen-
cies λ0 and the chemical potentials µ agree very well for
energies E <∼ 20Nch̄ωr . Above this energy, the condensate
frequencies λ0 are consistently greater than the chemical
potentials. This is expected behavior, as at a fixed total number
of system particles, the two quantities differ by a factor of order
1/Ncond, where Ncond is the condensate occupation [8,34].
Davis et al. [35] argued that equipartition of energy in the
classical-field model predicts the relationship

µ = h̄λ0 − kBT

N0
. (12)

In Fig. 4(a), we plot the quantity λ0 − kBT/h̄N0 (black plus
symbols), where the temperature T is that obtained from the
method of Rugh, and find that our results are in reasonable
agreement with the prediction of Eq. (12).

We now consider how the total power spectrum of the
classical field varies as a function of the field energy. In
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Fig. 4(b), we plot the power spectrum N (
), averaged over
the 30 individual 40ω−1

r sampling periods, for field energies
in the range E ∈ [9.5,24]Nch̄ωr . At the lowest energies, the
behavior of N (
) is as in Fig. 1(b): the function exhibits
a prominent peak which we identify with the condensate,
and a broad background that we associate with thermal
excitations. As the energy (and thus temperature) of the field
is increased, the condensate peak decays, and the “wing” of
thermal excitations grows until it is of the same magnitude
as the condensate peak, and at the highest temperatures only the
thermal background remains. This explains why our approach
to identifying the condensate begins to fail as the temperature
approaches the phase transition: although a temporally coher-
ent condensate may still be present in the field, it becomes
increasingly likely that the peak power in any particular
estimate of the power spectrum corresponds instead to ther-
mally occupied modes that eventually swamp the condensate
completely.

IV. PAIRING CORRELATIONS

In the previous section, we have identified that the conden-
sate present in the classical field can be well characterized
as the time average of the appropriately frequency-shifted
field. We now show that more general anomalous moments
of the field can be obtained from time averages in the same
phase-rotating frame. In this approach, condensation in the
classical field is thus accompanied by the appearance of
anomalous moments of all orders, in direct analogy to the
emergence of general anomalous correlation functions in
symmetry-breaking accounts of Bose-Einstein condensation
[1,36].

In terms of the Fock-space decomposition �̂(x) =∑
i âiYi(x), the emergence of a mean field in the second-

quantized formalism is equivalent to the appearance of nonzero
first moments {〈âi〉}. The next-simplest anomalous aver-
ages, the quadratic moments {〈âi âj 〉} (and their conjugates),
arise because of the effect of interactions which “mix” the
single-particle creation and annihilation operators to form
quasiparticle operators b̂ ∼ uâ + v∗â† [25]. Consequently, the
occupation of quasiparticle modes results in the appearance
of nonzero moments of single-particle operators of the
form 〈âi âj 〉, which represents correlations between pairs
of particles. Like the mean field itself, these moments are
formally zero in a state of fixed total particle number, although
analogous quantities can be defined in particle-conserving
terms [8]. Due to the appearance of these pairing correlations,
in order to accurately characterize the weakly interacting
Bose gas and its excitations, one must consider not only the
one-body density matrix ρij = 〈â†

j âi〉, but also the pair matrix
κij = 〈âj âi〉 [25].

In the remainder of this section, we will demonstrate
the application of our temporal averaging procedure to the
evaluation of quadratic anomalous moments of the classical
field. By estimating the pair matrix κ(x,x′) = 〈ψ(x)ψ(x′)〉 of
the noncondensed component of the field, we calculate the
anomalous density, which characterizes pairing correlations
in the thermal component of the field. We note that signatures
of such pairing correlations have been observed previously
in classical-field calculations [23], where anomalous values

g
(2)
i = 〈|ai |4〉/〈|ai |2〉2 > 2 were obtained for the second-order

coherence functions of density-matrix eigenmodes. We note
also that a temporal signature of the anomalous density has
previously been observed [37] in homogeneous classical-field
simulations, in which the anomalous density is uniform.

A. Methodology

We seek here to characterize pairing correlations in the
thermal component of the classical field; that is, the component
of the field orthogonal to the condensate [3], which is obtained
by projecting out the condensed component of ψ(x,t); namely,

ψ⊥(x,t) = ψ(x,t) − φ0(x)
∫

dx′ φ∗
0 (x′)ψ(x′,t)dx′. (13)

It is important to note that we form ψ⊥(x,t) on a given (40ω−1
r )

time period by projecting out the mean field obtained over
the same period, so that (anomalous) averages constructed
from ψ⊥(x,t) over this period are formed on the same footing
as the mean field itself. We transform ψ⊥(x,t) to the same
phase-rotating frame as the condensate, forming ψ̃⊥(x,t) =
eiλ0tψ⊥(x,t), and then calculate the pair matrix

κ⊥(x,x′) = 〈ψ̃⊥(x)ψ̃⊥(x′)〉t . (14)

The most well-known characterization of the anomalous
correlations described by the pair matrix is given by the
anomalous density [1], which we identify as the diagonal part
of the pair matrix:

m(x) = 〈ψ̃⊥(x)ψ̃⊥(x)〉t ≡ κ⊥(x,x). (15)

We find that the general form of m(x) is apparent from a single
estimate of κ⊥(x,x′), over a temporal period 40ω−1

r . However,
large fluctuations are present in such a single estimate, which
is to be expected, as the correlations we seek to resolve here
are rather subtle as compared, for example, to the coherence of
the condensate. In order to resolve the anomalous density more
clearly, we therefore average over multiple estimates of m(x);
that is, for each of 30 consecutive 40ω−1

r periods, we form both
the mean field φ0(x) and the corresponding anomalous density
m(x). The phase of m(x) is only meaningful in relation to the
phase of the mean field φ0(x) itself, and so for convenience, we
choose the overall phase of the classical field in each sampling
period such that φ0(x) is maximally real. This choice of the
phase of m(x) relative to a real and positive condensate wave
function corresponds to the traditional choice in mean-field
theories. Forming multiple estimates of m(x) in this way allows
us to calculate both the mean and the variance of this quantity,
as we show in Sec. IV B.

B. Anomalous density

The mean anomalous density calculated by the procedure
described in Sec. IV A is mostly real and negative (i.e., has
phase opposite to that of the mean field), in agreement with
the results of mean-field-theory calculations [3,34,38], but
exhibits some small complex-valued fluctuations due to the
finite ensemble size. Denoting averages over estimates by an
overbar, we plot in Fig. 5(a) the negative −Re{m(x)} of the
mean anomalous density on the z = 0 plane, and the local stan-
dard deviation in estimates δm(x) = [|m(x)|2 − |m(x)|2]1/2 of
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FIG. 5. (Color online) Anomalous density m(x) of the field,
for the case E = 14.5Nch̄ωr . (a) Shape of −Re{m(x)} on a slice
through the plane z = 0 (upper surface), and standard deviation
δm(x) of anomalous-density estimates on the same plane (lower
surface). (b) Azimuthally averaged density of the condensate mode
(as determined by the time averaging), complementary (orthogonal)
thermal component of the field, and anomalous density, in the plane
z = 0.

the anomalous density on this plane, calculated for a simulation
with E = 14.5Nch̄ωr (for which the condensate fraction fc =
0.50). The anomalous density has the spatial structure expected
from mean-field calculations [3,34,38]: it resides primarily in
the region where the condensate exists, and its absolute value
exhibits a shallow “dip” in the center of the trap. The standard
deviation δm(x) indicates that the greatest variance in density
estimates occurs around the (circular) maximum of |m(x)|,
while much less variation occurs in estimates of the density in
the central “dip”.

The anomalous density shown here exhibits a very high
degree of rotational symmetry about the z axis but, in general,
the anomalous density we obtain is distorted (the central
“dip” in its absolute value becomes saddle shaped along
some random axis). We identify this as a result of persistent

center-of-mass (dipole) excitations of the field [39], which
are “frozen in” during the thermalization of the field. More
generally, one might regard the classical field as having con-
densed into an excited center-of-mass mode, and consider the
correlations of the field in a frame following this motion [40].
In Fig. 5(b), we plot the azithumally averaged anomalous
density on the plane z = 0, together with the similarly averaged
densities of the condensate [N0|φ0(x)|2] and the orthogonal
thermal component of the field [|ψ⊥(x)|2], for comparison.
We observe that the magnitude of the anomalous density in
the center of the trap is an appreciable fraction of that of the
(normal) thermal component of the field, in agreement with
Refs. [3,34,38].

C. Dependence on field energy

Finally, we consider the dependence of the anomalous
density on the energy (or equivalently, the temperature) of the
projected classical field. In mean-field theories, the anomalous
density (after any renormalization [8,34,41]) becomes small
as the temperature of the system approaches zero (due to
the weak occupation of quasiparticle modes in this limit),
and also as it approaches the critical temperature (due to
the quasiparticle modes becoming more single-particle like
as the condensate is depleted). This behavior is often cited as
a justification for the neglect of the anomalous density in self-
consistent theories (the so-called Popov approximation [1])
in these two limits. In order to characterize more fully the
temperature-dependent behavior of the anomalous density, we
follow [3] and calculate its integrated value M ≡ ∫

dx m(x).
In Fig. 6, we plot the real part of M (neglecting a small
imaginary part that arises from incomplete convergence of the
averaging—see Sec. IV B) as a function of the classical-field
energy. As in Sec. III B, we present for each energy the mean
and standard deviation (error bars) of only those estimates
obtained from averaging periods which produced an accurate
condensate mode (Sec. III A). We observe that the behavior
of M(E) is consistent with the results of mean-field theo-
ries [3,38], with its absolute value |M| reaching its maximum
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FIG. 6. (Color online) Integrated value of the anomalous density∫
dxm(x) as a function of field energy.
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at intermediate energies (temperatures), and rapidly decreas-
ing as we approach both the zero-temperature and critical
regimes.

We note that the well-known issues of ultraviolet divergence
of the anomalous density in mean-field theories arise from
the zero-point occupation of quasiparticle modes [8,34,41],
which is of course not present in the classical-field model.
Also, although the results of classical-field calculations are,
in general, dependent on the cutoff energy, the contribution
to the anomalous density from successive quasiparticle modes
rapidly decreases with increasing energy of the modes, as the
modes return to a single-particle structure. The requirement
(for our treatment) that the anomalous density is well-
contained in the low-energy region (condensate band [11])
described by the PGPE is thus precisely the requirement that
the cutoff is effected at such an energy that the interacting
Hamiltonian has become approximately diagonal in the single-
particle basis {Yk(x)} (satisfied in practice for ER/µ >∼ 3
[42,43]).

Finally, we note that the maximum (absolute) value of
the integrated anomalous density occurs when fc ≈ 0.5, but
remind the reader that this refers only to the proportion
of the below-cutoff field that is condensed. Although the
entire anomalous density should be well described by the
low-energy Hamiltonian PGPE dynamics, one would have to
include the contribution of above-cutoff atoms to the normal
thermal density of the field [11] in order to draw quantitative
comparisons with, for example, the mean-field-theory calcu-
lations of [3].

V. CONCLUSIONS

We have demonstrated that, in the Hamiltonian PGPE
theory, classical-wave condensation is accompanied by long-
range temporal coherence limited only by the slow diffusion
of the condensate phase. This gives rise to the appearance
of a nonzero first moment of the field, as defined by short-
time averages in an appropriate phase-rotating frame. We
identified the emergence of this moment with the concept
of U(1)-symmetry breaking that is central to self-consistent
mean-field theories. We showed that the mean field obtained by
short-time averaging agrees well with the condensate identified
by the standard Penrose-Onsager approach, except for close
to the critical regime associated with the transition to the
normal phase. The condensate eigenfrequency obtained by
this temporal analysis exhibits the behavior predicted for the
condensate eigenvalue in the most sophisticated mean-field
approaches [8]; that is, it agrees closely with the thermody-
namic chemical potential at low energies and diverges away
from it in inverse proportion to the condensate occupation
as the phase transition is approached. By calculating the pair
matrix and anomalous density of the noncondensed component
of the field, we demonstrated explicitly that time averages
in the frame rotating at the condensate frequency allow the
calculation of more general anomalous moments. We observed
the anomalous density to exhibit the expected behavior [3],
with its magnitude reaching its maximum at intermediate
temperatures and decreasing as both the T = 0 and critical
regimes are approached.
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APPENDIX: PHASE DIFFUSION OF THE CONDENSATE

1. Single phase-diffusive mode

Let us first consider a single-mode model of the condensate,
in which the amplitude a0(t) of the condensate mode (with
condensate frequency λ0) exhibits phase diffusion. We assume
that the mode does not exhibit any number fluctuations, which
is precisely the condition that g

(2)
0 = 〈|a0|4〉t /〈|a0|2〉2

t = 1,
which is well satisfied away from the critical regime [23,44].
We thus have a0 = |a0|eiθ(t) and, defining ϕ(t) ≡ θ (t) − θ (0),
we assume var{ϕ(t)} ≡ 〈ϕ(t)2〉 − 〈ϕ(t)〉2 = 2γ t [18], where
γ is the (phase) diffusion coefficient, and 〈· · ·〉 denotes an
average over realizations of the amplitude a0(t) (i.e., an
ensemble average). This is precisely the behavior of the
Kubo oscillator [45] stochastic process, which obeys the (Ito)
stochastic differential equation

da0 = [(−iλ0 − γ )dt + i
√

2γ dW (t)]a0(t), (A1)

where dW (t) is a real Wiener increment, which satisfies
〈dW (t)dW (t ′)〉 = δ(t − t ′)dt . By studying this simple model
we hope to gain insight into the behavior of our diffusive
condensate mode.

We consider the power spectrum of the mode obtained over
a period T ,

N (0)(
; T ) =
∣∣∣∣ 1

T

∫ T

0
dtei
ta0(t)

∣∣∣∣
2

. (A2)

This power spectrum is itself a stochastic process (developing
in T ); that is, it varies between realizations of the oscillator. We
therefore consider its mean 〈N (0)(
; T )〉. By using the known
result 〈a0(t)a∗

0 (s)〉 = |a0|2 exp[−iλ0(t − s) − γ |t − s|] [45],
we find

〈N (0)(
; T )〉 = 1

T 2(γ 2 + �2)2
{γ T (γ 2 + �2)

+ [e−γ T cos(�T ) − 1](γ 2 − �2)

− 2γ� sin(�T )}, (A3)

which we have written in terms of � ≡ 
 − λ0 for com-
pactness. In the limit of no diffusion (γ → 0), we regain
the result N (0)(
; T ) = |a0|2sinc2[ 1

2 (
 − λ0)T ], appropriate
to the resolution of a single frequency by a measurement of
finite duration T . In the limit of a measurement made on a
time scale long compared with the characteristic diffusion time
(i.e., γ T � 1), we regain the Lorentzian spectrum of the Kubo
oscillator N (0)(
; T ) = (2|a0|2γ /T )/[γ 2 + (
 − λ0)2]. From
Eq. (A3), the power measured at the underlying frequency λ0

of the oscillator can be obtained by setting � = 0, giving

〈N (0)(λ0; T )〉 = |a0|2 2

(γ T )2
[γ T − (1 − e−γ T )]. (A4)
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For short time periods T � 1/γ (such as we consider in the
main text), the norm square of the mean field decays like
∼1 − γ T /3, while at long times it decays like ∼2/(γ T ). It
is important to note that this same functional form would
be exhibited by, for example, a complex Ornstein-Uhlenbeck
process [45], which one might reasonably assume as a model
for a thermally occupied mode [46–48] in a classical-field
approximation: the “bare” (i.e., infinite sampling time) power
spectrum of such a mode is similarly Lorentzian, and so
we expect the same behavior both for two-time correlations
[|〈a∗(t)a(0)〉| ∼ e−γ t ] and for the measured power N (
; T ),
and the two cases (i.e., condensate and thermal mode) are
thus distinguished only by the time scales on which the power
decays. Qualitative differences between the two types of mode
thus only appear in second-order (and higher) correlation
functions, which are sensitive to number fluctuations.

2. Multimode description

In general, the condensate mode is only one mode in a
multimode field which contains other, thermally occupied
modes. We expect the thermal field to be well described in
the basis of Bogoliubov modes {(ui,vi)} orthogonal to the
condensate mode [49] and thus assume

ψ(x,t) = a0(t)χ0(x) +
∑

j

[bj (t)uj (x) + b∗
j (t)v∗

j (x)], (A5)

where, to gain simple insight into our measurements of
the field, we assume that the {bj (t)} are complex Ornstein-

Uhlenbeck processes which are uncorrelated with one another
and with the condensate. The total power spectrum of the field
is thus

〈N (
; T )〉 = 〈N (0)(
; T )〉
∫

dx |χ0(x)|2

+
∑

j

〈N (j )(
; T )〉
∫

dx |uj (x)|2 + |vj (x)|2,

(A6)

where

〈N (j )(
; T )〉 =
∣∣∣∣ 1

T

∫ T

0
dt ei
tbj (t)

∣∣∣∣
2

(A7)

behave similarly to 〈N (0)(
; T )〉, except that they are centered
on the frequencies εB

j /h̄ of the Bogoliubov modes, and atten-
uate much more rapidly with T (γj � γ0). There is therefore
power in the field at a range of frequencies; however, for times
T � 1/γj we have 〈N (
; T )〉 ≈ N (0)(
; T )

∫
dx |χ0(x)|2

and, moreover,
〈

1

T

∫
dt eiλ0tψ(x,t)

〉
= 1 − e−γ T

γ T
|a0|〈eiθ(0)〉χ0(x), (A8)

where the appearance of the expectation 〈eiθ(0)〉 of
the initial complex phase emphasizes that the conden-
sate phase varies randomly between ensemble mem-
bers, “breaking” the U(1) symmetry in any particular
realization.
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