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Abstract

In this paper we give a formal definition of the requirements translation language Behavior Trees. This
language has been used with success in industry to systematically translate large, complex, and often
erroneous requirements documents into a structured model of the system. It contains a mixture of state-based
manipulations, synchronisation, message passing, and parallel, conditional, and iterative control structures.
The formal semantics of a Behavior Tree is given via a structure-preserving translation to a version of
Hoare’s process algebra CSP, extended with state-based constructs such as guards and updates, and a
message passing facility similar to that used in publish/subscribe protocols. We first provide the extension
of CSP and its operational semantics, which preserves the meaning of the original CSP operators, and then
the Behavior Tree notation and its translation into the extended version of CSP.
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1. Introduction

A system developer is often faced with a sys-
tem requirements document containing hundreds,
or even thousands, of requirements, written in a
natural language, and by a varied group of people,
each with specialised domain knowledge. Unsur-
prisingly, such documents may be filled with prob-
lems, such as ambiguity, inconsistency, redundancy,
and incompleteness. The process of transforming
such documents into a working system must there-
fore be able to identify issues with the natural lan-
guage requirements in a way that is easy for the
client to understand, and the model must be struc-
tured such that it can be cross-referenced with the
original document.

The Behavior Tree notation was developed by
Dromey to address this problem [6, 7, 8]. Be-
cause it is designed for use by both client and ex-
pert modeller, it is a graphical notation, and con-
tains a range of constructs that cover state-based
manipulations, as well as more abstract concepts
such as synchronisation and message passing, along
with the typical concurrency, choice and iteration
control structures familiar to specification and pro-
gramming languages. The notation is designed to

be easy for a non-expert to understand in a rela-
tively short amount of time.

Each requirement is translated into its own,
small, Behavior Tree, and each node in the tree
is tagged with the number of the requirement from
which it was translated, allowing traceability back
to the original informal requirements. The require-
ments may then be progressively integrated into a
whole-system tree, by finding syntactically match-
ing constructs. This process will reveal inconsis-
tencies, redundancies, incompleteness, and ambigu-
ities. The constructed tree can then serve as the ba-
sis for discussion between developer and client for
validation purposes, using the traceability tags on
each node to cross reference to the original docu-
ment. Once a validated tree is defined, the devel-
oper has a systematically structured representation
of the system, which can serve as the basis for fur-
ther development work.

Experience with industrial trials indicate that the
modelling process is better at detecting errors in
requirements than other techniques [1, 2]. The Be-
havior Tree process has been adopted for industrial
use, in particular by Raytheon Australia [9], who
have invested resources to developing a Behavior
Tree editor [3]. Other tools [5, 4] include facilities
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for ensuring well-formedness and model checking.

In this paper we present a formal semantics for
the Behavior Tree notation. As its base we use
Hoare’s process algebra Communication Sequential
Processes (CSP) [10, 11], a well-established and ele-
gant formal notation for describing interactions be-
tween concurrent processes. We extend this lan-
guage to include state-based constructs such as
tests and updates, which are common within re-
quirements documents, and a message passing fa-
cility similar to publish/subscribe models of com-
munication [12]. We call this new language CSPσ.
The extensions and operational semantics of CSPσ

are defined so that the original laws of CSP are
preserved.

The most immediate motivation for providing a
formal semantics for the Behavior Tree notation is
to add precision to Behavior Tree models. As a
result, the consequences of modelling decisions are
easier to understand, and ambiguities and incon-
sistencies are removed from the models themselves.
In the longer term, the semantics may be used as
the basis for developing automated analysis of sys-
tem behaviour, in particular, simulation and model
checking. It is for these longer-term goals that the
semantics is defined as an extension of CSP, with
the intention that tools and techniques for Behavior
Trees may extend existing tools and techniques for
CSP [13, 14].

The paper is structured as follows. In Sect. 2
we present CSP extended with state. In Sect. 3 we
present a further extension which includes message
passing. In Sect. 4 we present the Behavior Tree
notation, and in Sect. 5 we describe how to translate
Behavior Trees into the extended version of CSP.
For the remainder of this section we consider related
work.

1.1. Requirements modelling

The Behavior Tree notation shares much in com-
mon with other formal (and informal) specifica-
tion languages, but is targeted at mapping typical
requirements in a straightforward manner, rather
than as a vehicle for abstract specification. That is,
the notation is designed so that a client can under-
stand the models, and the models can be mapped
back to their original statement of requirements.

The Unified Modelling Language (UML) [15] is
also used for constructing a model from require-
ments. The main point of difference with Behavior
Trees is that a UML model is formed from several

different diagram types, many of which do not eas-
ily support traceability back to the original require-
ments. In comparison, the Behaviour Engineer-
ing development framework comprises only two dia-
gram types, Behavior Trees and Composition Trees,
both of which support traceability.1 Furthermore,
the semantics of UML has not been fully formalised
[15, Sect. 8].

1.2. Behavior Tree semantics

There are several previous definitions of the se-
mantics of Behavior Trees. In particular a technical
report by the authors of this paper [16], which de-
fined a process algebra for capturing the constructs
of Behavior Trees directly. While comprehensive,
the operational semantics were overly complicated,
and did not exhibit desirable properties such as
compositionality of parallel Behavior Trees. In con-
trast, in this paper we use an existing process al-
gebra, CSP, for the underlying definitions, and this
provides a more elegant specification of interactions
between processes, and is inherently compositional.
Earlier definitions of the semantics of Behavior

Trees include a translation into CSP but with-
out the extension of state [17], and translations
to automata-based languages such as action sys-
tems [5] and timed/probabilistic automata [18, 19].
The translation in [17] is complicated when complex
state is involved, as CSP does not naturally han-
dle mutable state (this is explored in more detail in
[20]). The work in this paper uses a similar transla-
tion technique, but with a version of CSP extended
with state, which makes many of the translations
simpler. The translations to state-based notations
[5, 18, 19] resulted in complex configurations re-
quired to represent concurrency and the control
structures of Behavior Trees. They were also tar-
geted specifically at model checking, and hence were
written more for efficiency than elegance. In this
paper, we present the semantics using an estab-
lished and elegant process algebra as its core, with
a straightforward and structure-preserving transla-
tion process. Compared with the semantics men-
tioned above, this gives further confidence in val-
idating the formal semantics that we present here
against the informal semantics described for Behav-
ior Trees by Dromey [6, 7, 8].

1Composition Trees give the static declarations of the sys-
tem, such as the components, states and events which occur
within the system, in a hierarchical manner similar to the
static declarations of other languages. We do not consider
them in detail in this paper.
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1.3. Process algebras with state
CSP has been integrated with state-based lan-

guages, for instance, with Z by Woodcock & Cav-
alcanti (Circus) [21], with Object-Z by Smith [22]
and Fischer & Wehrheim (CSP-OZ) [23], with Ac-
tion Systems by Butler [24], and with B by Butler
& Leuschel [25] and by Schneider & Treharne [26].
In comparison with these approaches to combining
state-based specification with CSP, we have taken
a “lightweight” approach, introducing only a sin-
gle construct for defining state manipulation, and
with little change to the underlying syntax and se-
mantics of CSP. In the languages mentioned above,
there is a notational and informational overhead as-
sociated with combining two pairs of syntax and
semantics. Of course, the addition of state tests
and updates does not provide the same richness of
specification as afforded by a full combination of
CSP with, for example, B , but does provide a use-
ful stepping stone between event-based and state-
based specifications. We have taken this approach
for defining the semantics of Behavior Trees in an
attempt to keep the translation process as simple
as possible and structure-preserving.
Baeten and Bergstra [27, 28] define a process al-

gebra with state, which can be tested and updated
through propositional signals. In this case the state
is anonymous, and each action is separately defined
to test or modify the state in some way. The use
of local state by Baeten and Bergstra, as with local
state in CSPσ, are examples of contexts as explored
generically by Larsen and Xinxin [29]. A recent ex-
tension of CSP by Sun et al., CSP# [30], introduces
shared variables and sequential programs, and is
supported by the model checker PAT [31]. That
language is roughly equivalent in expressiveness to
CSPσ, except that CSPσ includes a general speci-
fication command, which abstractly represents any
atomic update of the state, whereas CSP# allows
sequential code blocks using typical imperative con-
structs. This difference is because we define a spec-
ification language, while CSP# is designed for effi-
cient model checking. The main point of difference
with CSPσ is in the style of operational semantics
and handling of variables. Our transition rules de-
fine a relation on Processes , while the transition
rules of [30] define a relation on Process × State
pairs. This means that our rules collapse to the
standard CSP rules when state is not involved, and
that the majority of rules are relatively concise.
This style also admits concurrent processes to use
the same variable name without conflict, whereas

this must be explicitly disallowed in CSP#, as with
any language in which the State is kept globally
rather than hierarchically. Future work is to recon-
cile the differences between CSPσ and CSP#, with
the intention of using the PAT tool for model check-
ing and animating CSPσ processes, and therefore
Behavior Trees.

2. CSPσ

In this section we describe a version of CSP which
has been extended with state-based constructs.
This was introduced in [20]; here we present a more
concise version, which includes definitions for in-
terrupts, restarts, explicit recursion, and sending
expressions on channels. We also use an interface
parallel composition operator rather than Hoare’s
original alphabetised parallel composition operator
[10], as interface parallel is more flexible and cor-
responds with more recent presentations of CSP
[11, 32].

The language CSPσ is a process algebra which
allows concurrent processes to communicate syn-
chronously via shared events, and to manipulate
and check the value of state variables. Synchroni-
sation and variable manipulations may be combined
atomically, subject to certain restrictions described
below.

2.1. Syntax

Declarations. The basic unit for synchronisation
are events, given by the set Σ. Elements of the
set Σ are either an event name or the pairing of a
channel name with an associated value in the set
Val . The set Στ,X is Σ extended to include the
special events τ , representing a (hidden) internal
event, and X, representing termination.

We assume a set of variable names Var , and de-
fine a State (also sometimes called a valuation or
store) as a finite partial mapping from variables to
values.

State == Var 7→ Val

We assume Val contains the booleans and integers,
and whatever other values that are required for a
particular application. A state in which the variable
i has value 0 and j has value 1 is represented by the
mapping {i 7→ 0, j 7→ 1}.
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Expressions and predicates. Single-state expres-
sions are given by the type Expr1, and are terms
which may contain elements of Var . We assume
an expression syntax which contains the standard
operators of arithmetic and set theory. An expres-
sion, E , may be instantiated with a state, σ, to
form a new expression, E [σ]; it is the expression
obtained by replacing all of the free variables in E
that are also in the domain of σ with their value
in σ. This may return a “ground” expression (con-
taining no free variables) that can be evaluated to
an element of Val , or another expression which has
fewer free variables. For instance, an instantiation
(i > 0)[{i 7→ 1}] is (1 > 0) which evaluates to the
true. Similarly, an instantiation (i > j )[{i 7→ 1}]
is the (boolean) expression 1 > j . We refer to
boolean-valued expressions as predicates.
Two-state expressions are given by the type

Expr2, and contain free variables in Var as with
Expr1, but may also contain primed versions of Var .
The primed versions indicate the post-state, while
the unprimed versions indicate the pre-state. An
instantiation of E ∈ Expr2 requires two states, i.e.,
E [σ, σ′], where the variables in the domain of σ are
replaced in E by their values in σ, and the primed
variables in the domain of σ′ are replaced by their
values in σ′. For instance, (i ′ = i+1)[{i 7→ 0}, {i 7→
1}] is 1 = 0 + 1 which evaluates to true. When an
expression may be either one- or two-state, we just
use the type Expr . We say a predicate E is satis-
fiable, written sat(E ), when there exist total pre-
and post-states σ and σ′ such that E [σ, σ′] evalu-
ates to true.

State-based constructs.
Following Morgan [33], we introduce specification
commands (SCmd) as the basic state-manipulation
construct in the language. A specification com-
mand x1, .., xn : [R] contains a two-state predicate
R and a frame x1, .., xn , which is the (possibly
empty) set of variables which the command may
alter. Therefore, the primed variables in the predi-
cate must be a subset of the frame. An example is
i : [i ′ = i + 1], which modifies the frame variable i
so that in the post-state it has a value one greater
than the pre-state. When the frame of a specifi-
cation command is empty (and hence its predicate
does not refer to any post-state (primed) variables),
we call it a guard, and write it as [g ]. We also al-
low an update, x :=E , where x ∈ Var and E is a
single-state expression, to abbreviate the specifica-
tion command x : [x ′ = E ].

A specification command x : [R] may be inter-
preted as a relation, SR, on total states, that sat-
isfies R and modifies only variables in x . That is,
given total states S ,S ′ ∈ (Var → Val), the relation
corresponding to x : [R], given by [[x : [R]]], contains
(S ,S ′) if S and S ′ make R true and only variables
in x may differ.

(S ,S ′) ∈ [[x : [R]]] ⇔ (R[S ,S ′] ∧ x −C S = x −C S ′)

(The function x −C S is the function S with its do-
main restricted to elements not in x .) We define
equivalence of specification commands as follows.

c1 ≡ c2 =̂ [[c1]] = [[c2]]

A special specification command is id, which we de-
fine as [true]. It does not depend on nor change
any variables. Note that there are many other com-
mands which are equivalent to id by the definition
above, such as [5 > 1], [x = x ], x : [x ′ = x ].

Processes. The syntax of processes is given below.

Process : : = (SCmd ,Στ ) → Process

| Process ; Process

| Process [] Process

| Process u Process

| Process ‖
A

Process

| (µ rec • Process)

| Process\A

| (state State • Process)

| Process 4 Process

| Process restart(Σ) Process

| SKIP

| STOP

where A represents a set of events, and rec is an
identifier.
An event appearing in processes is either an iden-

tifier, or ch!E , indicating output of the value of
expression E on channel ch, or ch?y , indicating
receiving a value on channel ch and storing it in
variable y .2

An action prefix process (c, a) → P , where c is a
specification command, and a is an event, is a pro-
cess that tests and/or updates the state such that

2In [20] channels could include expressions, but the rules
covered only the case where the value of E could be deter-
mined locally to the sending process. This paper contains a
full treatment.

4



the specification command c is satisfied, and syn-
chronises on event a, before behaving as process P .
We allow a to be τ if c is not equivalent to id. A
sequential composition P ; Q behaves as P until
P terminates, after which it behaves as Q . An ex-
ternal choice between processes P and Q is given
by P [] Q . The choice is external because the envi-
ronment selects P or Q through synchronisation. In
contrast, an internal choice between P and Q , writ-
ten P u Q , nondeterministically chooses between P
and Q , without reference to the environment. Con-
currency is written as P ‖

A

Q , which states that the

two processes operate in parallel, synchronising on
events in the interface A, and interleaving other
events. A recursive process is defined using the fix-
point operator µ, (µ rec • P). Free occurrences of
rec within P represent a new instance of (µ rec • P).
A set of events, A, may be “hidden” within a pro-
cess P , written P\A, so that any events in A are
not visible externally to P (these become internal
steps of P\A). A state σ ∈ State may be declared
local to P via (state σ • P). An interrupt P 4Q
behaves as P until process Q takes some externally
observable action, at which point it “interrupts” P
and becomes the active process. A restart process
P restart(a) Q behaves as P until the restart event
a is generated by P , at which point it behaves as
Q restart(a) Q . The restart operator is similar to
the exception operator of Roscoe [34]. The pro-
cess SKIP has only one possible behaviour, which
is to terminate successfully and take no further ac-
tion. The process STOP has no behaviour – it may
never synchronise or take any other action. In gen-
eral, CSP processes may also be parameterised by
values, but we do not consider parameters in this
paper: a comparison of parameterised values and
mutable state is given in [20].

As an example, consider the following specifica-
tion of a queue process, which makes use of a state,
q , which is a sequence of values, where 〈〉 represents
the empty sequence, 〈v〉 represents the singleton

sequence containing v , and a represents sequence
concatenation. When the event in an action pair is
τ , we omit it, and write just the specification com-
mand; similarly, when the command is equivalent

to id, we omit it.

Queue =̂ (state {q 7→ 〈〉} • Qrec)

Qrec =̂ µQ •

(enq?x → (q := q a 〈x 〉) → Q)
[] (([q 6= 〈〉], deq !head(q)) →

(q := tail(q)) → Q)

(1)

After an enq?x event, q is extended by x and the
process repeats. If q is nonempty, Queue may par-
ticipate in a deq event, which returns the head of
the queue, and then removes it from q .

2.2. Semantics

We formally define the meaning of CSPσ in a
structural operational semantics style [35] in Fig. 2,
using the variable naming conventions in Fig. 1.
The label on each step is a pair containing a com-
mand and an event.

2.2.1. Prefixing

A prefix is the basic building block of a pro-
cess. A process may be prefixed by the pairing of a
specification command with an event. The rule is
straightforward – the process transitions to P , and
the command and event (if any) are shown in the
transition label. We abbreviate a label in which the
command is equivalent to id as just the event, and
if the event is τ we abbreviate the label to just the
command. This means, for instance, that the rule
for a guard with no event is

([g ] → P)
[g]

−→ P

and the rule for an update is

(x := s → P) x := s−−−→ P

It is also the case that the usual CSP event prefix
rule holds, i.e.,

(a → P)
a

−→ P

2.2.2. Channels

Rules 2 and 3 for channels are more complex, be-
cause of the possible interplay of variables in the
channel expression with the command. An output
ch!E must choose some value for E , say v , and
output that value on the channel (within labels,
channels must be paired only with values, not ex-
pressions). That E does indeed have the value v
in context is established by adding a (satisfiable)
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P ,Q :Process
c:SCmd
σ:Var 7→ Val

a: Σ
e: Στ,X

id = [true]

y :Var
x , x1, x2:PVar
A ⊆ Σ

v :Val
E ,R:Expr
g :Expr1

Figure 1: Naming conventions

Rule 1 (Prefix)

((c, e) → P)
c,e
−−→P

Rule 2 (Channel output)

sat(R ∧ v = E )

((x : [R], ch!E ) → P)
(x :[R∧v=E ],ch.v)
−−−−−−−−−−−→ P

Rule 3 (Channel input)

sat(R ∧ y ′ = v)

((x : [R], ch?y) → P)
(x ,y):[R∧y′=v ],ch.v
−−−−−−−−−−−−−→ P

Rule 4 (External choice)

(a) (b)

P
τ

−→P ′

P [] Q
τ

−→P ′ [] Q

P
c,e
−−→P ′ (c 6≡ id ∨ e 6= τ)

P [] Q
c,e
−−→P ′

and similarly for Q.

Rule 5 (Internal choice)

(P u Q)
τ

−→P

and similarly for Q.

Rule 6 (Sequential composition)

(a)
P

c,e
−→ P ′ e 6= X

P ; Q
c,e
−→ P ′ ; Q

(b)
P

X
−→ P ′

P ; Q
τ

−→ Q

Rule 7 (Skip)

SKIP
X

−→ STOP

Rule 8 (Recursion)

(µ rec • P)
τ

−→(P [ (µ rec•P)
rec

])

Rule 9 (Hiding)

(a)
P
c,a
−−→P ′ a ∈ A

P\A
c

−→ P ′\A
(b)

P
c,e
−−→P ′ e 6∈ A

P\A
c,e
−−→P ′\A

Rule 10 (Interrupt)

(a)
P
c,e
−−→P ′

P 4Q
c,e
−→ P ′ 4Q

(b)
Q

τ
−→Q ′

P 4Q
τ

−→P 4Q ′
(c)

Q
c,e
−−→Q ′ (c 6≡ id ∨ e 6= τ)

P 4Q
c,e
−→ Q ′

Rule 11 (Restart)

(a)
P
c,e
−−→P ′ e 6= a

(P restart(a) Q)
c,e
−−→(P ′

restart(a) Q)
(b)

P
c,a
−→ P ′

(P restart(a) Q)
c

−→ (Q restart(a) Q)

Figure 2: Rules summary for CSPσ
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guard to the command. In the simple case, where
a value u is sent on the channel and there is no
associated command, we have the rule

(ch!u → P) ch.u−−−→ P

If an expression is sent with no associated com-
mand, we have

ch!(x + 1) → P
[v=x+1],ch.v
−−−−−−−−−→ P

for all possible values v . When the context of a
particular state is added (see Sect. 2.3) this will
define the value of x and hence restrict the choice
of v to the value of x + 1 in that state.
The expression E is of type Expr2, and hence it

may reference primed variables (for instance, this
allows a command which updates x and outputs its
new value on ch). To be consistent, we restrict E
to reference primed variables in the frame of the
associated command only.
Now consider inputting a value from a channel

and storing it in a variable. We do not constrain
the input variable to be in or out of the frame of
the associated command – either is possible. This
allows behaviour such as receiving a new value for
a variable only when that value is in a desired set.
When there is no associated command, the ef-

fect of a channel input is an update of the receiver
variable.

(ch?y → P)
y := v ,ch.v
−−−−−−−→ P

Below we demonstrate communication via chan-
nels using a simple example.

(ch!(x + 1) → P) ‖ (ch?x → Q)

This command has the effect of incrementing x ,
with the new value of x sent along channel ch.
For the sending process we have the following

possible transition (amongst many).

(ch!(x + 1) → P)
[1=x+1],ch.1
−−−−−−−−→ P

The specification command in the label simplifies
to [x = 0]. This indicates that a visible behaviour
of this process is to output the value 1 on channel
ch, provided x = 0.
For the receiving process we have the following

possible transition (amongst many).

(ch?x → Q)
x :[x ′=1],ch.1
−−−−−−−−→ Q

Combining these transitions with Rule 18 (de-
scribed later), we have the full transition:

(ch!(x + 1) → P) ‖ (ch?x → Q)
c,ch.1
−−−−→ P ‖ Q

where c = x : [x = 0 ∧ x ′ = 1].
More generally, we have the following possible

transition for any v ∈ Val ,

(ch!(x + 1) → P) ‖ (ch?x → Q)
c,ch.(v+1)
−−−−−−−→ P ‖ Q

where c = x : [x = v ∧ x ′ = v + 1]. The context
will determine the initial value for x , as described
in Sect. 2.3.

2.2.3. External and internal choice

An external choice between two processes is re-
solved when one of them makes an observable step,
that is, engaging in an event and/or accessing a
non-local variable. Rule 4(a) allows either pro-
cess to take an internal step without resolving the
choice, while in Rule 4(b) an observable step of ei-
ther process resolves the choice in that process’s
favour.
In contrast, an internal choice (Rule 5) is resolved

nondeterministically at any time, regardless of the
environment.

2.2.4. Sequential composition

The transitions for sequential composition in
CSPσ (Rule 6) are similar to those of CSP. The
first process executes its steps (Rule 6(a)), until it
terminates (Rule 6(b)), at which point the second
process becomes active. The SKIP process can do
nothing but generate the termination event X and
then takes no further action (Rule 7).

2.2.5. Recursion

The transition for a recursive process is to simply
unfold the recursion (Rule 8). For instance, recall
the definition of Qrec (1). An unfolding of Qrec
results in eliminating the outer µ operator and re-
placing the recursion variables Q with Qrec itself.

Qrec
τ

−→




(enq?x → (q := q a 〈x 〉) → Qrec)
[] (([q 6= 〈〉], deq !head(q)) →

(q := tail(q)) → Qrec)




2.2.6. Hiding

Rule 9(a) removes the event a from the label,
that is, it is hidden from the environment. The
command c remains observable. If the event part
of the label is not hidden, the label does not change
(Rule 9(b)).
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2.2.7. Interrupt

Rule 10(a) is a typical step of the main process P ,
while Rule 10(b) is the case where the interrupting
process makes an internal step; it may evolve sep-
arately to P . Rule 10(c) handles the case where
Q makes an externally observable transition: the
execution of P is halted, and Q becomes the active
process.

2.2.8. Restart

A restart process, (P restart(a) Q), acts similarly
to an interrupt process P 4Q , except that the in-
terrupt event, a, is generated internally. That is,
a restart process (P restart(a) Q) behaves has P
until it generates the (restart) event a, at which
time it will halt execution and restart, behaving as
(Q restart(a) Q). Rule 11(a) states that P may be-
have normally as long as it does not generate the
event a, while Rule 11(b) states that P terminates
and restarts as Q restart(a) Q when the event a is
generated. The restart operator is similar to the ex-
ception operator given by Roscoe [34], except that
rather than terminating the process we restart it.
For brevity, we make the following definition.

restart(a,Q) =̂ Q restart(a) Q (2)

2.3. State-based rules
The rules involving the local state construct are

given in Fig. 3. These were initially introduced in
[20]. Rule 12 states that a process (state σ • P)
may take a transition labelled by a specification
command and event pair (y : [R[σ, σ′]], e) under the
following conditions. P transitions in specification
command and event pair (x , y : [R], e) to P ′, where
x is the set of frame variables in the local state σ,
and y is the set of frame variables not in the local
state σ. (Recall that R may refer only to primed
variables that are in the frame.) The new local state
σ′ is the same as σ for variables outside the frame,
but otherwise may choose any values for variables
x such that R[σ, σ′] is satisfiable. The conclusion
of the rule states that (state σ • P) transitions to
(state σ′ • P ′) with label (y : [R[σ, σ′]], e), i.e., the
visible behaviour is the event e and an update of
non-local variables y such that R holds, after vari-
ables in the local state are replaced by their local
values in the pre- and post-states, σ and σ′.
For example, consider a process P that transi-

tions with a label containing a specification com-
mand that updates variables i and j to 0.

P
i,j :[i′=0∧j ′=0]
−−−−−−−−−−→ P ′

Inside a local state that maps i to the initial value
5, in Rule 12 we instantiate x to {i}, y to {j}, σ′

to {i 7→ 0}, and hence

R[σ, σ′]
= (i ′ = 0 ∧ j ′ = 0)[{i 7→ 5}, {i 7→ 0}]
= (0 = 0 ∧ j ′ = 0)
= j ′ = 0

The substitution serves to eliminate the parts of
R that refer to the local state, while the sat(..)
constraint restricts the post-state σ′ to only valid
choices of new values. Since sat(j ′ = 0) holds, we
may derive the following transition.

(state {i 7→ 5} • P)
j :[j ′=0]
−−−−−→ (state {i 7→ 0} • P ′)

Note that any choice for the post-state σ′ other than
{i 7→ 0} will result in an unsatisfiable predicate,
and hence prevent the rule from being applied.
In the case where the local state contains map-

ping for both i and j , e.g., σ = {i 7→ 5, j 7→ 5},
in Rule 12 we instantiate x to {i , j}, y to ∅, σ′ to
{i 7→ 0, j 7→ 0}, and hence R[σ, σ′] simplifies to true
and the resulting label is, as expected, id.
In a prefixed process, if the command is equiva-

lent to id the rule reduces to the simple case of an
event, as given in Rule 13.
We now consider specialisations of Rule 12 for

guards and updates with no associated events.
Rule 14 states that if P transitions with guard
g , the observable transition of (state σ • P) is the
guard g [σ], i.e., the guard g with variables local to
σ instantiated with their local values. Below are
some examples:

(state {i 7→ 1} • [i 6 5] → P)

id
−→ (state {i 7→ 1} • P) (3)

(state {i 7→ 1} • [i 6 x ] → P)

[16x ]
−−−→ (state {i 7→ 1} • P) (4)

(state {i 7→ 1} • [y 6 x ] → P)

[y6x ]
−−−−→ (state {i 7→ 1} • P) (5)

In (3) the transition label is id, which plays a simi-
lar role to τ . The guard trivially evaluates to true
in the local state, so to an external observer some
internal step is taken. In (4) the guard accesses
non-local variable x . The externally observable be-
haviour of this process is that it can evolve to P if
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Rule 12 (State)

P
x ,y:[R],e
−−−−−−→ P ′ x ⊆ dom(σ) y ∩ dom(σ) = ∅

x −C σ = x −C σ′ dom(σ) = dom(σ′) sat(R[σ, σ′])

(state σ • P)
y:[R[σ,σ′]],e
−−−−−−−−→ (state σ′ • P ′)

Rule 13 (Event in state)

P
e

−→ P ′

(state σ • P)
e

−→ (state σ • P ′)

Rule 14 (Guard)

P
[g]

−→ P ′ sat(g [σ])

(state σ • P)
[g[σ]]
−−−→ (state σ • P ′)

Rule 15 (Update - nonlocal)

P x :=E−−−−→ P ′ x 6∈ dom(σ)

(state σ • P)
x :=(E [σ])
−−−−−−→ (state σ • P ′)

Rule 16 (Update - local)

P x :=E−−−−→ P ′ x ∈ dom(σ)
σ′ = σ ⊕ {x 7→ v} sat(v = (E [σ]))

(state σ • P)
[v=(E [σ])]
−−−−−−−→ (state σ′ • P ′)

Figure 3: Rules for local state

x ≥ 1. The predicate has been partially instanti-
ated according to the local state. In (5) the local
state has no effect on the guard: its progress is
independent of local variables and hence is exter-
nally visible (via the transition label). A process
(state {i 7→ 1} • [i > 5] → P) cannot transition at
all since the guard does not hold in the local con-
text.
Rule 15 states that, for a process (state σ • P),

if P makes a transition which updates a non-local
variable x to E , then the observable transition is an
update of x to E [σ], that is, the local variables in E
are instantiated with their value in σ. For example:

(state {i 7→ 1} • s := 0 → P)

s := 0−−−→ (state {i 7→ 1} • P) (6)

(state {i 7→ 1} • s := i → P)

s := 1−−−→ (state {i 7→ 1} • P) (7)

Transition (6) describes an update to a non-local
variable, in which the update expression is inde-
pendent of the local state. In (7) the local context
does not include s, but does include a variable in
the update expression. Since i is mapped to 1 lo-
cally, to an external observer the process appears
as an update of s to 1.
Rule 16 states that, for a process (state σ • P),

if P makes a transition which updates local variable
x , then x is locally updated to a new value v , and
the observable transition is a guard that ensures v
is the value of expression E in context. As such,
there are many possible transitions for each local
update, one for each value v . However, once placed
in a context which defines all the free variables in
E , only the transition in which v has the value for
E in that state will be valid. For example:

(state {s 7→ 1} • s := 0 → P)

id
−→ (state {s 7→ 0} • P) (8)

(state {s 7→ 1} • s := s + i → P)

[i=0]
−−−→ (state {s 7→ 1} • P) (9)

(state {s 7→ 1} • s := s + i → P)

[i=1]
−−−→ (state {s 7→ 2} • P) (10)

(state {s 7→ 1} • s := s + i → P)

[i=2]
−−−→ (state {s 7→ 3} • P) (11)

Transition (8) is a simple example of the applica-
tion of Rule 16 where we make the obvious choice
of 0 for v , since E [σ] evaluates to 0, and there-
fore [E [σ] = v ] = [0 = 0] ≡ id. The remaining
transitions deal with the more complex case where

9



Rule 17 (Parallel independent)

P
c,e
−−→P ′ e 6∈ A ∪ {X}

P ‖
A

Q
c,e
−−→P ′ ‖

A

Q

and similarly for Q.

Rule 18 (Parallel synchronise)

P
x1:[R1],a
−−−−−−→ P ′ Q

x2:[R2],a
−−−−−−→ Q ′

sat(R1 ∧ R2) a ∈ A

P ‖
A

Q
x1,x2:[R1∧R2],a
−−−−−−−−−−→ P ′ ‖

A

Q ′

Rule 19 (Parallel – terminate one)

P
X

−→ P ′

P ‖
A

Q
τ

−→STOP ‖
A

Q

and similarly for Q.

Rule 20 (Parallel – terminate both)

STOP ‖
A

STOP
X

−→ STOP

Figure 4: Rules for parallel composition

the updated variable is local but the expression E
is not. In these cases we cannot locally determine
the value to which s must be updated, since the
update expression accesses the non-local variable
i . Locally, therefore, there are many possible tran-
sitions, one for each v ∈ Val to which s can be
updated (we have shown only the transitions for
v = 1, v = 2, v = 3). However, in practice, only
one transition will be possible for a given context.
In this case, that will be the transition in which v
has the value of 1 + i in that context.

2.4. Interface parallel

The parallel operator used in this paper is based
on the interface parallel operator described by
Roscoe [11], rather than Hoare’s original alphabe-
tised parallel [10] (which was used in [20]). The
rules for interface parallel are given in Fig. 4. For
interface parallel, the interface A defines the set of
events on which the two processes must synchro-
nise. Note that A cannot include the special events
τ or X.
Rule 17 states that process P may evolve to P ′

independently of Q provided that the event that P
is engaging in is not a member of the interface A,
and that P is not terminating.
Rule 18 handles the more interesting case where

both P and Q are ready to engage in a shared event
a which is in the interface A. In this case the asso-
ciated specification commands are conjoined, pro-

vided that the conjunction is satisfiable. Note that
this rule allows x1 and x2 to overlap, and hence finds
a mapping for variables in the intersection that sat-
isfies both R1 and R2, should such a mapping exist.
However, this admits rather subtle behaviour and
semantics; generally, it is safer to prevent synchro-
nised specification commands from modifying the
same variable, and this constraint may be enforced
statically.

Termination of a parallel composition of pro-
cesses requires all processes to have terminated, i.e.,
distributed termination. Rule 19 handles the case
where one of the processes terminates: the termi-
nated process is replaced by STOP , but this ap-
pears as an internal step of the parallel composi-
tion. In Rule 20 both processes have terminated,
in which case the parallel composition itself visibly
terminates.

2.5. Examples

In Fig. 5 we present two executions side-by-side.
For space reasons we abbreviate the state keyword

to st, and use
l
=⇒ to indicate a sequence of two

or more transitions that contain exactly one non-
internal step, l . Often, the omitted τ steps include
the initial unfolding of a recursion.

On the left of Fig. 5 is an execution of the process
Q from (1) when q is initially empty.

10



Queue
=̂ from (1)
(st{q 7→ 〈〉} • Qrec)

enq.v
=⇒ Rule 8, Rule 1, Rule 4, Rule 13

(st{q 7→ 〈〉} • q := q a 〈v〉 → Qrec)
id

−→ Rule 1, Rule 16
(st{q 7→ 〈v〉} • Qrec)

enq.w
=⇒ Rule 8, Rule 1, Rule 4, Rule 13

(st{q 7→ 〈v〉} • q := q a 〈w〉 → Qrec)
id

−→ Rule 1, Rule 16
(st{q 7→ 〈v ,w〉} • Qrec)

deq.v
=⇒ Rule 8, Rule 1, Rule 4, Rule 12 (q 6= 〈〉)

(st{q 7→ 〈v ,w〉} • q := tail(q) → Qrec)
id

−→ Rule 1, Rule 16
(st{q 7→ 〈w〉} • Qrec)

deq.w
=⇒ Rule 8, Rule 1, Rule 4, Rule 12 (q 6= 〈〉)

(st{q 7→ 〈w〉} • q := tail(q) → Qrec)
id

−→ Rule 1, Rule 16
(st{q 7→ 〈〉} • Qrec)

Sum
=̂ from (12)
(st{i 7→ 1, s 7→ 0} • S )

[16N ]
=⇒ Rule 8, Rule 1, Rule 4, Rule 14

(st{i 7→ 1, s 7→ 0} •
(s := s + i) → (i := i + 1) → S )

id
−→ Rule 1, Rule 16

(st{i 7→ 1, s 7→ 1} • (i := i + 1) → S )
id

−→ Rule 1, Rule 16
(st{i 7→ 2, s 7→ 1} • S )

[26N ]
=⇒ Rule 8, Rule 1, Rule 4, Rule 14 (as above)

(st{i 7→ 2, s 7→ 1} •
(s := s + i) → (i := i + 1) → S )

id
=⇒ Rule 1, Rule 16 (×2 as above)

(st{i 7→ 3, s 7→ 3} • S )
[3>N ]
=⇒ Rule 8, Rule 1, Rule 4, Rule 14

(st{i 7→ 3, s 7→ 3} • x := s → SKIP)
x := 3
−→ Rule 1, Rule 15

(st{i 7→ 3, s 7→ 3} • SKIP)
X

−→ Rule 7, Rule 13
(st{i 7→ 3, s 7→ 3} • STOP)

Figure 5: Example executions

On the right of Fig. 5 is the execution of program
Sum, which is an example of how computation se-
quences may be specified in CSPσ.

Sum =̂ (state {i 7→ 1, s 7→ 0} • S )

S =̂ µ sum •

[i 6 N ] →(s := s + i) →
(i := i + 1) → sum

[][i > N ] →(x := s) → SKIP

(12)

Sum calculates the sum to the value of (non-local)
variable N , and writes the final value to (non-local)
variable x . Variable N is set prior to the invocation
of Sum, and x is read after Sum terminates to re-
trieve the result. An alternative specification would
be to parameterise Sum by N , and to output the
result on a channel, however, for illustrative pur-
poses we have chosen the former approach. The rel-
ative merits of shared-variable communication and
channel-based communication are explored in more
detail in [20]. The definition of Sum uses local vari-
ables s and i to accumulate progressive values.
The trace of the execution of Sum is an inter-

leaving of internal steps (id) with accesses of non-
local variable N , until the final observable transi-

tion which updates x to 3. No more transitions are
possible. The steps may be interleaved with other
processes operating in parallel by Rule 17.

3. Message passing

In this section we introduce a new message pass-
ing construct for CSP in which the sender does
not need to block until there is a receiver. Such
a construct more naturally represents some com-
munications in certain systems; for example, a taxi
company headquarters sending notification of a new
job. In addition, it allows the number of potential
listeners to change dynamically, as is common in
systems of many interacting autonomous agents. It
follows the publish/subscribe model of communica-
tion [12]. Another strength of the new construct
is that it is easy to specify multiple sending pro-
cesses, which do not interact (need to synchronise)
with each other.
We are interested in the semantics of this con-

struct because, as outlined above, some systems
more naturally use this form of communication
over the more abstract, and harder to implement,
synchronisation construct of CSP. Therefore when
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Rule 21 (Message send)

sat(R ∧ v = E )

((x : [R], sendm.E ) → P)
x :[R∧v=E ],sendm.v
−−−−−−−−−−−−−→ P

Rule 22 (Message Receive)

sat(R ∧ y ′ = v)

((x : [R], recvm.y) → P)
x ,y:[R∧y′=v ],recvm.v
−−−−−−−−−−−−−−→ P

Rule 23 (Message sent)

P
x1:[R1],sendm.v
−−−−−−−−−−→ P ′ Q

x2:[R2],recvm.v
−−−−−−−−−−→ Q ′

sat(R1 ∧ R2)

P ‖
A

Q
x1,x2:[R1∧R2],sendm.v
−−−−−−−−−−−−−−−→ P ′ ‖

A

Q ′

Rule 24 (Message ignored)

P
c,sendm.v
−−−−−−→ P ′ Q recvm.v−−−−−→/

P ‖
A

Q
c,sendm.v
−−−−−−→ P ′ ‖

A

Q

and similarly for Q.

Rule 25 (Multiple listeners)

P
x1:[R1],recvm.v
−−−−−−−−−−→ P ′ Q

x2:[R2],recvm.v
−−−−−−−−−−→ Q ′

sat(R1 ∧ R2)

P ‖
A

Q
x1,x2:[R1∧R2],recvm.v
−−−−−−−−−−−−−−→ P ′ ‖

A

Q ′

Rule 26 (Single listener)

P
c,recvm.v
−−−−−−→ P ′ Q recvm.v−−−−−→/

P ‖
A

Q
c,recvm.v
−−−−−−→ P ′ ‖

A

Q

and similarly for Q.

Rule 27 (Hide messages)

(a)
P

c,e
−−→ P ′ e ∈ A (∀m, v • e 6= recvm.v)

P\A
c

−→ P ′\A
(b)

P
c,e
−−→ P ′ e 6∈ A

P\A
c,e
−→ P ′\A

Figure 6: Rules for messages

translating from natural language requirements this
type of communication model will be easier to apply
in some situations.
The syntax for sending and receiving is given be-

low.

sendm.E recvm.y

Messages, as with channels, may send expressions
and be paired with specification commands. The
send action communicates message m, with op-
tional expression E , while the recv action receives
message m, storing any associated value in variable
y .
The semantics follow a similar pattern to syn-

chronisation event types; the rules for messages and
parallel composition are given in Fig. 6. We write
messages as message/value, message/variable, or
message/expression pairs (m.v , m.y or m.E ), al-

though the rules equally apply to basic messages
(m).

Rule 21 and Rule 22 correspond to sending the
value of an expression via a channel in Rules 2
and 3. Rule 23 captures P sending a message to Q .
The visible behaviour is the conjunction of their
respective specification commands, and that m is
sent. Rule 24 states that P can still send m even
if Q is not waiting: this is the nonblocking nature

of sending a message. We use the notation P
l

−→/
to indicate that process P cannot take a transition
labelled l . Rule 25 states that two receiving pro-
cesses can receive the same message, while Rule 26
allows a single process to receive a message if the
other is not listening.

Note that a listening process may engage in ei-
ther Rule 26 or Rule 23 if a concurrent process is
sending the message. That is, a listening process
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can respond directly to a send, or ignore the send

and propagate its recv. This nondeterminism arises
because there may be more than one producer send-
ing the message, and a listener is free to react to
either of them. To prevent traces where a receiver
responds to an ‘external’ message, the scope over
which the message is listened for must be limited
(hidden) in the usual way. For instance, the small-
est common ancestor of both sender and receiver
will typically hide the receive message.
The rules in Fig. 6 apply only to messages, while

the rules in Fig. 4 apply only to events and chan-
nels.3 However, the majority of rules from Fig. 2
and Fig. 3 hold for both events and messages, where
we allow e to range over messages as well as events.
The only exception is Rule 9, which requires spe-
cial treatment for receiving messages, and is now
replaced by Rule 27. Rule 27(a) is similar to
Rule 9(a), except that it applies to synchronisa-
tion events and sent messages, but not to receiving
messages. To allow receive actions to become inter-
nal events through hiding would be to allow them
to transition without a corresponding send action.
Hence, instead of becoming an internal step, a hid-
den receive message is prevented from transitioning
at all. Rule 27(b) is identical to Rule 9(b) (it applies
to synchronisation, send, and recv actions).

3.1. Example 1

Consider the following simple process L which
contains two concurrent processes listening for the
same message m, and the sending process S which
sends m.

L =̂ (recvm → Q ‖ recvm → R)
S =̂ (sendm → P)

Before progressing we first note the following spe-
cialisations of Rules 21 and 22 if there is no associ-
ated specification command or expression.

Rule 28 (Message-only send/receive)

(sendm → P) sendm−−−−→ P

(recvm → P) recvm−−−−→ P

3Note that we do not examine the interface of the par-
allel composition for messages, that is, we assume that all
messages of the same name within a system are designed to
interact. The rules may be rewritten so that the interfaces
are consulted.

Through Rule 28 and Rule 25 we have the fol-
lowing transitions

L recvm−−−−→ Q ‖ R S sendm−−−−→ P

Then through Rule 23 we have

S ‖ L sendm−−−−→ P ‖ (Q ‖ R)

Now consider two competing senders, S1 and S2,
operating in parallel.

S1 =̂ sendm → P1 S2 =̂ sendm → P2

Through Rule 24 only one of these process will send
a message – they do not synchronise. Either of the
following two transitions are allowed by the rules.

(S1 ‖ S2) ‖ L sendm−−−−→ (S1 ‖ P2) ‖ (Q ‖ R)

(S1 ‖ S2) ‖ L sendm−−−−→ (P1 ‖ S2) ‖ (Q ‖ R)

As a final example, consider a variant of L in
which one of the processes, T , is not yet ready to
receive the message.

Lv =̂ (recvm → Q) ‖ T

whereT recvm−−−−→/

We have the following transition.

S ‖ Lv
sendm−−−−→ P ‖ (Q ‖ T )

Although T may be a process that is interested in
message m, its unreadiness does not block S from
sending the message to process Q .

3.2. Example 2

We now give a more complex example that com-
bines state tests and updates with message pass-
ing. Consider a network which consists of produc-
ers and consumers. Producers periodically send
information, which is conditionally received by all
ready consumers. We treat the sent information
abstractly, although it may be, for instance, (cu-
mulative) security or database updates, etc.. The
conditions under which consumers receive the in-
formation are also treated abstractly, as are their
general tasks. Consumers may also be turned on
and off at any time.
For simplicity we write a recursive procedure

P =̂ (µ c • .. → c) as P =̂ .. → P
13



We us this abbreviation as it simplifies the syntax
and hides the unfolding steps (Rule 8) in the exe-
cutions. However, the derivations we give may be
easily transformed to use the least-fixpoint syntax.

Pi =̂ ini?d → send update.f (d) → Pi
Ci =̂ state {y 7→ 0} • (Wki ‖ Updi)4 Rbti
Wki =̂ ..
Updi =̂ ([gi(y

′)], recv update.y) → Updi
Rbti =̂ offi → oni → Ci

A producer Pi receives input data d from the
environment along input channel ini , then sends
some version of d , f (d), to every consumer on the
network. This is done repeatedly.
The consumer Ci contains its local state, which is

treated abstractly as an integer-valued variable y .
Consumers are assumed to be initially active, and
performing some work tasks given by the process,
Wki , which we leave unspecified. In parallel, the
consumer is always ready to receive updates to y ,
given by the recursive process Updi , which receives
any sent update d provided gi(d) holds, and up-
dates y . At any time the consumer may be switched
off by the event offi , which interrupts the working
behaviour of the consumer. When the consumer is
switched back on (oni), the consumer restarts. This
“rebooting” behaviour is given by Rbti .
The interesting point to note is that this specifi-

cation would be cumbersome to define using CSP-
like synchronisation only. The sending of updates
by the producers is not held up by the transient
consumers, which may come online and offline at
any time. We also have defined it such that Ci
receives information that satisfies gi only, hence,
some consumers will receive only particular types
of updates.
In general there may be M producers and N con-

sumers. For presentation purposes we demonstrate
the execution of the send/receive behaviour assum-
ing that there is a single producer, P1, and three
consumers, C1,C2 and C3. Let us assume that C1
and C2 are active, and that C3 has been switched
off, and let CCi represent Ci after an unspecified
number of steps.

CC1 =̂ state {y 7→ u1} • (Wk ′
1 ‖ Upd1)4 Rbt1

CC2 =̂ state {y 7→ u2} • (Wk ′
2 ‖ Upd2)4 Rbt2

CC3 =̂ state {y 7→ u3} • on3 → C3

The values ui are the local values of y , and the
processesWk ′

1 andWk
′
2 represent the current stage

of execution of the working tasks for C1 and C2.
Process C3 is suspended until the event on3 occurs.

Let PP1 be the producer process after it has re-
ceived the event in1.d and as a result is about to
send the value df (= f (d)). Then we have the fol-
lowing transition by Rule 21.

PP1
send update.df
−−−−−−−−−→ P1 (13)

The system process Sys is defined as the paral-
lel composition of the producer and the three con-
sumers.

Sys =̂ PP1 ‖ ((CC1 ‖ CC2) ‖ CC3)

We leave the alphabets on the parallel composition
implicit: they do not directly affect the messages.
The consumers CC1 and CC2 are actively listen-

ing for update messages through the Updi process.
For instance, for Upd1, we have the following tran-
sition by Rule 22.

Upd1
[y′=df∧g1(df )],recv update.df
−−−−−−−−−−−−−−−−−−→ Upd1

By Rule 12 we have

CC1
update.df
−−−−−−→ state {y 7→ df } • ..

provided sat(y ′ = df ∧ g1(df )), that is, provided
g1(df ) holds. Let us assume that this is the case,
but that g2(df ) does not hold. We also note that
CC3 is not ready to receive the update message as
it is switched off. Then we have:

CC1
recv update.df
−−−−−−−−−→ CC ′

1 (14)

CC2
recv update.df
−−−−−−−−−→/ (15)

CC3
recv update.df
−−−−−−−−−→/ (16)

By (14), (15) and Rule 24 we have

CC1 ‖ CC2
recv update.df
−−−−−−−−−→ CC ′

1 ‖ CC2

Hence by this, (16) and Rule 24,

(CC1 ‖ CC2) ‖ CC3
recv update.df
−−−−−−−−−→ (CC ′

1 ‖ CC2) ‖ CC3

Finally, by this, (13) and Rule 23, we have

Sys
send update.df
−−−−−−−−−→ PP ′

1 ‖ (CC ′
1 ‖ CC2) ‖ CC3

The net transition is that the producer PP1 has
sent the message to CC1, while CC2 and CC3 have
ignored the message, for different reasons. This
type of selective communication is more difficult to
specify using only CSP-like synchronisation.
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3.3. Related work

The motivation for the message passing scheme
defined in this section is in modelling networks
with transient agents, where other communication
schemes such as shared-variable and synchronisa-
tion are also required. The main point of technical
difference with CSP synchronisation are that the
sender is never blocked waiting for a receiver.
A related communication mechanism is the bar-

rier synchronisation of Occam [36], where processes
can dynamically register an interest in a barrier,
and all such processes are blocked until every other
registered process is ready. In that scheme there
is no explicit sender, and as such is closer to CSP
synchronisation. Other situations in which message
passing frameworks must be combined with state-
based constructs include security protocols, as ex-
plored, for instance, by Chevalier et al. [37, 38].
Cardelli and Gordon explore the concept of ambi-
ent processes more abstractly in [39].

4. Behavior Trees

In this section we provide a brief and informal
description of Behavior Trees and the method for
developing specifications from requirements; more
detail on Behavior Trees, and the motivation for
them, is available elsewhere [6, 7, 8]. The Behavior
Tree notation as presented in [6] also includes other
constructs, which may be mapped into the basic
primitives we give here.

4.1. Notation and informal description

Nodes. The Behavior Tree node types are given
in Fig. 7. Each node refers to a specific compo-
nent (C ), and describes some operation involving
that component. A state update node updates the
state of C to some expression S , while a guard
node blocks until predicate P is satisfied by C ’s
state. The full Behavior Tree notation includes
many types of nodes and node combinators for ex-
pressing predicates on the state and for updates,
but in this paper we have used generalised “state
updates” and “guard” nodes. It is straightforward
to map the original Behavior Tree nodes and node
combinators into our more general node.
In addition to these state-based nodes, the no-

tation includes message-based communication. An
output event node indicates that C generates mes-
sage m (possibly with a list of values). The re-
ciprocal input event node blocks until C receives

message m (storing the passed values (if any) into
a list of variables).
The bottom line of Fig. 7 gives four node modi-

fiers, which operate on some node N : a well-formed
tree will therefore contain a node N at some other
place4. A goto node indicates that the subsequent
behaviour should be that of the subtree rooted at
node N . Any such tree must appear in an alterna-
tive branch. Typically goto nodes (and reversion
nodes, see below) are leaf nodes. Goto nodes are
used as a shorthand when the same behaviour oc-
curs in different parts of the tree. A process kill
node terminates any behaviour associated with the
tree rooted at node N . The target node must ap-
pear in a concurrent branch. A reversion node al-
lows iteration. A well-formed Behavior Tree will
have a node N as an ancestor of the reversion node,
and any behaviour associated with the tree rooted
at N is restarted from that point. A synchroni-
sation node indicates participation in a synchroni-
sation event. Each such node synchronising on N
blocks until all other such nodes are also at the
synchronisation point, at which time they may all
progress and N is executed.
Each node has an associated tag, which is used for

traceability. The tag records from which require-
ment(s) the node originates. This allows tracking of
requirements and facilitates requirements change.
In addition, nodes can be colour-coded, to indi-
cate where the developer has introduced assump-
tions/behaviour, or modified/removed behaviour
with respect to the original requirements.

Constructors. A Behavior Tree is one of the four
forms in Fig. 8: sequential flow, alternative flow,
concurrent flow or atomic composition. A sequen-
tial flow of a node N with a tree T indicates simple
ordering on node execution: node N is executed,
after which T is ready for execution. Because sev-
eral trees may be executing in parallel, it is possible
that the behaviour of other nodes will be interleaved
before and after N .
Alternative flow indicates that one of T1, ..,Tn

will be executed after N , depending on which is en-
abled first. If none are enabled, execution blocks
until one of them is ready to execute (e.g., by the
reception of a message). If more than one are en-
abled, a nondeterministic choice is made as to which
is executed.

4This well-formedness condition, and others described
later, can be checked syntactically [5].
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Figure 8: Behavior Tree constructors

A concurrent flow from node N to a set of trees,
T1, ..,Tn , indicates that after N is executed, all of
the trees are ready for execution.
An atomic composition of nodes N1, ..,Nn indi-

cates that there is no opportunity for processes op-
erating in parallel to interleave between the execu-
tion of the Nis. Therefore the nodes operate to-
gether in a single atomic action, with the order of
execution being sequentially from N1. Atomic com-
position is distinguished graphically from sequential
flow by omitting the arrowhead on the connecting
line. To be well-formed, an atomic composition of
nodes must contain at most one node of type in-
put/output event, process kill, reversion, or syn-
chronisation. An atomic composition of nodes may
take the place of a single node in the other three
constructors.

4.2. Application

The Behavior Tree method is designed for trans-
lating a requirements document, in which each re-
quirement is numbered, into a structured model.
The first step is to systematically translate each
individual requirement into a Behavior Tree and
record the requirement number in the tag. In ad-
dition, nodes are coloured if the developer believes

them to contain some sort of defect, e.g., redun-
dancy, incompleteness, ambiguity. Particularly im-
portant problems to detect are associated with in-
consistent vocabulary, which can be introduced in
documents with multiple authors: using different
terms to represent the same concept, and, more
insidious, using the same term to refer to differ-
ent concepts. The process of developing a Behav-
ior Tree can be divided amongst a group of peo-
ple who work in parallel. The trees are then inte-
grated by identifying syntactically matching nodes,
and joining them appropriately. The tags are also
merged in the joining nodes, serving to highlight
the overlapping nature of the requirements. The
resulting structure helps to identify errors in the
requirements, and the result is a single Behavior
Tree which describes the system as a whole.

The process has the benefit that it can be initially
split amongst developers working largely indepen-
dently. The combination of tagging and colour cod-
ing means that clients can use the Behavior Tree
model to quickly find problems with the require-
ments and compare them to the original document.
We demonstrate the approach more fully with an
example.
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Control
> halt <R6

Control
[shutdown]R6

 Control 
[ready]R6

Control
[ready]R6

Control
[active]R5

Control
> bpush1 <

R5 Control
> bpush2 <R5

Control
[modeA]R5

Control
[modeB]R5

Sensor
> error <R2

Sensor
< halt  >R2

Control
[ready]R4

Control
> bpush1 <

R4

Control
[active]R4

Control
[init]R1

Sensor
> error <

R1 Control
[ready]R1

R1 R2

R3

R4 R5

R6

Control
???ready???R3

 Sensor 
> error <R3

Sensor
< halt  >R3

Figure 9: Individual requirements

4.3. Example

In this section we show an example of how the
Behavior Tree notation is used to construct a spec-
ification from natural language requirements. For
presentation purposes we give a partial specifica-
tion of a controller system, with the intention of
showing the type of systems and requirements for
which the Behavior Tree notation is designed.

4.3.1. The system and its requirements

Consider an abstract system, which is comprised
of a Control component with two buttons, and a
Sensor component. The behaviour of the system is
given by the following requirements:

R1. After performing tasks required for initialisa-
tion, the Control component becomes ready
and the Sensor can detect errors.

R2. When the Sensor detects an error, it tells the
Control to halt.

R3. After telling the Control to halt, the Sensor
waits until the Control is ready before trying
to detect further errors.

R4. After the Control component is ready, if but-
ton 1 is pressed the Control component be-
comes active.

R5. While the Control component is active, if but-
ton 1 is pressed it enters mode A, or if button
2 is pressed it enters mode B.

R6. At any time after the Control component has
become ready, if a halt message is received,
the Control goes into shutdown mode before
returning to the ready state.

4.3.2. Individual requirements translation

The translation of the individual requirements
are given in Fig. 9. The translation process serves
to compile a vocabulary of component names, com-
ponent states, messages, and events, which are col-
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Sensor
> error <

Sensor
< halt  >

Control
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Sensor ^
>error<
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(a) (b)

Figure 10: Partial integration of (a) Requirements R2 and R3 and (b) Requirements R4 and R6

lected in the Composition Tree5. In translating Re-
quirement R1, we have abstracted the initialisation
tasks as the state init , and used ready for the sub-
sequent state. The Sensor and Control are given as
parallel subtrees, as it appears they are intended to
operate concurrently. We use error as the message
name for detecting error events from the environ-
ment. Requirement R2 is translated as a sequential
flow, such that after the error event is detected,
the sensor sends the halt message, which is a mes-
sage used exclusively for communication between
the Sensor and the Control . Requirement R3 is
also translated using sequential flow, making use of
a guard node to test the state of Control . An alter-
native to using a guard node to model the “wait”
is to synchronise with the Control process on its
readiness, and thus move from shared-variable com-
munication to synchronised communication. We
explore this alternative further in Sect. 5.3.2. Once
the Control is known to be in the ready state, the
Sensor returns to its earlier behaviour of waiting
for an error event. This will likely become a re-
version node, since it is repeat behaviour, but this
will be resolved during the integration phase. Re-
quirement R4 and Requirement R6 are translated
similarly. Requirement R5 is translated using alter-
native choice between the two input events. Once
one of the buttons is pressed, the Control enters the
corresponding mode and will not leave it (unless the

5As mentioned earlier, we do not consider the static in-
formation contained in Composition Trees in this paper.

system is restarted).
Several issues are raised during the translation,

for instance, in Requirement R6, is the halt message
only of relevance while the Control is in the state
ready , or should the same behaviour follow even if
it has progressed to state active? For this exam-
ple, we have assumed the Control will be shutdown
anytime it receives a halt message. Another issue is
what happens if the second button is pressed while
the Control is ready? We have assumed that the
second button is ignored unless Control is active.
These are exactly the types of issues that Behavior
Tree modelling is intended to highlight; while such
issues will be raised whichever modelling language
or approach is used, using Behavior Trees the task
is systematic. If the modeller notes choices and
assumptions using the colour coding, they can be
traced back to the original requirements document
using the tags, facilitating discussion with the orig-
inator of the requirements as the model develops.

4.3.3. Requirements integration

We now integrate the individual trees to con-
struct a full view of the system. The integration
process is based on finding syntactically matching
nodes, and completing other aspects of the tree such
as reversion. Although this process is systematic,
there are still choices for the modeller to make, in
particular, if the integration results in a branch,
whether the branch should be a parallel or alterna-
tive choice. The order in which trees are integrated
will also effect the shape of the final tree. The con-
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Figure 11: Fully integrated requirements

tribution of the Behavior Tree modelling approach
is not to eliminate such choices, but to make the
choice explicit and traceable in the model.

Requirements R2 and R3 integrate end-to-end,
since they share a common (joining) node. Fur-
thermore, because the leaf node Sensor > error <

matches one of its ancestors, it is flagged as a re-
version node. The resulting tree, which captures
the behaviour of the Sensor component, is shown
in Fig. 10(a). Note that the joining node refer-
ences the tags for both requirements. Fig. 10(b)
shows the result of integrating Requirements R4
and R6. In this case the integration point (node
Control[ready]) is the root node of both trees.
We must decide whether the resulting branches are
composed in parallel or as alternatives. As men-
tioned above, we assume that the halt message is
always of relevance, and hence is not affected by
the subsequent behaviour of Control ; hence we in-
tegrate the trees using parallel composition. The
Control[ready] leaf node is also flagged as a re-
version.

It remains to integrate Requirement R5 with
Fig. 10(b), and to integrate both trees with Re-
quirement R1, both of which tasks are straightfor-

ward. The resulting Behavior Tree, giving the com-
plete behaviour of the system, is shown in Fig. 11.

The system has been built out of its natural lan-
guage requirements in a straightforward manner.
Even though the requirements we have given are
contrived for simplicity, they demonstrate that even
in simple systems there is considerable room for
(mis)interpretation of natural language. Using the
Behavior Tree approach, inconsistencies and mod-
elling assumptions can be highlighted and commu-
nicated to the client, and through keeping (multi-
ple) tags in the tree, traceability from the tree back
to the original requirements is maintained.

For example, consider a variation on Require-
ment R3 in which the first phrase is omitted: The
Sensor waits until the Control is ready before try-
ing to detect further errors. The resulting trans-
lation would appear as in Fig. 9, without the first
Sensor < halt > node. This means that Require-
ment R3 no longer integrates with Requirement R2.
One may be tempted to treat the guard as a state
realisation instead, and integrate it with the root
node of Requirement R6, but this leads to an in-
consistent tree where it is unclear that the Sensor
process needs to be restarted. The error of omission
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may be resolved by adding the missing node to Re-
quirement R3 and flagging it as a missing require-
ment using the colour coding, and later confirming
the decision with the client using the tags. Errors
of ambiguity may be discovered if there are multiple
integration points; redundancy may be discovered if
there are identical subtrees; and inconsistency may
be uncovered if integration leads to contradictory
behaviour.

5. Translating Behavior Trees to CSPσ

In this section we describe how Behavior Trees
may be translated into CSPσ processes. The trans-
lation process is defined so that the structure of
the tree is preserved, and is summarised in Fig. 12.
The translation occurs in two phases: the first is to
identify and mark subtrees that are the target of
process kill and reversion. The second phase trans-
lates the marked trees recursively. We describe this
in more detail below. Throughout the translation
process we assume that given a Behavior Tree node
N, a canonical representation of N may be gener-
ated and used as events and messages. For instance,
from the node Control[ready] we may generate a
string such as control .ready . We write rev(N) for
the reversion (restart) event generated from node
N, and kill(N) for the kill message generated from
node N.

5.1. Phase 1

Phase 1 is an initial traversal of the Behavior Tree
to handle the node modifiers that refer to subtrees
found elsewhere in the structure. The first task in
Phase 1 is to replace goto nodes N=> with the target
tree, which we write as tree(N), i.e., the subtree with
root node N. For this replacement to be well-formed,
the scope of the node and its target must be the
same. That is, they must reference the same set of
variables, events, and messages. This is implied by
the well-formedness constraints on Behavior Trees,
and that source and target nodes of a goto must
appear in sibling branches in an alternative flow.

The remaining tasks of Phase 1 are to mark
trees that are the target of a process kill or re-
version. Given a tree T we let kill:T be the tree
marked as the target of a process kill, rev:T be
the tree marked as a target of a reversion node,
and kill,rev:T be the tree marked as the target
of both a process kill and a reversion. Trees may

of course be unmarked. The marking is a tempo-
rary syntactic construct used only as an intermedi-
ate step in the translation. The marking may be
achieved through a simple depth-first traversal of
the tree, since any Behavior Tree has a finite num-
ber of subtrees.
Given the existence of a node N−− in the tree,

the target tree of that node, say T, is replaced by
kill:T. Tree T must be the subtree which has root
node N. A similar translation occurs for trees that
are the target of a reversion, or of both a process
kill and a reversion.

5.2. Phase 2

Having identified the targets of process kills and
reversion, and having eliminated goto nodes, the
translation to CSPσ may begin. We use the  
relation to transform a Behavior Tree to a CSPσ

process, or a node to a CSPσ action.
The left-hand column of Fig. 12 for Phase 2 is a

left-to-right textual representation of the constructs
which were depicted graphically in Figs. 7 and 8,
as well as the marked trees described above. The
translated versions are given in the right-hand col-
umn.

5.2.1. Targets of process kill

A tree with root node N that is marked as the
target of a process kill node is translated to an in-
terrupt process, where the interrupt is triggered by
the canonical message kill(N). As described below,
this is the message that is sent by the correspond-
ing process kill node, N−−. After the kill message
is received, the process terminates.

5.2.2. Targets of reversion

Before giving the translation for the target of a
reversion we first briefly discuss the difference be-
tween reversion and recursion: in a reversion the
behaviour of relevant sibling threads must termi-
nate. In this sense, a reversion behaves as a restart.
When a thread with a reversion does not contain
any parallelism, then the behaviour is identical to
that of recursion. Consider the following example:

µ r • (µ s • .. → s) ‖ (.. → r)

There are two threads operating in parallel. The
inner thread scoped by the recursion name s may
be thought of as a sensor, while the other thread
may be some controller thread. Under certain con-
ditions, the controller thread will need to restart the

20



Phase 1.
N=> becomes tree(N)

Let N be root(T)
T becomes kill:T if N−− exists
T becomes rev:T if N̂ exists

T becomes kill,rev:T if N−− and N̂ exist

Phase 2.
Let N be root(T), and assume T T ′, Ti T

′
i , N N

′, and Ni N
′
i

kill:T  T ′ 4 (recv kill(N) → STOP)
rev:T  restart(rev(N),T ′)

kill,rev:T  restart(rev(N),T ′)4 (recv kill(N) → STOP)

N -> T  N ′ → T ′

N ->[] (T1, .., Tn)  N ′ → (T ′
1 [] .. [] T

′
n)

N -> (T1, .., Tn)  N ′ → ((T ′
1 ‖
A1

T ′
2) ‖
A2

.. ‖
An−1

T ′
n)

(N1 -- .. -- Nn)  (N ′
1 ◦ .. ◦ N ′

n)

C[s]  C :=S
C???s???  [C = S ]
C > m <  recvm
C < m >  sendm

N−−  send kill(N)
N̂  rev(N)

N@  (N ′, sync(N))

Figure 12: Translation summary

entire system. As the program above is written, ev-
ery time the controller restarts the system through
unfolding r , a new copy of the sensor thread will
be generated. However, this does not model the
typical restart of a system, where each subthread
will be restarted individually. This is the meaning
of reversion, and is part of the Behavior Tree no-
tation because within requirements documents it is
more common to find “restart” behaviour than the
behaviour associated with pure recursion.

The target of a reversion node becomes a restart
process, where the restart is triggered by the canon-
ical event rev(N). This is an event that occurs in-
ternally to T ′, and is generated by a corresponding
source reversion node, N̂ . When the event rev(N) is
generated by the execution of T ′, the subprocesses
associated with the tree T ′ are terminated and a
new copy of T ′ begins (recall abbreviation (2)).

5.2.3. Targets of process kill and reversion

In the case where a node is the target of both a
process kill and a reversion, the resulting process
becomes a restart inside an interrupt. The process
will execute, and restart, as usual, until the kill mes-
sage is received, and all behaviour is terminated.

5.2.4. Translation of constructors

A sequential flow in Behavior Trees, represented
textually as N -> T, is straightforwardly translated
to prefixing in CSPσ. Alternative flow, represented
textually as N ->[] (T1, .., Tn), is straightfor-
wardly translated to external choice.

Concurrent branching, represented textually as N
-> (T1, .., Tn), is translated to an alphabetised
parallel composition. Given a composition T1‖

A

T2,

the interface A is the intersection of the common
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synchronisation events in T1 and T2.
6

An atomic composition of nodes, represented tex-
tually as (N1 -- .. -- Nn), are relationally com-
posed into a single command/event pair. The in-
dividual nodes are translated independently, and
composed in order. Since there can be at most one
event or message in a CSPσ action, there can be
at most one event-based node in the chain. This
means there may be at most one node of type in-
put/output event, process kill, reversion, or syn-
chronisation in the chain. The remaining nodes
must be guards, state updates, with potentially a
goto node as the leaf (assuming the chain does not
also contain a reversion).
The relational composition of two specification

commands which have the same frame is given be-
low, and is described in detail in [20].

x : [R1] ◦ x : [R2] = x : [∃ x
′′ • R1[

x ′′

x ′
] ∧ R2[

x ′′

x
]]

The expression R1[
x ′′

x ′
] is R1 with a syntactic re-

placement of variables x ′ with x ′′. Note that this
is a different type of substitution to that involv-
ing states. For the purposes of defining relational
composition when the frames do not match, their
frames may be widened according to the rule below.

x : [R] = x , y : [R ∧ y ′ = y ]

for x ∩ y = ∅
(17)

We lift relational composition to command/event
pairs, as defined below.

(c1, τ) ◦ (c2, τ) = (c1 ◦ c2, τ)
(c1, a) ◦ (c2, τ) = (c1 ◦ c2, a) = (c1, τ) ◦ (c2, a)

The composition is undefined if more than one of
the pairs has a non-internal event. An example of
translating atomic composition is given in Sect. 5.3.

5.2.5. Translation of state- and event-based nodes

A state update C[s] is straightforwardly tran-
slated to an update of C to the value s, C := s. A
guard C ???s??? is translated simply to [C = s].
The full syntax for Behavior Trees contains con-
structs for tests other than equality; these may be
translated straightforwardly to guards as well.
Input nodes, C > m <, are translated to receiving

messages, and outputs, C < m >, to sending mes-
sages.

6This is a similar process to determining the alphabet of
an individual process following the ideas of Hoare [10].

5.2.6. Kill nodes

A kill node is translated to the sending of message
kill(N), which is the interrupt message in the target
process. Note that we use a message rather than
an event, in case the target thread is not active or
relevant at this point. This way the killing thread
does not need to wait.

5.2.7. Reversion nodes

A reversion node, represented textually as N̂ , is
translated to the canonical event rev(N).
By default we do not place the event rev(N) into

the interfaces of parallel composition. This means
that any single reversion node will trigger a restart.
However, this may result in undesirable race condi-
tions in some cases. An alternative is for all related
reversion nodes (or a selection of them) to synchro-
nise before the restart can take place. In Behavior
Trees, this behaviour can be expressed by coupling
the reversion symbol with the synchronisation sym-
bol. To translate this behaviour into CSPσ, the
rev(N) event must be added to the interfaces of the
relevant parallel composition operators.

5.2.8. Synchronisations

A synchronisation, represented textually as N@,
is mapped to a CSPσ event sync(N), which, as
above, we assume may be constructed canonically
from N . In addition, the node N itself must
be translated, and this is paired with the event
sync(N). This implies that the node N must be
a guard or state update, as it is not possible to
combine more than one event or message. This is
typical of process algebras, where it is not possible
to atomically combine the actions of one event with
another.
For instance, the node Control[ready]@ is trans-

lated to

(Control := ready , control .ready)

where the event control .ready has been constructed
from the node itself. Since all synchronisation
nodes by definition encode the same test or update
of a component, only one of the synchronisation
nodes requires the translated node to be paired with
the event; the remaining nodes are translated to the
singular event sync(N).

5.3. Example translation

The translation of the Behavior Tree in Fig. 11
is given in Fig. 13. To ease the presentation we
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Sys =̂ (state {Control 7→ } • Main)\{send halt , recv halt}
Main =̂ (Control := init) →

(restart(rev(s),Sensor))
‖
(restart(rev(c),ControlReady))

Sensor =̂ recv error → send halt → [Control = ready ] → rev(s)
ControlReady =̂ (Control := ready) →

recv halt → (Control := shutdown) → rev(c)
‖
recv bpush1 → (Control := active) →

(recv bpush1 → (Control :=modeA)
[] recv bpush2 → (Control :=modeB))

Figure 13: Translated version of Fig. 11

break the definition into several (named) subpro-
cesses. Because there are no synchronisations, the
interfaces of the parallel composition operators are
empty and hence omitted. All revert events e are
written rev(e), and for brevity we allow leaf nodes
N to abbreviate the process N → SKIP . At the top
level we define the process Sys , which gives the con-
text of the system. It includes the variable Control
to represent the state of the Control component,
which has some unknown initial value (represented
by an underscore), and the halt message is hidden
from external observers. The error and bpush mes-
sages are not hidden, since they are received from
processes outside of the scope of Sys .

This example shows the translation of the con-
trol structures parallel, alternative, and sequential
flow, and the node types state update, guard, in-
put/output event and reversion. We now provide
examples of the remaining constructs.

5.3.1. Process kill

Consider an extension to the controller system
where another behaviour involves the destruction
of the sensor process when the sensor level exceeds
some threshold.

Sensor
> error <

Sensor
< halt  >

Control
???ready???

Sensor ^
>error<

R1
R2

R2
R3

R3

R3

Level
??? >50 ???

Sensor
> error <

R6

R6
--

...

...

The translation of this behaviour requires a new
message name, say, kill(s), which is generated by
some environment process. This event acts as an
interrupt to the Sensor process, which is now ex-
tended to handle this message.

.. → [level > 50] → send kill(s) → ..
‖
SensorInt

where SensorInt =̂ Sensor 4 recv kill(s). The exe-
cution of this tree is straightforward application of
known CSP constructs.

The introduction of the process kill node means
that the node Sensor >error< is now the target of
both a kill and a reversion.

5.3.2. Synchronisation

Consider using synchronisation nodes to commu-
nicate between the Control and the Sensor .
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Control
[init]R1

Sensor
> error <

Sensor
< halt  >

Control
[ready]

Sensor ^
>error<

R1
R2

R2
R3

R3

R3

@

Control
[ready]

R1
R4
R6

@

...

Instead of a guard to check whether the Control
is ready, the Sensor synchronises on the change to
the ready state. Note the use of the synchronisation
flag “@”.
The synchronisation nodes are translated as de-

scribed earlier: we arbitrarily choose one of the
nodes (in the Control process) to contain the action
of updating the Control , while both nodes synchro-
nise on the event control .ready , which is placed into
the interface of the parallel operator.

Control := init →
(Control := ready , control .ready) → ..
‖{control.ready}

(.. → control .ready → ..)

This is a stronger, and perhaps more correct,
version of the specification, since the Sensor will
restart as soon as the Control becomes ready; us-
ing a guard, the Sensor will not become ready until
the next time the Sensor process takes a step. This
is a common issue (a “race condition”) with shared-
variable communication.

5.3.3. Atomic composition

Consider a modification of the controller system
in which, when the Control component is in the
ready state and button1 is pushed, the Control
immediately becomes active. Unarrowed lines are
used to connect the first three nodes. The three
nodes are combined into a single atomic action,
which is enabled based on the state of the com-
ponent Control , a message being received, and in-
cludes an update of the state.
Using relational composition as de-

scribed earlier, we generate the follow-
ing single action, in which we abbreviate

Control by C , to represent the three nodes.

Control
[active]

Control
> bpush1 <

Control
[modeA]

Control
> bpush2 <

Control
[modeB]

R4
R5

R5

R5

R5

R5

  Control
???ready???

R1
R4
R6

Control
> bpush1 <

R4

(C : [C = ready ∧ C ′ = active], recv bpush1) → ..

5.4. Summary

We have presented a general process for trans-
lating Behavior Trees into an extended version of
CSP. The structure of the Behavior Tree itself is
preserved, with only minor additions required for
handling reversion and process termination. The
most complex translation was that for reversion,
due to its subtle difference to recursion; however,
the restart operator is roughly of the same com-
plexity as the interrupt and exception operators of
CSP [11, 34].
Since there is a structure-preserving mapping

from Behavior Trees to an extended version of CSP,
based on an operational semantics, there is scope
for using program verification methods such as ani-
mation, model checking, and refinement, which can
build on existing support for CSP. Furthermore, the
structure-preserving nature of the translation also
admits representing the animation of the dynamic
behaviour of the models back to the original graph-
ical Behavior Tree. This “backwards-translation”
process would show the dynamic flow of control
through the requirements document using the tags
on the nodes.

6. Conclusions

In this paper we have presented a semantics for
Behavior Trees. This is a graphical notation used
for building a model of a system from requirements
found in informally written documents, and as such
it contains a collection of language constructs: state
changes and tests, message passing, and synchroni-
sation. Typical specification languages are either
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state-based, such as Z [40] and VDM [41], or inter-
action based, such as CSP [10, 11] and CCS [42].
Our approach to defining the semantics for Behav-
ior Trees was to extend CSP, which natively han-
dles process synchronisation, to include hierarchi-
cal state and a publish/subscribe notion of message
passing. We then give a translation from the Be-
havior Tree notation into a process in the extended
CSP language. The formal semantics provides a
definition of the Behavior Tree notation which can
be used as the basis for developing tool support
such as simulators, model checking, and theorem
proving.

Plotkin’s seminal paper on operational seman-
tics [35] defines transition rules for imperative lan-
guages with state. There are also many other exam-
ples of such semantics in the literature, notably the
semantics of Hoare and He Jifeng [43], and the se-
mantics for the programming language Occam [36].
Our approach is different in that the state is treated
as part of the process, and guards and updates are
treated as labels to the transition relation. This
allows state accesses to be (perhaps partially) in-
stantiated within a context which defines the val-
ues of the local state. The traditional operational
semantics approach defines the transition relation
on program/state pairs, and the state is updated in
the rule for each construct (e.g., update). This ap-
proach does not so easily support the hierarchical
construction of the state as in our approach, with
local variables in the traditional style being cap-
tured as global variables with syntactic restrictions.
In the approach adopted here, by treating state ac-
cess as transition labels, the state-based reasoning
is ‘quarantined’ to a single, general rule (Rule 12),
allowing the construct rules, e.g., Rule 1, to be de-
fined concisely, and without explicit reference to a
particular state.
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