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Quantum phase transitions in an interacting atom-molecule boson model
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We study the quantum phase transitions of a model that describes the interconversion of interacting bosonic
atoms and molecules. Using a classical analysis, we identify a threshold coupling line separating a molecular
phase and a mixed phase. Through studies of the energy gap, von Neumann entanglement entropy, and fidelity, we
give evidence that this line is associated with a boundary line in the ground-state phase diagram of the quantum
system.
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I. INTRODUCTION

A quantum phase transition (QPT) is characterized by a
change in the properties of the ground state of a system
(i.e., at zero temperature) as some parameter is varied across
a critical point [1,2]. This parameter can be an external
magnetic field as in the quantum Hall effect or superconducting
materials or, as in a Bose-Einstein condensate, a change in the
s-wave scattering amplitude or external fields to produce an
atom-molecule condensate [3]. The change in the nature of
the ground state is typically identified by nonanalyticity of
some quantity, such as the ground-state energy or a correlation
function. A common approach for studying QPTs is to use
concepts such as order parameters and symmetry breaking
similar to the Landau-Ginzburg model, in analogy with thermal
phase transitions. However, in many cases of interest order
parameters are difficult to identify. More recently, in the wake
of quantum information theory, it has been realized that one
can employ alternative concepts such as entanglement [4] and
fidelity [5,6] as means of identifying different phases.

Bosonic models are useful testbeds for investigating QPTs
in that they accommodate large particle numbers with few de-
grees of freedom, in contrast to fermionic systems, which sim-
plifies the analysis. In this paper we study QPTs for an interact-
ing atom-molecule boson model. The model does not possess
any symmetries which might give rise to symmetry-breaking
order. Using other methods, we will establish a line of QPTs in
the ground-state phase diagram. This line is first identified via
phase-space bifurcations in a classical analysis of the system,
by adapting a correspondence that has been put forth in [7] re-
lating bifurcations in classical systems with entanglement en-
tropy of quantum systems. We then confirm that this line is as-
sociated with quantum phase transitions of the quantum system
through studies of the energy gap, entanglement entropy, and
fidelity. Even though a QPT is only rigorously defined in the
thermodynamic limit N → ∞, where N is the number or par-
ticles in the system, we will show that the aforementioned con-
cepts do respond to changes in the ground state of the system
for finite N and strongly indicate the presence of QPTs (cf. [8]).

We consider the model for interacting atomic and molecular
bosons described by the following Hamiltonian [9]:

H = UaN
2
a + UbN

2
b + UabNaNb + µaNa + µbNb

+�(a†a†b + b†aa). (1)

where a† is the creation operator for an atomic mode and b† is
the creation operator for a molecular mode. The parameters µi

are chemical potentials for species i and � is the amplitude for
the interconversion of atoms and molecules. The Hamiltonian
commutes with the total atom number N = Na + 2Nb, where
Na = a†a and Nb = b†b. Thus the Hamiltonian can be block
diagonalized into sectors on which N takes a constant value.
Hereafter we consider the action of the Hamiltonian to be
restricted to such a sector and treat N to be a scalar variable.
Notice that the change of variable � → −� is equivalent to
the unitary transformation

b → −b. (2)

The parameters Uj describe s-wave scattering, taking into
account the atom-atom (Ua), atom-molecule (Uab), and
molecule-molecule (Ub) interactions.

In the no-scattering limit Ua = Uab = Ub = 0, the model
(1) has been studied using a variety of methods [10–13], and
it was found to undergo a quantum phase transition when
µa/� = √

2N . This was confirmed analytically through a
Bethe ansatz solution [14]. However, in the experimental
context the s-wave scattering interactions play a significant
role [15–19]. It was shown in [20–22] that for the gen-
eral model (1) the inclusion of these scattering terms has
nontrivial consequences for the physical behavior. In this
paper we reexamine the QPT found in the no-scattering
limit, showing how the concepts of quantum information,
entanglement, and fidelity are related to it. Moreover, we
also investigate the effect of the s-wave scattering parameters
in the QPTs, establishing a connection between the QPTs
and the bifurcation line associated to the global minimum
of the Hamiltonian (1) in the parameter space of the classical
system.

The paper is organized as follows: In Sec. II we give
an outline of the classical analysis of the model (1) includ-
ing the fixed-point bifurcations that occur in the classical
phase space. In Sec. III we investigate the behavior of the
energy gap, entanglement, and fidelity to identify QPTs.
We also establish a connection between these QPTs and
a bifurcation line of the global minimum in the parameter
space of the classical system. Our conclusions are stated in
Sec. IV.
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II. CLASSICAL ANALYSIS

We first motivate undertaking a classical analysis to gain
insights into the existence of QPTs in quantum systems. Recall
the proposition in [7] that, if for a bipartite quantum system
there exists a supercritical pitchfork bifurcation of the global
minimum at some coupling parameter in the phase space
of the analogous classical system, then the quantum system
will take a maximum value of the ground-state entanglement
entropy at that coupling. This proposition holds true for
attractive bosons in a double-well potential, within a two-
mode approximation. The double-well model admits a QPT
associated with symmetry breaking as shown in [23]. The
critical coupling coincides with the supercritical bifurcation
of the global minimum in phase space [24] and also coincides
with the point where the entanglement entropy is maximal [25].

To investigate the extent to which these ideas extend to
the present model we briefly recall the classical analysis of
the Hamiltonian (1) as given in [20]. Let Nj,θj ,j = a,b be
quantum variables satisfying canonical commutation relations.
We make a change of variables from the operators j,j †,j =
a,b via

j = exp(iθj )
√

Nj, j † = √
Nj exp(−iθj )

such that the canonical commutation relations are preserved.
Now define the variables

z = 1

N
(Na − 2Nb), θ = N

4
(2θa − θb)

such that (z,θ ) are canonically conjugate variables. In the
classical limit where N is large, but still finite, we may
equivalently consider the transformed Hamiltonian [20]

H = λz2 + 2αz + β +
√

2(1 − z)(1 + z) cos

(
4θ

N

)
, (3)

where

λ =
√

2N

�

(
Ua

2
− Uab

4
+ Ub

8

)
, (4)

α =
√

2N

�

(
Ua

2
− Ub

8
+ µa

2N
− µb

4N

)
, (5)

β =
√

2N

�

(
Ua

2
+ Uab

4
+ Ub

8
+ µa

N
+ µb

2N

)
. (6)

We note that the unitary transformation (2) is equivalent
to θ → θ + Nπ/4. Hereafter we restrict our attentions to the
“repulsive” case λ � 0.

We now regard (3) as a classical Hamiltonian and investi-
gate the global minima of the system. The first step is to find
Hamilton’s equations of motion, which yields

dz

dt
= ∂H

∂θ
= − 4

N

√
2(1 − z)(1 + z) sin

(
4θ

N

)
, (7)

−dθ

dt
= ∂H

∂z
= 2λz + 2α + 1 − 3z√

2(1 − z)
cos

(
4θ

N

)
. (8)

Within the interior of the compact phase space the fixed points
of the system are determined by the condition

dz

dt
= dθ

dt
= 0. (9)
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FIG. 1. Parameter-space diagram identifying the different types
of solution for Eq. (9). In region I there are no solutions for z when
θ = 0 and one solution for z when θ = Nπ/4. In region II there
are two solutions for z when θ = 0 and one solution for z when
θ = Nπ/4. In region III there exists one solution for z when θ = 0,
one solution for z when θ = Nπ/4, and two solutions for θ when
z = −1. In region IV there is one solution for z when θ = 0 and
no solution for z when θ = Nπ/4. In this region the global minima
occur at z = −1 and all values of θ . The boundary separating regions
I and II from region III is given by λ = α + 1, whereas the equation
λ = α − 1 separates region III from region IV. The boundary between
regions I and II has been obtained numerically.

Extremal points may also occur on the boundaries
z = 1, z = −1. The bifurcations of the fixed points divide the
coupling parameter space into different regions, as shown in
Fig. 1. Of these bifurcations, only the boundary separating
regions III and IV (the line λ = α − 1) is associated with a
qualitative change of the global minimum of the Hamiltonian
(3). In regions I, II, and III qualitative changes are associated
with either saddle points or maxima (see [20] for details). For
these regions the minimum of (3) occurs at θ = Nπ/4 with
z > −1. In region IV there is a line of global minima for (3)
at the boundary z = −1 and for all values of θ . These global
minima do not satisfy (9).

From this we see that there is a bifurcation of the phase-
space minimum from region III, where there is a unique
minimum, to region IV, where there is a line of minima. The
bifurcation line in the parameter space, which is given by
λ = α − 1, is not of a supercritical pitchfork type discussed
in [7]. Consequently, we should not expect the ground-state
entanglement entropy to be maximal on this bifurcation
line. In fact it has been shown in [11] that for the point
(λ,α) = (0,1) on this line the entanglement entropy is not
maximal. Nonetheless, we will establish in the following that
the bifurcation line λ = α − 1 is still associated with a line of
QPTs for the quantum Hamiltonian (1).

III. QUANTUM PHASE TRANSITIONS

A. Energy gap

We begin our analysis by considering the dimensionless
energy gap between the first excited state and the ground state,
�E/µa . Using numerical diagonalization of the Hamiltonian,
in Fig. 2 we plot the scaled gap �E/µa , as a function of the
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FIG. 2. (Color online) Dimensionless energy gap between the first
excited state and the ground state as a function of α = µa/�

√
2N

for different values of N and λ = 0. Here � = 1, µb = 0, and Ua =
Ub/4 = 0.25.

coupling α, for λ = 0 and different values of N . We observe
that as N increases the dimensionless gap decreases and the
coupling approaches the value α = 1. Figure 3 shows similar
results for fixed N = 2000 and varying λ. We observe that the
occurrence of the minima of the gap, determining the QPT, fit
well with the predicted boundary separating regions III and
IV given by λ = α − 1. This is the first piece of evidence
suggesting that a line of QPTs occurs. Note that in both graphs
the scaled gap goes to zero at a single point, rather than over
an interval, of the coupling α. This is indicative of the fact that
there is no phase where the ground state is degenerate, which
would be a requirement for the existence of a broken-symmetry
phase.

To better understand the physical meaning of the QPTs,
we depict in Fig. 4 the ground-state expectation value of
the scaled atomic number operator (solid line) and the scaled
molecular number operator (dashed line) as a function of α for
N = 2000 and λ = 0. The average value for the number
of atoms decreases while the average number of molecules
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FIG. 3. (Color online) Dimensionless energy gap between the first
excited state and the ground state as a function of α = µa/�

√
2N

for different values of λ and N = 2000. Values of �,µb and Ua ,Ub

are the same as in the previous figure. These results indicate that the
minimal values lie approximately on the line λ = α − 1.
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FIG. 4. Ground-state expectation values for the atomic number
fraction Na/N and the molecular number fraction Nb/N as a function
of α = µa/�

√
2N for λ = 0 and N = 2000. We have set � = 1,

µb = 0 and Ua = Ub/4 = 0.25. There is a sharp transition at α = 1.

increases as α increases. For α > 1, the average number of
molecules is maximal; therefore we can interpret this point
α = 1 as the threshold coupling for the formation of a predom-
inantly molecular state. This result is consistent with the clas-
sical analysis, whereby in region IV the global minima have
z = −1, which corresponds to a molecular phase.

B. Entanglement

One may consider the atom-molecule model (1) as a
bipartite system of two modes, A and B. In this case, the
standard measure of entanglement is the von Neumann entropy
of the reduced density operator of either of the modes [11]. The
state of each mode is characterized by its occupation number.
By using the fact that the total number of atoms, N, is constant,
a general state of the system can be written for even N in terms
of the Fock states by

|	〉 =
N∑

n=0

dn|2n〉|N − n〉, (10)

where dn are complex numbers.
The density operator for state (10) is given by

ρ = |	〉〈	| =
N∑

m,n=0

d∗
mdn|2m〉|N − m〉〈2n|〈N − n|. (11)

Taking the partial trace with respect to the mode B yields the
reduced density operator for the mode A,

ρA = TrB(ρ) =
N∑

n=0

|dn|2|2n〉〈2n|. (12)

The entropy of entanglement of the ground state of the system
is given by

E(ρA) = −Tr[ρA log2(ρA)] = −
N∑

n=0

|dn|2 log2(|dn|2). (13)

Using expression (13) and the energy levels obtained through
exact diagonalization of the Hamiltonian (1) we plot in Figs. 5
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FIG. 5. (Color online) Entropy of entanglement of the ground
state as a function of α = µa/�

√
2N for different values of N and

λ = 0. Here � = 1, µb = 0, and Ua = Ub/4 = 0.25.

and 6 the entropy of entanglement of the ground state as a
function of the coupling α for different values of α and N .

In Fig. 5 we confirm that the entanglement entropy is not
maximal at the threshold coupling (λ,α) = (0,1) determined
from the classical analysis, in agreement with [11]. However,
we do observe that the entanglement entropy exhibits a sudden
decrease close to α = 1 that becomes more pronounced as the
total number of atoms, N, increases. Figure 6 shows similar
results for fixed N = 2000 with varying λ. In this latter case
we see that the occurrence of the abrupt decay of the entropy
fits with the predicted boundary separating regions III and IV
given by λ = α − 1.

We also depict in Fig. 7 the first and second derivatives
of the ground-state entanglement entropy as a function of α.
Combined, Figs. 5 and 7 suggest a discontinuous behavior in
the limit N → ∞, consistent with the existence of a QPT.

C. Fidelity

Another possibility to investigate QPTs is through the
behavior of the fidelity [5,6]. This concept is widely used
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FIG. 6. (Color online) Entropy of entanglement of the ground
state as a function of α = µa/�

√
2N for different values of λ and

N = 2000. Here � = 1, µb = 0, and Ua = Ub/4 = 0.25.
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FIG. 7. (Color online) First (inset) and second derivative of the
entropy of entanglement of the ground state as a function of α =
µa/�

√
2N for N = 1000 and λ = 0. Here � = 1, µb = 0, and Ua =

Ub/4 = 0.25.

in quantum information theory [26]. The fidelity is defined as
the modulus of the wave function overlap between two states,

F(ψ,φ) = |〈ψ |φ〉|.
In Fig. 8 we present the wave function overlap between
two ground states corresponding to the external parameter
µb = 0 for one ground state and µb = γ for the other ground
state. For γ = 0 the states are indistinguishable and there
is no information about the QPT. When γ increases the
states become distinguishable and the fidelity has a minimum
at the same point where we find a QPT using the energy
gap and entanglement entropy. For larger values of γ the
distinguishability increases but the minimum value remains
in the same position.

Figure 9 depicts the ground-state fidelity |〈µb = 0|
µb = 1〉| for λ = 0, γ = 1, and varying N . With increasing N

the states become more distinguishable and the point where the
minimum occurs moves toward α = 1. Figure 10 shows similar
results for fixed N = 2000 and varying λ. In this case we
also observe that the occurrence of the minima of the fidelity,
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FIG. 8. (Color online) Fidelity of the ground state as a function
of α = µa/�

√
2N for � = 1, λ = 0, N = 1000, and Ua = Ub/4 =

0.25. We keep µb = 0 for the first state and vary µb = γ for the
second state.

063621-4



QUANTUM PHASE TRANSITIONS IN AN INTERACTING . . . PHYSICAL REVIEW A 81, 063621 (2010)

0 0.5 1 1.5
α

0.75

0.8

0.85

0.9

0.95

1

|<
 µ

b =
 0

 | 
µ b =

 1
 >

|

λ = 0
N = 500
N = 1000
N = 1500
N = 2000

0.95 0.96 0.97 0.98 0.99 1
α

0.75

0.8

0.85

0.9

0.95

1

FIG. 9. (Color online) Fidelity of the ground state as a function of
α = µa/�

√
2N for λ = 0,µb = 0 (first state), and µb = 1 (second

state) with varying N . Here � = 1 and Ua = Ub/4 = 0.25. The inset
shows the minima close to the critical point α = 1.

determining the QPT, fit well with the predicted boundary line
λ = α − 1.

IV. SUMMARY

We have used three different approaches to show that the
interacting atom-molecule boson model (1) exhibits a line of
QPTs that coincides with the boundary of the parameter-space
diagram determined by the bifurcation line λ = α − 1 of the
global minimum of the Hamiltonian in the classical analysis.
First, the dimensionless energy gap is minimal on this line
and indicates gapless excitations in the limit N → ∞. Also,
the derivatives of the entanglement entropy rapidly vary in the
vicinity of this line. Finally, the fidelity approach shows that the
states with µa = 0 and µa = γ become distinguishable on this
line, where fidelity has a minimum. The parameter γ changes
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FIG. 10. (Color online) Fidelity of the ground state as a function
of α = µa/�

√
2N for N = 2000, µb = 0 (first state), and µb = 1

(second state) and varying λ. Here � = 1 and Ua = Ub/4 = 0.25.

the distinguishability of the states but does not change the value
of the threshold coupling. All approaches indicate markedly
different behaviors when the line λ = α − 1 is crossed, giving
a strong indicator toward the existence of a line of QPTs. These
results show that the study of bifurcations in the phase space
of classical systems to identify quantum phase transitions may
be applicable at a general level, independent of the nature of
the bifurcations.
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