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Backbone and side chain 1H, 15N and 13C assignments for the 
oxidised and reduced forms of the oxidoreductase protein DsbA 
from Staphylococcus aureus	  
 
Martin L. Williams, David K. Chalmers, Jennifer L. Martin and Martin J. Scanlon. 
 
Biological context 
 
Thiol-disulfide oxidoreductase (TDOR) enzymes are the principal catalysts of disulfide bond formation 
during the post-translational phase of extracytoplasmic protein synthesis in prokaryotes.  The structure 
of the prototype enzyme in this class, DsbA from E. coli, has been solved and its catalytic mechanisms 
studied extensively (Guddat et al. 1998; Martin et al. 1993).  The structures of DsbA homologues from 
other Gram-negative bacteria including Vibrio cholerae (Hu et al. 1997, Horne et al. 2007), Neisseria 
meningitidis (Vivian et al. 2008), Wolbachia pipientis (Kurz et al. 2008) and Xylella fastidiosa (Rinaldi 
et al. 2009) have also been determined, and DsbA enzymes of Gram-negative bacteria have been 
implicated in functional aspects including motility and expression of virulence factors (Kadokura et al. 
2003). 
 
Homologues of DsbA have also been identified in a smaller range of Gram-positive bacteria, including 
B. subtilis (Meima et al. 2002) and S. aureus (Dumoulin et al. 2005), however the role of Dsb enzymes 
in the process of disulfide bond formation in Gram-positive bacteria remains unresolved.  Indeed, 
natural substrates of Gram-positive TDORs are yet to be conclusively identified, although 
complementation studies have demonstrated that S. aureus DsbA (SaDsbA) can restore functionality to 
bdb- B subtilis mutants (Kouwen et al. 2007).  Of the Dsb enzymes isolated from Gram-positive 
bacteria, only the oxidised form of SaDsbA has been crystallised and its structure solved (Heras et al. 
2007, Heras et al. 2008).  The monomeric 21 kDa enzyme is a membrane-bound lipoprotein (Dumoulin 
et al. 2005); however, the structure of the soluble SaDsbA enzyme lacking the N-terminal membrane 
anchor is very similar to the Gram-negative DsbAs, consisting of a thioredoxin domain with an inserted 
α-helical domain.  In common with all DsbA enzymes so far identified, SaDsbA possesses two key 
features. The first is the strictly conserved catalytic motif of two cysteines separated by two other 
amino acids (CxxC) located on the first α-helix and the second is a cis-Proline residue that in the Gram-
negative DsbA enzymes has been implicated in substrate recognition and binding.  SaDsbA has a 
strong oxidative redox potential of -131 mV, similar to Gram-negative DsbAs, but differs in subtle but 
significant respects from the prototypical E. coli DsbA (EcDsbA) with which it shares 15% sequence 
homology. Firstly, a hydrophobic groove located in the thioredoxin domain, below the active site of 
EcDsbA, is shallower and significantly truncated in SaDsbA, and secondly it lacks an adjacent 
hydrophobic patch that has been implicated in substrate binding to EcDsbA (Nakamoto and Bardwell 
2004).  Additionally, the oxidised and reduced forms of SaDsbA have been found to be energetically 
equivalent (Heras et al. 2008) in contrast to the Gram-negative DsbA enzymes where the reduced form 
of the protein has been demonstrated to be more thermodynamically stable in EcDsbA (Zapun et al. 
1993) and VcDsbA (Horne et al. 2007).  
 
Previous studies on VcDsbA have examined the dynamics of the oxidised and reduced forms of the 
enzyme through measurement of NMR relaxation data, in efforts to elucidate the significance of inter-
domain movement for catalytic activity (Horne et al. 2007).  Our current study aims to extend that 
approach to the low-GC Gram-positive bacteria, of which S. aureus is a prominent example, and so we 
report here the near-complete backbone and side chain assignments for the oxidised and reduced forms 
of SaDsbA  
 
Methods and Experiments 
 
SaDsbA was expressed in E. coli BL21(DE3)/pLysS, in uniformly 15N isotope-labelled form by 
Autoinduction (Studier 2005) and in 15N/13C isotope-labelled form by induction with IPTG (1 mM) 
according to the method of Marley et al. (2001).  In each case, recombinant protein bearing a C-
terminal hexahistidine tag was purified by nickel-chelate affinity chromatography using a HisTrap HP 
5mL column (GE Healthcare, Piscataway, NJ, USA) followed by ion-exchange chromatography using 
a Mono S 5/50GL column (GE Healthcare).  After purification, SaDsbA was chemically oxidised using 
copper phenanthroline (1.5 mM) or reduced with dithiothreitol (100-fold excess). Copper 



phenanthroline and DTT were removed using a HiPrep 16/10 Desalting column (GE Healthcare).  
Samples for NMR analysis were concentrated using Amicon Ultra centrifugal filtration units with 
10kDa cutoff (Millipore, Bellerica, MA, USA), before addition of 10% 2H2O to give a final protein 
concentration of approximately 240uM.  The buffer used throughout purification and acquisition of 
NMR spectra was 10mM HEPES, 50mM NaCl, pH 6.8. 
 
NMR data were acquired at 318K with a Varian INOVA 600MHz spectrometer equipped with a 
cryogenically cooled probe.  Data were processed using NMRPipe (Delaglio et al. 1995) and analysed 
in SPARKY.  1H-15N HSQC and triple resonance HNCACB, CBCA(CO)NH, HNCO and HNCACO 
experiments (Bax and Grzesiek 1993) yielded data for backbone sequential assignment.  Side-chain 
assignments were made using 1H-13C HSQC, HBHA(CO)NH, C(CO)NH-TOCSY, HCCH-TOCSY and 
1H-15N-NOESY experiments.  Side-chain aromatic delta and epsilon proton assignments were assisted 
by reference to (HB)CB(CGCD)HD and (HB)CB(CGCDCE)HE experiments (Yamazaki et al. 1993).  
Additional 1H-15N HSQC, CBCA(CO)NH and HNCACB spectra were obtained for the oxidised form 
of SaDsbA at 298K with a Bruker Avance 800MHz spectrometer equipped with TCI cryoprobe. 
 
Assignments and Data Deposition 
 
The expressed protein consisted of 180 residues plus a C-terminal His-tag, which was not assigned in 
this analysis.  Backbone amide resonance assignments were determined for 92% of non-proline 
residues in both oxidised and reduced forms.  Figure 1 presents 1H-15N HSQC spectra of oxidised and 
reduced SaDsbA, illustrating representative backbone resonance assignments.  The first eight residues 
from the N-terminus could not be assigned due to weak 1H-15N HSQC signals. Residues K128 and 
130KDS132, constituting a loop at the intersection of the helical domain and the thioredoxin domains, 
also could not be assigned.  This loop was also unassigned in VcDsbA, the homologous DsbA enzyme 
in V. cholerae (Horne and Scanlon 2007).  Of the fourteen expected 1H-15N HSQC peak pairs 
corresponding to side-chain amides of glutamines and asparagines, ten pairs and two individual peaks 
could be observed in the spectrum.  Of these, seven were assigned by reference to the 1H-15N NOESY 
spectrum.   
 
Assignments have been made for over 80% of all aliphatic side-chain carbons and protons, and 
aromatic delta and epsilon protons in tyrosine and phenylalanine residues.   
 
The unique upfield 1HN chemical shift of Q94 (3.51 ppm) and the upfield 1Hα shift of Q93 (2.23 ppm) 
are likely due to ring current effects exerted by W100, as depicted in Figure 2.  These effects were 
corroborated by ab initio calculation of isotropic shielding factors for residues Q93 and Q94 in the 
presence and absence of W100, using the Jaguar package of Maestro at the 6-31G** basis set level 
(Schrödinger, 2007).  These calculations yielded significant differences in Isotropic Shielding factors 
for the chemical shifts of those protons in the presence and absence of the proximal indole ring system 
of W100 (data not shown). 
 
The weighted chemical shift differences between the oxidised and reduced forms of the enzyme are 
depicted for backbone amide nitrogens and protons in Figure 3.  Overall, the differences in chemical 
shifts between the oxidised and reduced forms are small, the most significant being localised close to 
the direct region of the catalytic site. 
 
The chemical shifts of oxidised and reduced SaDsbA have been deposited in the BioMagResBank 
under the accession numbers 16329 and 16330. 
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Fig 1. [15N,1H]-HSQC Spectra of (a) oxidised and (b) reduced forms of SaDsbA.  Spectra were 
acquired at 600MHz and 318K.  Sweep widths in ω1 were 17ppm for oxidised and 22ppm for reduced 
proteins, hence spectra differ in folding parameters. 



 

 
 
 
 
Fig 2. Relative orientations of Trp residue W100 (olive) with α-proton of Gln residue Q93 (light green) 
and amide proton of Gln residue Q94 (dark green). The associated ring-current effects result in the 
strong upfield 1HN chemical shift of Q94 (3.51 ppm) and the significant upfield 1Hα shift of Q93 (2.23 
ppm). Diagram based on published X-ray crystal structure 3BCI (Heras et al. 2008). 
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Fig 3. Amide chemical shift differences between oxidised and reduced forms of SaDsbA for residues 
10 - 179, calculated by the formula Δδ = √(0.154δN

2  + δH
2). 


