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Jahn-Teller instability in dissipative quantum systems
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We consider the steady states of a harmonic oscillator coupled so strongly to a two-level system (a qubit)
that the rotating wave approximation cannot be made. The Hamiltonian version of this model is known as the
E ⊗ β Jahn-Teller model. The semiclassical version of this system exhibits a fixed-point bifurcation, which in
the quantum model leads to a ground state with substantial entanglement between the oscillator and the qubit.
We show that the dynamical bifurcation survives in a dissipative quantum description of the system, amidst
an even richer bifurcation structure. We propose an experimental implementation of this model based on a
superconducting cavity: a superconducting junction in the central conductor of a coplanar waveguide.
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I. INTRODUCTION

Circuit quantum electrodynamics [1] has emerged in the
past few years as a new experimental context for the study
of strongly coupled quantum systems. A superconducting
coplanar microwave cavity can support very strong electric
fields with very low dissipation. The electric field due to a
single photon can be as large as 0.2 V/m, and cavity quality
factors as high as 106 have been obtained [2]. Large electric
dipoles, in the form of superconducting junction elements,
can be placed into the gap between the central conductor and
the ground plane and coupled into the cavity field, which is
treated as a simple harmonic oscillator. The coupling strength
can now be made far larger than equivalent experiments in
atomic physics, and may yet be made still larger [1]. In this
situation we cannot make the rotating wave approximation that
is standard in quantum optics. The interaction Hamiltonian that
describes this system is known as the E ⊗ β Jahn-Teller model.
In the case of superconducting qubits, dissipation cannot be
neglected. In this paper we make a detailed study of the effect
of dissipation on the Jahn-Teller instability both in the classical
and the quantum description.

The E ⊗ β Jahn-Teller model describes the interaction
between a single harmonic oscillator and a two-level system,
or qubit [3]. There is a critical coupling strength at which
the nature of the ground state undergoes a qualitative change
reflecting a bifurcation in a fixed point of the corresponding
classical model [4]. As the coupling strength increases, the
entanglement (in the ground state) between the qubit and the
oscillator increases monotonically. Starting from zero coupling
strength and increasing to very large coupling, the ground
states change from

|0〉c|0〉q → |α〉c|+〉q + |−α〉c|−〉q, (1)

where |0〉c and |0〉q are the bare cavity oscillator and qubit
ground states and |±α〉c is an oscillator coherent state centered
at α, which increases with the coupling strength, while |±〉q
are orthogonal qubit states. The rate of change of entanglement
as a function of the coupling strength is greatest for coupling
strengths near the critical coupling strength for a fixed-point
bifurcation in the corresponding semiclassical description [4].
This has significant implications for the ability to reach the
zero photon state in the cavity by cooling. If the bifurcation

were to survive the inclusion of damping (and we show it
does) one could engineer a system with a coupling strength
above the critical value so that cooling the device would reach
a steady state in which the number of photons in the field was
|α|2 and not zero, as it would be if the coupling was weak,
while the qubit would be measured to be in a totally mixed
state for α only a little larger than unity. As real systems have
finite damping, no matter how small, it is our objective here to
determine to what extent the ground-state bifurcation exhibited
in the conservative system is manifest in the damped system
as a bifurcation of the steady state and, further, to specify
experimental scenarios in circuit QED in which it may be
observed.

The paper is structured as follows. In Sec. II we present a
detailed analysis of the fixed-point structure of the dissipative
Jahn-Teller E ⊗ β model in a semiclassical description. We
include both dissipation of the oscillator and the two-level
system. Surprisingly, despite the large number of parameters in
the mode, the bifurcation structure is shown to depend on only
three dimensionless independent parameters. In Sec. III we
consider the quantum version of the model in which dissipation
is described using a Markov master equation of the oscillator
and the two-level system. We numerically determine the steady
state of the system. After tracing out the two-level system,
we construct the Q function for the oscillator. We then show
that as the control parameters are varied through the values
at which the semiclassical model shows bifurcations the Q

function changes from being single-peaked to double-peaked
with support on the semiclassical fixed points. In Sec. IV we
present a physical system in circuit quantum electrodynamics
that could be used to implement the dissipative Jahn-Teller
model. We suggest a number of key experimental signatures
of the bifurcation. Finally, in Sec. V we summarize our results
and suggest new directions for further work.

II. THE DISSIPATIVE E ⊗ β JAHN-TELLER MODEL

We consider the case of a two-level system coupled
to a simple harmonic oscillator. The coupling is linear in
the oscillator displacement and represents a state-dependent
constant force acting on the oscillator. The two-level system
Hamiltonian includes a term which mixes the eigenstates of
the conditional displacement. In order to model a realistic
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device we also need to include dissipation of both the oscillator
and the two-level system. The oscillator is damped into a
zero-temperature heat bath with an amplitude decay rate of
κ . The two-level system is assumed to undergo spontaneous
emission at rate γ and phase decay at rate Γ. The irreversible
dynamics due to these processes will be described by a
master equation for weak damping (and with the rotating
wave approximation for the system-bath coupling), for density
matrix ρ of the total resonator and qubit system. This master
equation is

dρ

dt
= − i

h̄
[H, ρ] + κ(2aρa† − a†aρ − ρa†a)

+ γ

2
(2σ−x

ρσ+x
− σ+x

σ−x
ρ − ρσ+x

σ−x
)

− Γ
8

[σx, [σx, ρ]], (2)

where

H = h̄ωa†a + h̄∆

2
σx + h̄ε

2
σz + h̄λ(a + a†)σz + h̄η(a + a†)

(3)

and

σ±x
= 1

2 (σz ∓ iσy), (4)

where σx etc. are Pauli matrices; ∆ and ε give the strength of
the transverse and bias fields on the qubit; λ is the strength
of the coupling between the oscillator and the qubit; and
η is a coherent driving of the oscillator. The frequency of
the harmonic oscillator is ω. In Sec. IV we will mention
a physical implementation of this Hamiltonian based on a
circuit quantum electrodynamic implementation in which a
qubit based on a Josephson tunneling device is coupled to
a superconducting microwave resonator, realizing the two-
level system and oscillator, respectively. In this section will we
keep the oscillator and qubit and their Hamiltonian coupling
constants arbitrary.

Note that we have modeled dissipation of the qubit as
spontaneous emission in the eigenbasis of σx . This is based
on the assumption that the free Hamiltonian of the qubit is
simply proportional to σx . This makes our model consistent
with the Hamiltonian model discussed in [4], which has
no dissipation and ε = 0, and ensures that, for this limit,
the fixed points of the two models coincide. The coupling
between the qubit and the oscillator is modeled by the term
proportional to λ and represents a state-dependent force acting
on the oscillator. Alternatively, we can think of this term as
describing a dependance of the energy eigenstates of the qubit
on an oscillator degree of freedom, as occurs in the original
Jahn-Teller model in which the electronic energy levels are
dependent on one or more relative nuclear coordinate. Finally,
we have added an independent resonant force acting on the
oscillator degree of freedom through the term proportional to
η. In the circuit QED realization this would represent a driving
voltage applied to the coplanar cavity.

In the absence of dissipation, the semiclassical equations
of motion that follow for the Hamiltonian have a fixed-point
pitch-fork bifurcation [4] (for bifurcation types see [5]) at

a critical coupling strength of λcr =
√
∆ω

2 . A single stable

elliptic fixed point (for fixed point types see [5]), with zero
cavity field amplitude below the bifurcation, changes stability
to give two new elliptic fixed points with equal and opposite
cavity field amplitude. When dissipation is included we expect
that a similar bifurcation will occur but in this case the
fixed points will be zero-dimensional attractors (i.e., fixed
points attracting trajectories passing through nearby regions
in phase space). We can study this bifurcation by deriving the
semiclassical equations of motion as follows. Using the master
equation we construct moment equations for the expectation
of each of the two-level system operators (σx , σy , and σz) and
for the quadrature phase field operators defined by

X = 1
2 (a + a†),

(5)
Y = −i 1

2 (a − a†),

which satisfy the commutation relations [X, Y ] = i/2. The
equations of motion for the expectations of the five quantities
of interest are found to be

d〈X〉
dt

= ω〈Y 〉 − κ〈X〉,
d〈Y 〉
dt

= −η − λ〈σz〉 − ω〈X〉 − κ〈Y 〉,
d〈σx〉

dt
= −ε〈σy〉 − 4λ〈Xσy〉 − γ (1 + 〈σx〉), (6)

d〈σy〉
dt

= −∆〈σz〉 + ε〈σx〉 + 4λ〈Xσx〉 − γ + Γ
2

〈σy〉,
d〈σz〉
dt

= ∆〈σy〉 − γ + Γ
2

〈σz〉.
The equations of motion for the first-order moments couple
to the second-order moments, which in turn couple to infinite
orders. We define the semiclassical equations by factorizing
these second-order moments to get a closed system of
equations. Specifically, this means that we make the two
assumptions that 〈Xσx〉 = 〈X〉〈σx〉 and 〈Xσy〉 = 〈X〉〈σy〉,
or equivalently that the covariances 〈X, σx〉 � 〈X〉〈σx〉 and
〈X, σy〉 � 〈X〉〈σy〉. [An interesting special case arises when
∆ = 0. Then equations of motion for 〈X〉, 〈Y 〉, and 〈σz〉 are
seen to decouple from those for 〈σx〉 and 〈σy〉 and consequently
higher order moments. This decoupled system of 〈X〉, 〈Y 〉,
and 〈σz〉, can be exactly solved. In fact, this can also be seen
from the Hamiltonian (3), where ∆ is the term producing the
coupling between the displaced oscillators.] After factorizing
the second-order moments, the semiclassical variables are
defined by

〈X〉 �→ x,

〈Y 〉 �→ y,

〈σx〉 �→ Lx, (7)

〈σy〉 �→ Ly,

〈σz〉 �→ Lz.

These yield the semiclassical equations of motion (where a dot
indicates a time derivative)

ẋ = ωy − κx,

ẏ = −η − λLz − ωx − κy,

L̇x = −εLy − 4λxLy − γ (1 + Lx),
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L̇y = −∆Lz + εLx + 4λxLx − γ + Γ
2

Ly,

L̇z = ∆Ly − γ + Γ
2

Lz, (8)

whose steady states must satisfy the Bloch sphere constraints,
which depend on the presence or absence of qubit dissipation.
If there is no qubit dissipation, the steady states lie on the
Bloch sphere, whereas with the presence of qubit dissipation
they may lie inside. Thus we have that

L2
x + L2

y + L2
z = 1, if γ = Γ = 0,

(9)
L2

x + L2
y + L2

z � 1, if γ > 0 or Γ > 0.

To clarify the meaning of these Bloch sphere constraints,
we raise the question of how one should compare quantum
stationary states and classical fixed points in Hamiltonian
systems. Above the bifurcation in the dissipation-free E ⊗ β

model, the ground state of the quantum Hamiltonian is the
entangled state in Eq. (1), while the classical stable fixed points
bifurcate into a pair of fixed points [explicitly shown later in
(18)]. The entangled quantum ground state has support on both
the fixed points.

The right way to compare the quantum steady-state phase
space to the classical description is to consider a classical
distribution of points in the classical phase space. Such a
distribution is double-peaked on the pair of fixed points
but nonetheless has support entirely on the Bloch sphere.
However, if we now compute the average of Lx , Ly , Lz for
this distribution, we find that the average values lie inside
the Bloch sphere in the same way that the corresponding
averages do for the entangled quantum state. Of course the
classical distributions, while they do reflect the correlations
implicit in the fixed-point structure above the bifurcation, are
not entangled.

A. Semiclassical fixed-points locations

The semiclassical equations of motion (8) have fixed points
(ẋ = ẏ = L̇x = L̇y = L̇z = 0) that satisfy the Bloch sphere
constraints (9). These solutions are markedly qualitatively
different depending on the presence or absence of qubit
dissipation. In fact, there are three qualitatively different semi-
classical steady states: no qubit dissipation; qubit dissipation
consisting of only dephasing (no spontaneous emission); and
qubit dissipation with spontaneous emission. The possible
presence of oscillator or cavity decay is included in each
of the three categories. The coupling positivities and phases
ω,∆, λ > 0, κ, γ,Γ � 0, and ε, η ∈ R will be assumed for all
of the following semiclassical analysis.

We also define several convenient dimensionless parame-
ters: the bias or driving parameter ξ ; a parameter α dependent
on the coupling λ; a parameter β dependent on the magnitude
of the qubit dissipation parameters; a parameter δ dependent
on the ratio between the two different types of qubit dissi-
pation (spontaneous emission γ and dephasing Γ). We also
define two combinations of these parameters: µ and ν. The
previous assumptions about coupling positivities imply similar
assumptions about these parameters (α,µ > 0 and β, δ, ν � 1
and ξ ∈ R). We define the dimensionless parameters (noting

that this α is not a coherent state amplitude)

ξ = −η

λ
+ ε(ω2 + κ2)

4λ2ω
, (10)

α = 4λ2ω

∆(ω2 + κ2)
, β = 1 +

(
γ + Γ

2∆

)2

, δ = 1 + Γ
γ

,

(11)

µ = δα =
4
(

1 + Γ
γ

)
λ2ω

∆(ω2 + κ2)
,

ν = δβ =
(

1 + Γ
γ

) (
1 +

(
γ + Γ

2∆

)2
)

.

(12)

We must also consider the stability of the fixed points. The
five semiclassical variables can be considered as a vector x,
such that about a fixed point x0 we have

δx = x − x0

= [
x − x0, y − y0, Lx − L0

x, Ly − L0
y, Lz − L0

z

]T
,

(13)
d

dt
δx = Mδx, (14)

where the Jacobian matrix M is

M =

⎡
⎢⎢⎢⎢⎣

−κ ω 0 0 0
−ω −κ 0 0 −λ

−4λL0
y 0 −γ −ε − 4λx0 0

4λL0
x 0 ε + 4λx0 − γ+Γ

2 −∆
0 0 0 ∆ − γ+Γ

2

⎤
⎥⎥⎥⎥⎦ .

(15)

Stability of the fixed point requires all the eigenvalues of the
Jacobian to have a real part less than or equal to zero [5]. A
real part of exactly zero indicates marginal stability in that
parameter direction, where the fixed point is neither attractive
nor repulsive. Real parts strictly less than zero are attracting
fixed points which draw in nearby regions in phase space. In
general stability depends on many more coupling parameter
combinations than those which define the fixed points. Thus,
the stability is generally calculated numerically for fixed points
with specific values of all couplings.

In particular, to investigate the change in stability over a
large region of parameter space requires random sampling.
Where an analytic method is not possible to check the stability
of the fixed points we discuss in the following a numerical
method. Specifically, random samples are taken from a log-
arithmic distribution in the bounded eight-dimensional space
spanned by ω,∆, ε, λ, η, κ , γ , andΓ, where each parameter can
take a value between 10−4 and 104. A description of a fixed
point as “mostly” stable or unstable with this method will
be used to indicate that the vast majority but not all (>99%
but <100%) of the random samples taken yielded stable or
unstable fixed points, respectively.

1. No qubit dissipation

When qubit dissipation is neglected (γ = Γ = 0, κ � 0),
there are three classes of semiclassical steady states. Two of
these classes require ξ = 0; and the other requires ξ 
= 0.
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Class 1: For ξ = 0 there are two fixed points that occur for
all parameter values,

x0 = − ηω

ω2 + κ2
= − ε

4λ
,

y0 = − κη

ω2 + κ2
= − κε

4λω
,

L0
x = ±1, (16)

L0
y = 0,

L0
z = 0.

The fixed point with L0
x = +1 is unstable for most coupling

values (as determined by the numerical method described),
while the fixed point with L0

x = −1 is stable for most coupling
values for α < 1 and mostly unstable for α > 1.

Class 2: Also for ξ = 0 there are two fixed points that only
occur for α > 1 (note that for α = 1 this second class of fixed
points is also the first class just described),

x0 = − ηω

ω2 + κ2
∓ λω

ω2 + κ2

√
1 − 1

α2

= − ε

4λ
∓ λω

ω2 + κ2

√
1 − 1

α2
,

y0 = − κη

ω2 + κ2
∓ κλ

ω2 + κ2

√
1 − 1

α2

= − κε

4λω
∓ κλ

ω2 + κ2

√
1 − 1

α2
,

(17)

L0
x = − 1

α
,

L0
y = 0,

L0
z = ±

√
1 − 1

α2
.

These fixed points can be stable or unstable depending on the
coupling values (for example, they are mostly stable for κ = 0
in our numerical determination). The Lz components of the
first two classes of fixed points are plotted in Fig. 1.

Class 3: For ξ 
= 0 there are up to four real fixed points
dependent on a quartic equation,

x0 = − ηω

ω2 + κ2
− λω

ω2 + κ2
L0

z,

y0 = − κη

ω2 + κ2
− κλ

ω2 + κ2
L0

z,

L0
x = − 1

α

L0
z

L0
z − ξ

, (18)

L0
y = 0,

L0
z = L0

z,

where L0
z satisfies the quartic equation [from (9)](

L0
z

)2 + α2
[(

L0
z

)2 − 1
](

L0
z − ξ

)2 = 0. (19)

Note that for ξ 
= 0, L0
z = ξ is never a solution to this equation

and so the pole in this expression for L0
x is never encountered.

0 1 2 3 4 5
− 1.0

− 0.5

0.0

0.5

1.0

α

L
z

FIG. 1. (Color online) Lz component of the semiclassical steady
states as a function of the parameter α for no spontaneous emission
or dephasing of the two-level system (γ = Γ = 0) and no driving
(ξ = 0). There are two solutions along the line L0

z = 0, one of which
is stable for most coupling values (as determined by the numerical
method described in the text) for α < 1; otherwise, these L0

z = 0
solutions are mostly unstable. The two new solutions which appear
for α > 1 have Lz components L0

z = ±
√

1 − 1
α2 and can be stable

or unstable depending on the coupling values (for example, they are
stable for most coupling values when there is no oscillator decay).
Hence, depending on the values of the coupling parameters there is
often a supercritical pitchfork bifurcation at α = 1. The colors in the
diagram illustrate a typical case: The solid green lines are stable fixed
points, while the dotted red line is unstable.

The Lz component of this third class of fixed
points is plotted in Fig. 2. The bifurcations of
these fixed points are shown in the bifurcation
diagram of Fig. 3. The figure illustrates the contour
α4ξ 2[(ξ 2 − 1)3α6 + 3(ξ 4 + 7ξ 2 + 1)α4 + 3(ξ 2 − 1)α2 + 1] =
0, along which the bifurcations occur. This analytical
expression follows from the discriminant of the quartic
equation (19).

2. Dephasing-only qubit dissipation

When the qubit dissipation is considered to consist of only
phase decay (γ = 0, Γ > 0, κ � 0), there are two classes of
semiclassical steady states. One of these classes requires ξ =
0; and the other requires ξ 
= 0.

Class 1: For ξ = 0 there are infinite fixed points that occur
for all parameter values,

x0 = − ηω

ω2 + κ2
= − ε

4λ
,

y0 = − κη

ω2 + κ2
= − κε

4λω
,

L0
x = L0

x, (20)

L0
y = 0,

L0
z = 0,
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FIG. 2. (Color online) Lz component of the semiclassical steady
states as a function of the parameters α and ξ for no spontaneous
emission or dephasing of the two-level system (γ = Γ = 0) with
driving (ξ 
= 0). There are up to four solutions where the Lz

components are the real roots L0
z of the quartic equation (L0

z)2 +
α2[(L0

z)2 − 1](L0
z − ξ )2 = 0. It is clear that varying either α or ξ can

take the solutions through bifurcations. This is shown explicitly in
the bifurcation diagram of Fig. 3.

where (L0
x)2 � 1. These fixed points can be stable or un-

stable depending on the coupling values and the choice
of L0

x .

3 solutions2 solutions

3 solutions

3 solutions
4 solutions

4 solutions

1 solution

2 solutions

1 solution

0 1 2 3 4 5
− 1.0

− 0.5

0.0

0.5

1.0

α

ξ

FIG. 3. (Color online) Bifurcation diagram of the semiclassical
steady states as a function of the parameters α and ξ for no
spontaneous emission or dephasing of the two-level system (γ = Γ =
0) with driving (ξ 
= 0). The extra dimension shows that an increase
in the magnitude of the driving parameter ξ means that a stronger
coupling between the oscillator and two-level system is required to
cross the bifurcation. The Lz components of the fixed points are
illustrated in Fig. 2 and the bifurcations are clearly visible. Also, the
ξ = 0 line correctly reflects the bifurcation shown for the no-driving
case in figure 1.

Class 2: For ξ 
= 0 there is one (trivial) fixed point that
occurs for all parameter values,

x0 = − ηω

ω2 + κ2
,

y0 = − κη

ω2 + κ2
,

L0
x = 0, (21)

L0
y = 0,

L0
z = 0.

This fixed point is stable for all coupling values.

3. General qubit dissipation

The general case of qubit dissipation here means with spon-
taneous emission present (γ > 0,Γ � 0, κ � 0), in which
case there are three classes of semiclassical steady states. Two
of these classes require ξ = 0; and the other requires ξ 
= 0.

Class 1: For ξ = 0 there is one fixed point that occurs for
all parameter values,

x0 = − ηω

ω2 + κ2
= − ε

4λ
,

y0 = − κη

ω2 + κ2
= − κε

4λω
,

L0
x = −1, (22)

L0
y = 0,

L0
z = 0.

This fixed point is always stable for µ < ν and always unstable
for µ > ν.

Class 2: Also for ξ = 0 there are two fixed points that only
occur for α > β (note that for α = β this second class of fixed
points is also the first class just described),

x0 = − ηω

ω2 + κ2
∓

√
2

λω

ω2 + κ2

√
α − β

δα2

= − ε

4λ
∓

√
2

λω

ω2 + κ2

√
α − β

δα2
,

y0 = − κη

ω2 + κ2
∓

√
2

κλ

ω2 + κ2

√
α − β

δα2

= − κε

4λω
∓

√
2

κλ

ω2 + κ2

√
α − β

δα2
,

(23)

L0
x = −β

α
,

L0
y = ±

√
2
√

β − 1

√
α − β

δα2
,

L0
z = ±

√
2

√
α − β

δα2
.

These fixed points can be stable or unstable depending on the
coupling values.

The Lz components of the first two classes of fixed points
are plotted in Fig. 4. The bifurcations of these fixed points are
shown in the bifurcation diagram of Fig. 5.
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FIG. 4. (Color online) Lz component of the semiclassical steady
states as a function of the parameters µ and ν when spontaneous
emission is present (γ > 0) but there is no driving (ξ = 0). There
is one solution L0

z = 0 which is always stable for µ < ν and
always unstable for µ > ν. The two new solutions which appear

for µ > ν have Lz components L0
z = ±√

2
√

α−β

δα2 and can be stable
or unstable depending on the coupling values. Hence there is a
pitchfork bifurcation along the line µ = ν which is often supercritical
depending on the coupling parameters. The colors in the diagram
illustrate a typical case: The solid green areas are stable fixed points,
while the checkered red area is unstable. This bifurcation is shown
explicitly in the bifurcation diagram of Fig. 5.

Class 3: For ξ 
= 0 there are up to three real fixed points
dependent on a cubic equation,

x0 = − ηω

ω2 + κ2
− λω

ω2 + κ2
L0

z,

y0 = − κη

ω2 + κ2
− κλ

ω2 + κ2
L0

z,

L0
x = −β

α

L0
z

L0
z − ξ

, (24)

L0
y =

√
β − 1 L0

z,

L0
z = L0

z,

where L0
z satisfies the cubic equation

1
2µ2L0

z

(
L0

z − ξ
)2 − µ

(
L0

z − ξ
) + νL0

z = 0. (25)

Note that for ξ 
= 0, L0
z = ξ is never a solution to this equation

and so the pole in this expression for L0
x is never encountered.

If we consider the third class of fixed points at the forbidden
point ξ = 0, this third class of fixed points gives the first
(except for L0

x) and second classes of fixed points; hence
it generalizes the first two classes in a sense. The Lz component
of this third class of fixed points is a function of the three
parameters µ, ν, and ξ . The bifurcations of these fixed points
are shown in the bifurcation diagram of Fig. 6. The figure
illustrates the contour −2νξ 4µ6 + (µ2 − 20νµ − 8ν2)ξ 2µ4 +

3 solutions

1 solution
1 solution

0 1 2 3 4 5
1

2

3

4

5

6

µ

ν

FIG. 5. (Color online) Bifurcation diagram of the semiclassical
steady states as a function of the parameters µ and ν when
spontaneous emission is present (γ > 0) but there is no driving
(ξ = 0). The bifurcations occur along the line µ = ν. The extra
dimension shows that an increase in the qubit dissipation parameter
ν means that a stronger coupling between the oscillator and two-level
system is required to cross the bifurcation. The Lz components of
the fixed points are illustrated in Fig. 4 and the bifurcation is clearly
visible.

8(µ − ν)3µ2 = 0, along which the bifurcations occur. This
analytical expression follows from the discriminant of the
cubic equation (25).

FIG. 6. (Color online) Bifurcation diagram of the semiclassical
steady states as a function of the parameters µ and ν when
spontaneous emission is present (γ > 0) with driving (ξ 
= 0). The
extra dimensions show that an increase in either the qubit dissipation
parameter ν or the magnitude of the driving parameter ξ means that
a stronger coupling between the oscillator and two-level system is
required to cross the bifurcation. Note that the ξ = 0 cross section cor-
rectly reflects the bifurcation shown for the no-driving case in Fig. 5.
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III. QUANTUM STEADY STATES

Knowing the coupling parameter values that result in
a semiclassical bifurcation of the steady state solutions,
we wish to investigate whether there is a correspondence
with the full quantum version. We do this numerically and
observe the steady-state phase space of the oscillator as we
change the coupling parameters to move through the semiclas-
sical fixed-point bifurcation. It is hoped that our semiclassical
analysis of the fixed points can be numerically justified by
observing a signature of the semiclassical bifurcation.

Here, we use the quantum optics MATLAB toolbox [6] and
pass through two semiclassical bifurcations: one by varying
the oscillator-qubit coupling (λ) and another by varying the
spontaneous emission (γ ). By holding all other couplings
equal and ignoring dephasing, varying these two parameters
directly corresponds to varying the parameters µ and ν, re-
spectively. Specifically, we set ω = 0.01, ∆ = 0.1, κ = 0.001,
Γ = 0, η = 0, and ε = 0. Thus the three parameters on which
the semiclassical bifurcation depends become µ = 3960.4λ2,
ν = 1 + 25γ 2, and ξ = 0. The contour in the bifurcation
diagram of Fig. 5 can thus be redrawn as a function of λ and γ .
This is done in Fig. 7. The reason for the scale of the coupling
values being small is a limitation of our computing power with
this numerical method. The oscillator Hilbert space must be
truncated to be spanned by a finite number of Fock (number)
states. The effect of this is that unless the oscillator state is close
to the origin in phase space then the quantum steady state will
not be accurately approximated. These coupling values yield
steady states which are well approximated in a number basis
n of up to n = 50. Significantly larger number bases become

1 solution

λ=0.0225

1 solution

γ=0.1

γ=0.001

3 solutions
(2 stable,
 1 unstable)

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035
0.0

0.1

0.2

0.3

0.4

λ [s−1]

γ
[s

−1
]

FIG. 7. (Color online) Bifurcation diagram of the semiclassical
steady states as a function of the oscillator-qubit coupling parameter
(λ) and the qubit spontaneous emission parameter (γ ) for the
parameters used to numerically calculate the Q functions: The first
series of Q functions in Fig. 8 is for λ increasing along the lower
horizontal dotted red line γ = 0.001; the second series of Q functions
in Fig. 9 is for λ increasing along the upper horizontal dotted red line
γ = 0.1; and the third series of Q functions in Fig. 10 is for γ

increasing along the vertical dotted red line λ = 0.0225. The other
couplings used in the plot above are ω = 0.01; ∆ = 0.1; κ = 0.001;
and Γ = η = ε = 0.

computationally infeasible on our available hardware. Instead,
the solution we have adopted is to appropriately scale the
problem such that the bifurcation is close to the origin.

The MATLAB quantum optics toolbox gives us a steady-
state density matrix for the oscillator-qubit system. From this
we can view the steady-state phase space of the oscillator by
plotting the Q function for the corresponding reduced density
operator of the oscillator. This is defined [7] as the matrix
elements of the reduced density operator for the oscillator in
the coherent state basis, Q(α) = tr(ρ|α〉〈α|), where |α〉 is a
oscillator coherent state (and is not to be confused with the
dimensionless parameter α determining the position of the
semiclassical bifurcation).

Three series of Q functions are plotted by varying λ for
two differing fixed values of γ and varying γ for a fixed
value of λ. These variations constitute a linear sweep through
γ and λ, respectively. The results of these linear sweeps are
captured representatively in four data points surrounding the
semiclassical bifurcation. These are shown in Figs. 8, 9, and
10, where α = x + iy. The semiclassical bifurcation is clearly
evident in each case.

IV. PHYSICAL IMPLEMENTATIONS OF THE
JAHN-TELLER MODEL

Devoret et al. [1] have proposed a scheme to get ultrastrong
coupling between a Cooper-pair box qubit and the microwave
field of a coplanar superconducting resonator. The central
conductor of the coplanar cavity is divided into two segments
separated by a Cooper pair box (see Fig. 11). The quantum
theory of such a system begins by first writing down the
classical circuit dynamics, constructing a Lagrangian and an
associated Hamiltonian. Quantization then proceeds via the
usual canonical method. This results in an effective quantum
theory in which collective variables of direct interest to the
experimentalist couple only weakly to the microscopic degrees
of freedom, which remain as a source of dissipation and
decoherence.

Such devices have recently been demonstrated by the
Chalmers group [8]. Another proposal to reach the ultrastrong
coupling regime was recently presented by Bourassa et al. [9].
They suggest that coupling strengths λ can easily approach
several tens of percent of the resonator frequency ω.

If we introduce creation and annihilation operators of the
cavity field (the effective flux in the circuit � acts as a position,
and the effective circuit charge Q as a momentum)

� = i

√
h̄ωL

2
(a − a†),

(26)

Q =
√

h̄ωCE

2
(a + a†),

where

1

CE

= 1

C + CM

+ 1

CJ

,

(27)

ω = 1√
LCE

,

and if we consider only the bottom two energy levels for the
Josephson junction using Pauli matrices for the resulting qubit,
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FIG. 8. (Color online) Density plot of Q functions for linearly increasing λ (from 0 to 0.036) along the lower horizontal dotted red line
of Fig. 7. The Q function Q(α) is plotted for α = x + iy, such that x and y are two quadrature operators of the quantum oscillator modeling
the cavity field. The spontaneous emission is γ = 0.0001, giving a qubit dissipation parameter value of ν = 1. The semiclassical critical value
of the oscillator-qubit coupling is λc = 0.016 at the critical parameter value µc = 1. The steady-state phase space of the quantum oscillator
is seen to undergo a bifurcation which corresponds to the studied semiclassical bifurcation. The specific coupling strengths in the four plots
displayed here are λ ≈ 0, 0.01, 0.02, and 0.04, or, equivalently, µ ≈ 0, 0.64, 2.34, and 5.13.

then we can rewrite the Hamiltonian (ignoring constant energy
offsets) in the Jahn-Teller form of Eq. (3) where, following
Devoret et al. [1], the coupling is

ğ ≡ 2λ

∆
= 1√

8π

(
EC

2EJ

)1/4
√

Zvac

ZC

α−1/2, (28)

with

Zvac = 1

cε0
≈ 377�,

(29)

ZC =
√

L

C
.

Here EJ is the Josephson energy for tunneling across the
Josephson junction, and EC is the corresponding charging
energy for the Cooper-pair box.

Typically ZC = 50 �. The proposal of Bourassa et al.
[9] was based on a three-junction flux qubit. The recent
experiment of Paauw et al. [10] measured the decay time,
T1, of a three-junction flux qubit as a function of the qubit
frequency. They have a considerable range: from T1 ∼ 10−6

to 10−9 s. Typical T2 times are half of this. Taking achievable
values of T1 = 10−6 s and T2 = 0.5 × 10−6 s gives dissipation

parameters corresponding to γ = 1 MHz and Γ = 3 MHz in
Secs. III and IV. Taking EC/EJ = 200, Devoret et al. [1]
arrive at a value of λ ≈ 10∆, which is certainly well outside of
the domain of validity for the rotating wave approximation.
We thus believe this configuration offers a good chance
of designing a system with a coupling strength above the
Jahn-Teller dissipative bifurcation in circuit QED.

There is one other important issue to mention: The circuit
QED system discussed would technically include another
Hamiltonian term, the self-energy h̄EC(a + a†)2 (where a and
a† are the annihilation and creation operators of the cavity
field) proportional to the charging energy EC . The Dicke
model of quantum optics [11] has a bifurcation with the same
double-well potential structure of the E ⊗ β Jahn-Teller model
and this model was shown to bifurcate only when ignoring
the self-energy term that arises from the quadratic term in
the vector potential in the minimal coupling Hamiltonian
of quantum electrodynamics [12]. Furthermore, it has been
shown [13] that when the self-energy term is included, the
usual atom-cavity system does not develop a double-well
potential—the bifurcation does not happen regardless of the
strength of the atom-field coupling. Thus, we need to inves-
tigate whether the circuit quantum electrodynamic realization
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FIG. 9. (Color online) Density plot of Q functions for linearly increasing λ (from 0 to 0.036) along the upper horizontal dotted red line of
Fig. 7. The Q function Q(α) is plotted for α = x + iy, such that x and y are two quadrature operators of the quantum oscillator modeling the
cavity field. The spontaneous emission is γ = 0.1, giving a qubit dissipation parameter value of ν = 1.25. The semiclassical critical value of
the oscillator-qubit coupling is λc = 0.018 at the critical parameter value µc = 1.25. The steady-state phase space of the quantum oscillator
is seen to undergo a bifurcation which corresponds to the studied semiclassical bifurcation. The specific coupling strengths in the four plots
displayed here are λ ≈ 0, 0.01, 0.02, and 0.04, or, equivalently, µ ≈ 0, 0.64, 2.34, and 5.13.

of the E ⊗ β Jahn-Teller model still has a bifurcation when
the self-energy term is included.

In the case of the superconducting circuit considered, the
self-energy term arises from an often-neglected term in the
Hamiltonian HJJ of the Josephson junction

HJJ = h̄EC[n − ng0 − δng(t)]2 + h̄EJ cos θ, (30)

where n is our Cooper pair number, ng0 is the DC component
of our gate bias, and δng(t) is the AC component of the voltage
on the central conductor and is treated quantum mechanically,
δng(t) ∝ (a + a†). Expanding the squared bracket gives a
term EC(δng)2, which is the usually ignored self-energy term
h̄EC(a + a†)2. We have investigated the effect of this term
on the semiclassical bifurcations derived in Sec. II. The
semiclassical bifurcations are exactly as discussed with one
modification: The fixed points are still parametrized by three
parameters, though one of these parameters requires a slight
modification. However, in terms of these parameters, all of the
analysis including the defining cubic equation (25) still holds.
The necessary modification is the parameter µ, which for an

additional Hamiltonian term h̄[ϒ]4(a + a†)2 changes from

µ =
4
(

1 + Γ
γ

)
λ2ω

∆(ω2 + κ2)
→ µ =

4
(

1 + Γ
γ

)
λ2ω

∆(ω(ω + ϒ) + κ2)
. (31)

Thus, if the self-energy parameter ϒ is very large, the
parameter µ will remain small even for large λ and never
reach the bifurcation point. However, for this circuit QED
implementation, the self-energy, which corresponds to the
charging energy, is small relative to the frequency of the mi-
crowave resonator ω. Typical achievable values for a transmon
charge-qubit are ω ∼ 5–10 GHz and EC ∼ 0.35 GHz [14].
Thus, the effect of the self-energy is only a small shift in the
location of the semiclassical bifurcation, and there is no change
to its structure. Correspondingly, we have chosen to ignore the
term in this paper.

V. CONCLUSION

In this paper we have presented a detailed analysis of the
effect of dissipation on the dynamical bifurcation that occurs
when there is strong coupling between a single two-level
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FIG. 10. (Color online) Density plot of Q functions for linearly increasing γ (from 0 to 0.41) along the vertical dotted red line of Fig. 7.
The Q function Q(α) is plotted for α = x + iy, such that x and y are two quadrature operators of the quantum oscillator modeling the cavity
field. The oscillator-qubit coupling is λ = 0.0225, giving a parameter value of µ = 2.005. The semiclassical critical value of spontaneous
emission is γc = 0.2 at the critical qubit dissipation parameter value νc = 2.005. The steady-state phase space of the quantum oscillator is
seen to undergo a bifurcation which corresponds to the studied semiclassical bifurcation. The specific dissipation strengths in the four plots
displayed here are γ ≈ 0, 0.14, 0.27, and 0.41, or, equivalently, ν ≈ 1, 1.47, 2.87, and 5.2.

system and an oscillator: a Jahn-Teller model. We have based
our description of dissipation on the physically appropriate
mechanisms for the physical realization of the system based
on circuit quantum electrodynamics. The key feature of the
bifurcation in the dissipative Jahn-Teller model is the change
in the oscillator fixed point from one centered on a point of zero
radius in phase space to one with support on a nonzero value

FIG. 11. Lumped element schematic circuit approximation for
our proposed circuit QED realization of the E ⊗ β Jahn-Teller
Hamiltonian.

of the radius. This is a distinctly different kind of bifurcation
from that discussed recently for the damped nanomechanical
Duffing oscillator [15], which only involves a single degree of
freedom. In the case considered here, the bifurcation results
in steady-state correlations between the state of the oscillator
and the two-level system.

As the average excitation energy of an oscillator is
proportional to the radius in phase space, this bifurcation
would be reflected in a change in the steady-state mean
excitation energy from zero to a finite, nonzero value. This
would have implications for any attempt to cool the system
through tuning to the red sideband transition, that is, tuning
the cavity field driving by the mechanical frequency below
the cavity frequency. If the parameters were such that the
system was already beyond the Jahn-Teller bifurcation, the
mechanical system could not be cooled to a zero-phonon state,
but it would rather relax to the bistable state with a nonzero
mean phonon number. Fluctuations would then drive switching
events between the two stable steady states.

The nondissipative model, for coupling stronger than
the critical coupling, has a ground state with significant
entanglement between the two-level system and the oscillator.
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We do not know whether any entanglement remains in the
steady state of the dissipative model beyond the bifurcation
point. This is a difficult question to answer as the steady state
has a non-Gaussian Q function (or Wigner function) and thus
it is not clear what would be a good measure of entanglement.
In a future work we will use positive P -function methods to
attempt to answer this question.

In many implementations of quantum information process-
ing there is often an unwanted strong coupling between an
oscillator degree of freedom and a strongly damped two-level
system [16,17]. The model of this paper may be relevant to
the ongoing study of such systems in those cases where a
perturbative treatment of the coupling is not possible.

We have given an example of a circuit quantum electrody-
namical system that could exhibit the steady-state bifurcation

of the dissipative Jahn-Teller model. Observation of this
effect would be a clear demonstration of the ultrastrong
coupling regime that can be achieved in these systems, as
opposed to what typically happens in atomic systems where
the rotating wave approximation eliminates the bifurcation.
Such systems open a path to study the quantum signature
of nonlinear bifurcations on the steady states of strongly
coupled systems.
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