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ABSTRACT

Parametric, model-based algorithms learn generative models from the data, with each model corresponding to one
particular cluster. Accordingly, the model-based partitional algorithm will select the most suitable model for any data
object (Clustering step), and will recompute parametric models using data specifically from the corresponding clusters
(Maximization step). This Clustering-Maximization framework have been widely used and have shown promising results
in many applications including complex variable-length data.

The paper proposes Experience-Innovation (EI) method as a natural extension of the Clustering-Maximization
framework. This method includes 3 components: 1) keep the best past experience and make empirical likelihood
trajectory monotonical as a result; 2) find a new model as a function of existing models so that the corresponding
cluster will split existing clusters with bigger number of elements and smaller uniformity; 3) heuristical innovations, for
example, several trials with random initial settings.

Also, we introduce clustering regularisation based on the balanced complex of two conditions: 1) significance of
any particular cluster; 2) difference between any 2 clusters.

We illustrate effectiveness of the proposed methods using first-order Markov model in application to the large web-
traffic dataset. The aim of the experiment is to explain and understand the way people interact with web sites.

Keywords: model-based clustering, Markov models, fuzzy c-means, web-traffic data

1. INTRODUCTION

Existing papers on the model-based clustering largely concentrate on a specific models or applications. 1 A notable
exception is the work of Ref.2 who proposed a maximum likelihood (ML) model within Expectation-Maximization
(EM ) framework3 for partitional soft clustering. The model of Ref.2 may be particularly useful in the cases of complex
variable-length data such as web-traffic data. This approach provides a natural and consistent mechanism for handling
the problems of modelling and clustering sequences of different lengths.

The problem of predicting user’s behavior on a web-site has gained importance due to the rapid growth of the world-
wide-web and the need to personalize and influence a user’s browsing experience. 4 Markov models and their variations
have been found well suited for addressing this problem. In general, the input for these problems is the sequence of
web-pages that were accessed by a user and the goal is to build Markov models that can be used to model and predict
the web-page that the user will most likely access next. This study will help to explore and understand human behavior
within internet environment.5

In the Sect. 2 we formulate likelihood-based hard clustering approach within general Clustering-Maximization
(CM ) framework. The popularity of the CM framework stems from monotonical and convergence properties. 6,7 Note
that CM framework for a hard clustering may be viewed as an analog of the EM framework for a soft clustering.

The unified framework for parametric, model-based algorithms was presented in Ref.1. Accordingly, any cluster is
represented by the model as a set of parameters. Using these models we will compare different observations indirectly by
comparing relations between observations and models. In this view, clusters are represented as a probabilistic models in
a model space that is conceptually separate from the data space. Model-based methods offer an effective interpretability
since the resulting model for each cluster directly characterizes that cluster. For example, in the case of Markov model,
Sect. 3, the set of required parameters will include: 1) probabilities of first (start) and last (exit) states; 2) transitional
probabilities between states.
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The performance of the CM -algorithms depends essentially on the selection of initial settings if number of clusters
is bigger than one. Accordingly, we propose an iterative procedure to compute a new model as a function of the existing
models. A new model will split existing clusters with bigger number of elements (weight) and higher non-uniformity
(divergency). This procedure will keep monotonical property and may be regarded as a natural extension of the standard
CM -framework.

Determination of the number of clusters k represents an important problem. For example, Ref.8 proposedG-means
algorithm which is based on the Gaussian fit of the data within particular cluster. Usually, 1 attempts to estimate the
number of Gaussian clusters lead to a very high value of k. Most simple criterions such as AIC (Akaike Information
Criterion9) and BIC (Bayesian Information Criterion10, 11) either overestimate or underestimate the number of clus-
ters, which severely limit their practical usability. We introduce in the Sect. 4 special clustering regularization. This
regularization restricts creation of a new cluster which is not big enough or which is not sufficiently different comparing
with existing clusters.

Section 7 presents detailed experimental results on a large web-traffic msnbc dataset. 12 Note that all numerical and
graphical illustrations in this paper were produced using msnbc dataset.

In the Sect. 5 we consider modification of the fuzzy c-means algorithm 13 which is marginally linked to the EM -
algorithm.

According to Ref.14, mixture regression methods have received a great deal of attention in marketing research.
However, the use of GLiMMix (Generalized Linear Model for Mixture Distributions) is not limited to marketing
research, but extends to business and economic research, psychology, sociology, anthropology, political science, etc.

In the Sect. 6 we consider Generalised Linear Clustering (GLiC) and Stochastic Unfolding Clustering (StUnC)
algorithms as a distance-based clustering examples within parametric, model-based framework.

2. LIKELIHOOD-BASED CLUSTERING

Suppose X := {x1, . . . ,xn} is a sample of independent observations with variable-lengths. Any particular observation
xi represents a vector ofNi i.i.d. components with density f(x, θ) from known family of probability distributions where
parameter θ ∈ Λ (generally, θ may be regarded as a set of parameters) is unknown.

We will denote by Θ a codebook as a set of k models Θ(c) indexed by the code c = 1..k where k is a number of
clusters or a clustering size.

It may not be easy to compare different observations directly (using distance-based approach) in the case of variable-
length dimension. Respectively, we will employ model-based partitional clustering approach. The key element of
this approach is the idea to compare different observations indirectly through the corresponding likelihoods computed
according to k different models.

The aims of the model Θ(c) are different depending on the particular step of the CM cycle: Θ(c) may be viewed as
a generalized prototype15 of the cluster c at the Clustering step or as a generalized center of cluster c (or centroid) at the
Maximization step.

REMARK 2.1. The algorithm 1 represents just a particular illustration and we will understand further under notation
CM -algorithm an arbitrary algorithm within CM -framework.

Let us define the empirical log-likelihood:

Lemp[Θ] :=
1
n

n∑

i=1

Ni∑

j=1

log f (xij ,Θ(c(xi))). (3)

The following Proposition 2.1, that may be proved similarly to the Propositions 1 and 2 of Ref.7, formulates the
most important ascending and convergence properties of the Clustering Maximization framework.

PROPOSITION 2.1. The CM -Algorithm 1
1) monotonically increases the value of the objective function (3);
2) converges to a local maximum in a finite number of steps if Maximization step has a unique solution.

In the following sub-section we consider example in order to illustrate and support the last condition of the Proposi-
tion 2.1.
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Algorithm 1 CM .
1: Clustering: encode any observation xi according to the most likely model:

c(xi) := argmax
c∈{1..k}

Ni∏

j=1

f(xij ,Θ(c)). (1)

2: Maximization: re-compute models specifically for any particular empirical cluster

Θ(c) := argsup
λ∈Λ

∑

c(xi)=c

Ni∑

j=1

log f(xij , λ). (2)

3: Test. : compare previous and current codebooks Θ. Go to the step 1 if convergence test is not fulfilled, alterna-
tively, stop the algorithm.

2.1. Exponential families.

Let f be an exponential probability density f(x, θ) := exp{〈φ(x), θ〉 − g(θ)} where θ ∈ R
m is an unknown parameter,

φ(x) is a sufficient statistics and g(θ) is the corresponding log-partition function, 〈·, ·〉 denotes an operation of the scalar
product in a Hilbert space.

Then, the expression in the right side of (2) may be re-written as follows
∑

c(xi)=c

∑Ni

j=1 〈φ(xij), θ〉 − Kcg(θ).
Maximizing this function by θ we will obtain equation

�g(θ) =
∂g(θ)
∂θ

=
1
Kc

∑

c(xi)=c

Ni∑

j=1

φ(xij) (4)

where Kc =
∑

xi∈Xc
Ni. It follows from convexity of the function g(θ) that (4) has unique solution.

2.2. EI-method and computation of a next model as a function of the existing models.

The CM -algorithm will split the data from the sample X into k empirical clusters X c = {xi : c(xi) = c}.

Then, we will use empirical KL-divergence16 Lcc in order to measure uniformity within cluster c and compute the
distance between models Θ(c) and Θ(a):

Ψ(c, a) = Lca − Lcc (5)

where

Lca = − 1
Kc

∑

xi∈Xc

Ni∑

j=1

log f(xij ,Θ(a)). (6)

Besides, we will compute prior empirical probabilities of clusters πc ∝ Kc.

According to Fig. 1(a)-(b) there is no clear correspondence between π c and Lcc, but maxc πc and maxc Lc may be
viewed as a decreasing functions of k.

The following two classes of approaches are typically used for the selection of the cluster to split 17:

A1) the cluster with largest number of elements;

A2) the cluster with higher divergency.

Accordingly, we form a new model as a linear combination of the existing models

Θ(k + 1) =
k∑

c=1

wc · Θ(c), k ≥ 2, (7)
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Figure 1. a) Lcc as a function of πc, cases of 8 and 19 clusters marked by “+” and “o”; b) cases of 19 and 39 clusters marked by “o”
and “+”, respectively; c) and d) prior empirical probabilities of clusters; e) and f) average numbers of events in the cases of k = 19

and k = 39.

where wc ∝ exp {πc(λ+ µLcc)},
∑k

c=1 wc = 1, λ > 0 and µ > 0 are regulation parameters.

The definition of optimal model in case of one cluster is unique and will be found immediately after the first Max-
imization step. Unfortunately, one model will not give us a direction in order to define a next, second model in (7).
In order to overcome this problem and as it was proposed in Ref.17, we will generate randomly a small deviation as a
difference between first and second models. Third and following models may be calculated as a linear combinations (7)
of the existing models with weight coefficients wc to be defined according to the multinomial logit (MNL) model.

The coefficients wc represent the balanced compromise between criterions A1 and A2: on the one hand, we are
interested to create a new cluster closer to the existing clusters with bigger weight (controlled by π c), on the other hand,
we are interested to split clusters with higher divergency (controlled by L cc).

Note that the definition (7) is just one example of many possible designs motivated by the particular Markov model
of the following section. The definition (7) represents a basic idea which may be modified for a specific application.

DEFINITION 2.1. The EI-method includes 3 components:

B1) keep the best past experience and make trajectory monotonical as a result (see Proposition 2.2);

B2) find a new prototype as a function of the set of the existing prototypes (7);

B3) heuristical innovations: for example, it may be several trials with random initial settings (see Fig. 2(a)-(b)).

PROPOSITION 2.2. The following relation is valid

Lemp[Θ+] ≥ Lemp[Θ] (8)

where Θ+ represents a union of Θ and arbitrary model.

Proof. By definition, any observation will be directed to the model which represents higher likelihood. Accordingly,
the data will be attracted to the new cluster as a consequence of a higher likelihood. Respectively, the combined likeli-
hood of the data within new cluster may not be smaller.

REMARK 2.2. The condition Θ ⊂ Θ+ is a very essential for (8). As an alternative, we can observe the situation where
an outcome of CM -algorithm in the case of k + 1 clusters is worse comparing with result corresponding to k clusters.
Fig. 2(a)-(b) illustrate above facts.
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3. MARKOV HARD CLUSTERING

Suppose we have a dataset of n records of dynamic behavior of individuals visiting web sites classified into m different
categories (states). The length Ni of any particular record xi, i = 1..n, is not fixed, and represents a vector of integer
indexes (events)

1 ≤ sij ≤ m, j = 1..Ni, i = 1..n,

N =
∑n

i=1Ni =
∑k

c=1Kc is the total number of events.

Under above assumptions we can simplify (6) Lac = −∑m
i=1 pai log θci, pai = qai

Ka
, qai is a number of the event i

in the cluster a, θci is the probability of the event i within the cluster c.

As a next step, we consider a first-order Markov model Θ(c) with

• vectors of marginal probabilities θ (v)
ci ≥ 0, c = 1..k, i = 1..m,

∑m
i=1 θ

(v)
ci = 1 where index v = 1 indicates

“start”, and index v = 2 indicates “exit”;

• matrix of first-order-Markov probabilities: θcij ≥ 0, c = 1..k, i, j = 1..m,
∑m

j=1 θcij = 1.

REMARK 3.1. The case Ni = 1 is a very specific: on the one hand, xi will not add any information to the statistics of
the Markov probabilities, on the other hand, we will count x i twice as “start” and “exit”.

The following definition corresponds directly to (1)

c(xi) = argmax
a

L(a,xi,Θ) (9)

where

L(a,xi,Θ) = log θ(1)asi1
+ log θ(2)asiNi

+
n

N − n

Ni∑

j=2

log θasij−1sij . (10)

DEFINITION 3.1. The following empirical probabilities will be used bellow

pc =
nc

n
, p

(v)
ci =

q
(v)
ci

nc
, pcij =

qcij

Mci
, ϕci =

Mci

Mc
, πc =

Mc

N − n
(11)

where q(1)ci is the number of users with “start” state i; q(2)
ci is the number of users with “exit” state i; qcij is the number

of the consecutive states i and j in the cluster c; nc =
∑m

i=1 q
(v)
ci , v = 1..2; Mci =

∑m
j=1 qcij ,Mc =

∑m
i=1Mci, N =

∑k
c=1Mc + n.

PROPOSITION 3.1. The solution of the equation Θ(c) = argmaxQ
∑

xi∈Xc
L(c,xi,Q) is unique and is defined as

follows
θ
(v)
ci = p

(v)
ci , θcij = pcij (12)

where v = 1..2, c = 1..k; i, j = 1..m.

Proof. The target of the Maximization step is to maximize the log-likelihood:

1
n

n∑

i=1

L(c(xi),xi,Θ). (13)

We can re-write (13) using different terms:

k∑

c=1

m∑

i=1




∑2

v=1 q
(v)
ci log θ(v)

ci

n
+

m∑

j=1

qcij log θcij

N − n



 =
k∑

c=1

pc

m∑

i=1

2∑

v=1

p
(v)
ci log θ(v)

ci +
k∑

c=1

πc

m∑

i=1

ϕci

m∑

j=1

pcij log θcij .

(14)
Required solutions (12) follow directly from above formula (14).

REMARK 3.2. Table 1 illustrates monotonical ascending property of the Markov model-based algorithm defined in the
Proposition 3.1 under general result of the Proposition 2.1.
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Table 1. The normalized empirical log-likelihood Lnorm defined in (17) as a function of iteration (CM -cycle) τ in the case k = 19;
2) Clustering step; 3) Maximization step; 4) the distance (30).

τ Clustering Maximization ∆(τ ) τ Clustering Maximization ∆(τ )

1 -2.233340 -1.197748 21.9437 7 -0.895848 -0.895805 0.1307
2 -1.058968 -0.962400 7.0320 8 -0.895695 -0.895493 0.0495
3 -0.940187 -0.917314 3.0885 9 -0.895428 -0.895099 0.0452
4 -0.908967 -0.901721 1.4871 10 -0.895005 -0.894712 0.0314
5 -0.898962 -0.896614 0.6298 11 -0.894674 -0.894662 0.0266
6 -0.896350 -0.895910 0.2339 12 -0.894660 -0.894655 0.0205

4. CLUSTERING REGULARIZATION

In this section we formulate an approach in terms of the following 2 conditions:

C1) pc ≥ α1 > 0;πc ≥ α2 > 0, c = 1..k (significance of any particular cluster);

C2) Dv(a, b) ≥ βv(pa + pb) log 2 > 0, v = 1..2; D3(a, b) ≥ β3(πa + πb) log (2m) > 0 (difference between any 2
clusters a and b, a 	= b)

where

Dv(a, b) =
∑

c∈{a,b}
pc

m∑

i=1

p
(v)
ci log

p
(v)
ci

p̂
(v)
i

; D3(a, b) =
∑

c∈{a,b}
πc

m∑

i=1

ϕci

m∑

j=1

pcij log
pcij

p̂ij
;

p̂
(v)
i =

pap
(v)
ai + pbp

(v)
bi

pa + pb
, p̂ij =

πaϕaipaij + πbϕbipbij

πaϕai + πbϕbi
.

PROPOSITION 4.1. The following relations are valid

Dv(a, b) ≤
(
p(v)

a + p
(v)
b

)
log 2, v = 1..2;D3(a, b) ≤ (πa + πb) log (2m). (15)

Proof. We will consider a more complex case of D3(a, b) where m ≥ 2. (the case m = 1 is trivial)

Maximizing D3(a, b) we will draw an immediate conclusion that the involved vectors of probabilities must be
orthogonal:

∑m
j=1 paijpbij = 0, ∀i = 1..m.

Therefore,

D3(a, b) ≤
m∑

i=1

∑

c∈{a,b}
πcϕci log

πaϕai + πbϕbi

πcϕci
≤ −

∑

c∈{a,b}
πc

m∑

i=1

ϕci log (πcϕci) ≤ log (2m)

where the final bound was obtained using uniform probabilities: π c = 0.5, ϕci = 1
m , ∀c ∈ {a, b}, i = 1..m. The upper

bounds for Dv, v = 1..2, may be proved using similar methods.

Let us define an optimal empirical log-likelihoodL (k)
emp = supΘ

1
n

∑n
i=1 L(c(xi),xi,Θ) assuming that the codebook

Θ contains k prototypes, and the code c(xi) is defined in (9).

As it was noticed in Ref.15, if more prototypes are used for the k-means clustering, the algorithm splits clusters,
which means that it represents a single cluster by more than one prototype. The following Proposition 4.1 will consider
clustering procedure in inverse direction.
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Table 2. 1) number of clusters k; 2-3) innovative trajectories of the normalized empirical log-likelihood Lnorm (19) with random
initial settings; 4) Texp was produced according to the EI-method, and in a complex with T1; 5) Treg is a trajectory of (17).

k T1 T2 Texp Treg k T1 T2 Texp Treg

30 -0.7396 -0.7456 -0.7389 -0.9354 40 -0.6557 -0.649 -0.6479 -0.9099
31 -0.7374 -0.7374 -0.731 -0.9341 41 -0.6398 -0.6398 -0.6446 -0.9131
32 -0.722 -0.722 -0.7251 -0.9347 42 -0.6437 -0.6437 -0.6284 -0.9035
33 -0.6969 -0.6968 -0.7162 -0.9323 43 -0.6347 -0.6321 -0.6255 -0.9071
34 -0.7054 -0.7054 -0.6862 -0.9089 44 -0.6158 -0.617 -0.6212 -0.9094
35 -0.6914 -0.6914 -0.6776 -0.9069 45 -0.6302 -0.6301 -0.6109 -0.9056
36 -0.7073 -0.6845 -0.6703 -0.9061 46 -0.649 -0.6155 -0.6041 -0.9054
37 -0.6776 -0.6679 -0.6664 -0.9087 47 -0.6145 -0.6296 -0.6009 -0.9087
38 -0.6849 -0.6886 -0.663 -0.9119 48 -0.6277 -0.6007 -0.5956 -0.91
39 -0.6664 -0.6734 -0.6571 -0.9126 49 -0.5991 -0.5987 -0.5902 -0.9112

PROPOSITION 4.2. Assuming that we merge clusters a and b, the following relation is valid

L(k)
emp − L(k−1)

emp ≤
3∑

v=1

Dv(a, b) (16)

where a strict equality will take place if and only if the merged cluster equal to a union of the input clusters a and b,
k ≥ 2.

Proof. Required bound follows from (12) and (14). L (k−1)
emp may become bigger in 2 cases: 1) some data from the

merged cluster will be attracted by the other models; 2) the model of the merged cluster will attract data from the other
clusters. Respectively, the difference between log-likelihoods (16) will become smaller.

According to the complex of the conditions C1 and C2 and bound (16) we define regularized empirical log-
likelihood:

Lreg [Θ�] = Lnorm [Θ�] − Ck (17)

where

Ck =
2k
3

(log (2)α1(β1 + β2) + log (2m)α2β3) ; (18)

Lnorm [Θ�] =
Lemp [Θ�]

3
, (19)

and Θ� is an outcome of the CM -procedure: Θ� = CM(Θ�).

As a corollary of the Proposition 4.1 we obtain ranges 0 ≤ α i, βj ≤ 1, i = 1..2, j = 1..3, for the regulation
parameters in (18).

The trajectory Treg of (17) may be viewed in the Figure 2(a). Maximizing (17) we will make required selection of
the number of clusters k.

REMARK 4.1. Empirical log-likelihood (13) and cost term (18) includes 3 independent components corresponding to
the 1) “start”, 2) “exit” and 3) Markov probabilities. Respectively, we can apply in (13) three weight linear coefficients
and these coefficients will not affect formulas (12).

REMARK 4.2. Note, a structural similarity between (18) and AIC (Akaike Information Criterion 9). Although, we used
different assumptions and targets in order to derive (18).
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Figure 2. a) Trajectories T1 (blue dashed line), T2 (red dashdot line), Texp (black solid line) and Treg, k = 1..80; b) Ti, i = 1..2,

Texp, k = 30..80, where Ti, i = 1..2, are innovative trajectories with random initial settings; Texp was produced according to the
EI-method and in a complex with T1, Treg is a trajectory of (17); c) Markov probabilities in the case of 1 cluster; d)-f) Markov
probabilities for the biggest, 20th and 30th biggest clusters in the case 39 clusters, see Fig. 1(d).

Table 3. 1-2) web category; 3-4) “start” and “exit” general probabilities for the whole dataset (case of 1 cluster); 5-12) “start” and
“exit” probabilities for four biggest clusters in the case of 39 clusters, see Fig. 1(d).

No Web Start Exit Start Exit Start Exit Start Exit Start Exit

1 front 0.2802 0.1933 0.7186 0 0.9971 0.9999 0.2847 0 0 0
2 news 0.0779 0.0989 0 0.455 0 0 0 0 0 0
3 tech 0.0672 0.061 0 0.2643 0 0 0.2967 0.3473 0 0
4 local 0.0516 0.08 0 0 0 0 0.4186 0.6527 0 0
5 opinion 0.0043 0.0187 0 0 0 0 0 0 0 0.0605
6 onair 0.1648 0.0875 0.2814 0 0 0 0 0 0.9766 0.9395
7 misc 0.0036 0.0201 0 0 0 0 0 0 0 0
8 weather 0.0726 0.0914 0 0 0 0 0 0 0 0
9 health 0.066 0.0536 0 0 0 0 0 0 0 0

10 living 0.0129 0.0279 0 0 0 0 0 0 0.0234 0
11 business 0.0144 0.0244 0 0.042 0 0 0 0 0 0
12 sports 0.0573 0.0638 0 0 0 0 0 0 0 0
13 summary 0.0636 0.0622 0 0 0 0 0 0 0 0
14 bbs 0.0542 0.0968 0 0.2387 0 0 0 0 0 0
15 travel 0.0075 0.0145 0 0 0 0 0 0 0 0
16 msn-news 0.0004 0.0016 0 0 0 0 0 0 0 0
17 msn-sport 0.0015 0.0043 0 0 0.0029 0 0 0 0 0

5. MARKOV SOFT CLUSTERING

The fuzzy c-means (FCM ) algorithm is commonly used for “soft” clustering. 13 We will modify the algorithm so that
the results of the EM algorithm3 may be obtained as a marginal limits if fuzzy parameter γ tends to 1 under condition:
γ > 1.

Let us consider minimization of the following target function

n∑

i=1

k∑

c=1

ψγ
ciπ

1−γ
c [1 + (1 − γ)L(c,xi,Θ)] (20)

where
∑

c πc = 1,
∑

c ψci = 1 and the log-likelihood function L is defined in (10) as a function of probabilities of
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membership ψci, prior probabilities of clusters πc and codebook Θ.

REMARK 5.1. The target function (20) includes regularization term
∑n

i=1

∑k
c=1 ψ

γ
ciπ

1−γ
c which will award smoothed

solution.

Using standard technique we will formulate iterative algorithm.

Algorithm 2 Modified FCM .
1: Re-compute probabilities of membership and prior probabilities:

ψci ∝ πc (1 + (1 − γ)L(c,xi,Θ))
1

1−γ ; (21a)

πc ∝
(

n∑

i=1

ψγ
ci (1 + (1 − γ)L(c,xi,Θ))

) 1
γ

. (21b)

2: Re-compute codebook Θ according to (23).
3: Test.

PROPOSITION 5.1. The solution of the equation

Θ(c) = argmax
Q

n∑

i=1

ψγ
ciL(c,xi,Q) (22)

is unique and is defined as follows

θ(v)
cs ∝

n∑

i=1

I(i, v, s)ψγ
ci; θcsz ∝

n∑

i=1

N(i, s, z)ψγ
ci (23)

where I(i, 1, s) is an indicator of the event: xi1 = s; I(i, 2, s) is an indicator of the event: xiNi = s; N(i, s, z) is the
number of consecutive events s and z in x i.

Initially, we generate randomly required input parametersψ ci, πc and Θ. Then, using (21a) we recomputeψci, which
will be used consequently in (21b) and (23).

Algorithm 3 EM
1: Expectation:

ϕci =
πc · expL(c,xi,Θ)
k∑

j=1

πj · expL(j,xi,Θ)
, πc =

1
n

n∑

i=1

ϕci. (24)

2: Maximization:

Θ(c) = argmax
Q

n∑

i=1

ϕci · L(c,xi,Q). (25)

3: Test.

Note that the restriction γ > 1 is a very essential for membership update (21a). The EM -Algorithm 3 is marginally
linked to the FCM -Algorithm 2: Bayesian formula (24) within the Expectation step may be obtained from (21a) if
γ → 1.

REMARK 5.2. In line with the concepts of universal estimation18 we introduce universal clustering with the target
function (20). Considering behavior of the (π, ψ, Θ)-solution as a function of fuzzy parameter γ we can test stability of
the clustering configuration.
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COROLLARY 5.1. The solution of the equation (25) is unique and is defined as follows

θ(v)
cs ∝

n∑

i=1

I(i, v, s)ϕci; θcsz ∝
n∑

i=1

N(i, s, z)ϕci.

6. DISTANCE-BASED CLUSTERING

The GLiC algorithm 4 uses as an input a sample of observations x i with 2 components each: 1) a scalar target variable
yi and 2) a vector of explanatory variables z i with fixed dimension m. By definition, any two observations may be
compared indirectly using k vectors of linear coefficients θ(c), which have the same dimension as z i. Initially, we will
select randomly matrix with k rows and m columns where rows θ(c), c = 1..k, represent corresponding clusters. The
GLiC algorithm will assign any observation to the particular cluster depending on how close are the scalar products of
the corresponding vectors of linear coefficients and explanatory variables to the target variable. Then, the algorithm will
re-compute vectors of linear coefficients using least squared estimation (LSE) method applied specifically to the data
from particular clusters.

Algorithm 4 GLiC.
1: Clustering:

c(xi) := argmin
c∈{1..k}

‖yi − 〈θ(c), zi〉 ‖2. (26)

2: Minimization:
θ(c) := arginf

λ∈Rm

∑

c(xi)=c

‖yi − 〈λ, zi〉 ‖2. (27)

3: Test.

The GLiC algorithm may be regarded as a generalization of the LSE method. As a final outcome, the GLiC will
produce a set of k vectors of linear regression coefficients specifically for k clusters. Essentially, any particular vector
of linear coefficients will be the most suitable for any observation from the corresponding cluster comparing with other
vectors of linear coefficients.

Algorithm 5 StUnC.
1: Clustering:

c(xi) := argmin
c∈{1..k}

‖xi − Γ · θ(c)‖2 (28)

where Γ is a design matrix with b rows (brands) andm columns (attributes) x i is b-dimensional target variable, θ(c)
is m-dimensional vector-column.

2: Minimization:
θ(c) := arginf

λ∈Rm

∑

c(xi)=c

‖xi − Γ · λ‖2. (29)

3: Test.

REMARK 6.1. There is an essential difference between GLiC and StUnC Models: in the case of GLiC explanatory
variables are used for the description of observations or respondents; in the case of StUnC (see Algorithm 5) explanatory
variables are the same for any particular brand and vector of explanatory variables is defined by the corresponding row
of the design matrix Γ. Note, that the number of brands b ≥ 1 may be different (variable-length) for any particular
observation.

REMARK 6.2. Similar to the above models we can define Support Vector Clustering (SVC) as an important example
within CM framework. A standard SV algorithm was introduced in Ref.19, and SV C may be regarded as a further
development. The main motivation for the SVC is to speed up the training process as a result of split of the whole dataset
into several subsets assuming that statistical characteristics of the data may be characterized spatially.
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7. EXPERIMENTS ON THE MSNBC DATASET

A large Web navigation msnbc dataset comes from the Internet Information Server msn.com for the entire day of
September, 28, 1999.2 The dataset12 includes n = 989818 sequences of events with lengths ranging from 1 to 12000.

Each sequence in the dataset corresponds to page views of a user during that twenty-four hour period. Each event in
the sequence corresponds to a user’s request for a page. In total, there are 4698794 events.

The page categories were developed prior to investigation. There are m = 17 particular web categories, see Table 3.
The number of pages per category ranges from 10 to 5000.

We used a first-order Markov model-based CM -algorithm, section 3, in order to produce most of the experimental
results.

Current and previous codebooks were compared using the distance:

∆(τ) = ‖Θ(τ + 1) − Θ(τ)‖ =
1
k

k∑

c=1




m∑

i=1




2∑

v=1

δ
(v)
ci (τ) +

m∑

j=1

δcij(τ)







 . (30)

where δ(v)
ci (τ) = |θ(v)

ci (τ + 1) − θ
(v)
ci (τ)|, δcij(τ) = |θcij(τ + 1) − θcij(τ)| and τ is a sequential number of iteration.

Usually, it was enough to conduct less than 20 CM cycles in order to fulfill the convergence test: ∆(τ) < 0.01.

A Pentium 4, 2.8GHz, computer was used for the computations. The overall complexity of the CM cycle is O(k +
1)(2n + N)). The computer conducted computations according to the special program written in C. The computation
time for one CM cycle in the case of 49 clusters was 29 seconds.

The columns 5 and 6 of the Table 3 represent a typical structure of the start and exit probabilities for any particular
cluster if number of clusters k is large enough. These probabilities clearly reflect user’s preferences. As a next step, we
can generate graphical model5 using corresponding matrix of Markov probabilities. Some examples of these matrices
may be seen in Fig. 2(c)-(f). Figure 2(c) includes a colorbar which may be helpful in order to make a visual assessment
of the values. It may be seen that a user has the tendency to stay within a current web-category. Also, the non-diagonal
elements of Fig. 2(c) essentially more uniform (and less informative) comparing with Fig. 2(d-f).

Based on the experimental results we can make a conclusion that empiricalKL-divergence (5) is a more informative
comparing with direct distance (30).

Figure 2(a) demonstrates 2 independent trajectories of (19) marked by T 1 and T2. Another trajectory Texp was
developed in a complex with T1 according to the EI-method of the sub-section 2.2. Regularized graph T reg may
be viewed in Fig. 2(a). The following parameters were used in order to compute MNL weight coefficients in (7):
λ = 0.5, µ = 10. It is interesting to note that the behavior of Texp is monotonical, but may be worse comparing with
Ti, i = 1..2, for any k.

According to the given requirements α i = 0.04, i = 1..2, βi = 0.05, i = 1..3, of the Conditions C1-C2, Sect. 4, the
system detected the range of 34 ≤ k ≤ 47 for the clustering size k.

8. CONCLUDING REMARKS

We considered likelihood-based and distance-based models within general parametric, model-based framework. Experi-
ments on real and synthetic data has confirmed fast convergence of the CM -algorithm. Unfortunately, the algorithm has
a heuristic nature and can not give a guarantee of absolute optimum: it may be trapped in the local optimum depending
on the initial settings.

In this regard, the EI-method as an extension of the CM framework is significant. It represents a complex of very
important components: experience and innovation. Beginning with 2 clusters, we can make several independent trials
(”innovations”) of the CM -algorithm. The best results will give us an initial setting for the “experience” model, which
can not produce worse results in the case if we will increase number of clusters. The proposed in Sect. 2.2 method is
not an ideal and may be developed further. For example, as it was noted in Ref.17 criterions A1-A2 completely ignore
a shape of the cluster, and it will be very important to extend method of Ref.17 to the Markov-model based clustering.
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Besides, it will be important to consider a cyclic procedure: 1) create a new cluster in the most promising direction
(forward move); 2) make an assessment of any particular cluster as a component within the complex of k + 1 clusters;
3) remove the cluster which is the most insignificant (backward move); 4) compare previous and current codebooks. Go
to the first step if convergence test is not fulfilled, alternatively, stop the algorithm. As a result, we will test stability of
the existing clustering configuration.
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