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ABSTRACT

While a variety of different optically-driven micromachines have been demonstrated by a number of groups
around the world, there is a striking similarity in the designs used. The typical optically-driven rotor consists
of a number of arms attached to a central hub, or elongated stalk in the case of free-floating rotors. This is a
consequence of the relationship between the symmetry of a scattering object and the transfer of optical angular
momentum from a beam to the object.

We use a hybrid discrete-dipole approximation/T-matrix method algorithm to computationally model the
scattering by such optically-driven rotors. We systematically explore the effects of the most important parameters
of rotors, such as the thickness, length, and width of the arms, in order to maximize the torque efficiency.

We show that it is possible to use computational modelling to optimize the design of such devices. We also
compare the computational results with experiment.
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1. INTRODUCTION

1.1 Optical tweezers

Microscopic particles can be trapped via the ‘gradient force’ using a tightly focussed Gaussian laser beam.
This single-beam trapping was first demonstrated at AT&T Bell Laboratories1 in 1985. This type of optical
trap is commonly called optical tweezers, and is based upon transfer of linear momentum of light by scattering.
Optical tweezers can also apply torque based on the transfer of angular momentum, either orbital or spin angular
momentum. Spin angular momentum is carried by a beam with circular or elliptical polarization whereas, for
example, a Laguerre–Gauss (LG) beam carries orbital angular momentum about the beam axis.

Both spin2 and orbital3 angular momenta can be transferred through absorption; the resulting heating makes
this method impractical for most purposes. Alternatively, if the particle changes the angular momentum of
the incident beam, there will an angular momentum transfer which results in torque on the particle. Spin
angular momentum can be transferred to particles with either microscopic material birefringence4,5 or form
birefringence.6 Orbital angular momentum can be transferred by making use of non-axisymmetric beams7 on
microrotors.8 In this paper we model the torque on specially designed and fabricated micro objects when trapped
and rotated using LG0l beams, where l is the azimuthal mode index.
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1.2 The microrotor

Microrotors are likely to be key components for micromachines in microengineering or microfluidic applications.
As part of the design process we employ computational methods to optimize the structure of the microrotor for
optimal torque efficiency. We fabricate microrotors using two-photon photopolymerization9 and they are usually
driven using LG02 or LG04 beams. The method we use to determine torque efficiency experimentally10,11 involves
measuring the rate of rotation and the change in circular polarization.

We propose a basic design of a quatrefoil rotor (figure 1) which is is fan shaped, axle mounted with caps on
the ends of the axle to restrict movement along the beam axis; its size will be in the order of a few microns. The
actual dimensions of the prototype, i.e., blade radius, hub radius, height and blade angle, will be based on the
computer simulated results for optimal torque. The quatrefoil rotor will operate in water where the wavelength
of the incident beam will be 798 nm.

Figure 1. Quatrefoil axle mounted microrotor.

2. COMPUTATIONAL MODELLING

2.1 Modelling methods

Equipped with the combination of the methodologies below, it is possible to model a complex mesoscopic structure
that is several microns in size. Without symmetry optimizations, the memory requirements would exceed that
available on a high-end desktop PC. Moreover, the time taken to calculate the T -matrix for a single microrotor
would be in the order of weeks. To optimize the design of a microrotor, we need to alter its dimensions; this
involves calculating well over a hundred T -matrices.

The calculations are performed using MATLAB on a high-end desktop PC. Some of the functions used were
from the Optical Tweezers Toolbox12 library.
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2.2 VSWFs and T -matrix

Electric fields (and similarly for magnetic fields) can be represented as multipole expansions of incident and
scattered vector spherical wave functions (VSWFs)

Einc =

Nmax∑
n=1

n∑
m=−n

anmM(3)
nm + bnmN(3)

nm, (1)

Escat =

Nmax∑
n=1

n∑
m=−n

pnmM(1)
nm + qnmN(1)

nm. (2)

where anm and bnm are the incident coefficients, pnm and qnm are the scattering coefficients, n is the radial
mode index, m is the azimuthal mode index and M and N, orthonormal eigenfunctions of the vector Helmholtz
equation, are known as vector spherical wave functions (VSWFs).13 The number of terms are truncated to Nmax,
determined by a radially-based criterion.14

T -matrix connects the coefficients of the scattered and incident fields. The T -matrix characterizes the light
scattering properties of a particle for a given wavelength[

pnm

qnm

]
= T

[
anm

bnm

]
. (3)

The main advantage of the T -matrix is that it only has to be calculated once fro a given object. If the illumination
changes, incident beam coefficients can be quickly calculated and the above operation by the T -matrix (3) takes
merely seconds.

2.3 DDA

The discrete dipole approximation15,16 (DDA), sometimes referred to as the coupled-dipole method (CDM), is a
method of modelling scattering by particles with arbitrary shapes and allows for inhomogeneous and anisotropic
materials. This method can be applied to objects ranging from Rayleigh particles to large particles (of size many
times the wavelength); the size is limited by computational time and available RAM.

The particle/scatterer is represented by point dipoles (figure 2) numbered j = 1, ..., N with polarizabilities
αj located at positions rj ; we do not anticipate that the axle caps (in figure 1) will have much effect on the
incident beams and thus they are not included in the model. Each dipole has polarization

Pj = αjEj , (4)

where αj is the polarizability tensor16 and Ej is the time harmonic E-field amplitude at each dipole location rj

due to the incident field Einc,j = E0 exp(ikrj iωt) plus contributions from N − 1 dipoles:

Ej = Einc,j −
∑
k �=j

AjkPj , (5)

where the off-diagonal 3× 3 tensors of the interaction matrix are

Ajk =
exp(ikrjk)

rjk

[
k2(r̂jkr̂jk − 13) +

ikrjk − 1

r2
jk

(3r̂jk r̂jk − I3)

]
, j �= k, (6)

where rjk is the distance from points rj to rk, r̂jk is the unit vector in the direction from points rj to rk. Defining
the diagonal tensors as Ajj = α−1

j , and substituting into equations 4 and 5,

Einc,j = AjjPj +
∑
k �=j

AjkPj , (7)
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the problem is reduced to solving 3N unknown polarizations Pj in the following system of 3N linear equations:

N∑
k=1

AjkPj = Einc,j . (8)

Ajk is a square matrix. Once Pj is known, the field, force, torque and other quantities of interest can be
calculated.

2.4 Near field point-matching

The near field calculated via DDA can be matched to scattered field (2) expressed in terms of VSWFs at points
around the scatterer (figure 3). Since we have the dipole moments, Pj , we can derive a ‘field matrix’, Fij , derived
from equations of electric dipole fields17 such that

E
(DDA)
i =

NP M∑
i=1

FijPj , (9)

where NPM is the number of points to be matched, j is the index for the dipole, i is the index for the near field
point and field matrix, Fij , is made up of 3× 3 tensors

Fij =
exp(ikrjk)

rjk

[
k2(r̂jkr̂jk − 13) +

ikrjk − 1

rjk
(3r̂jk r̂jk − 13)

]
, (10)

where r̂jk is the unit vector between a dipole and a matched point.

Rotational and mirror symmetry optimizations18 may also be applied to (9) such that we only need to
calculate the fields of the matched points in one octant:

E
(DDA,oct)
i =

NP M /8∑
i=1

F
(oct)
ij P

(oct)
j , (11)

where only the fields for an octant are calculated (although all the dipole moments are used). Thus reduces the
number of equations by a factor of 64 compared to (9). Given the VSWF expansion of the scattered field in (2),
we can solve for the scattering coefficients

pnm = M
(1)
nm(kr)/E

(DDA)
TE,nm, (12)

qnm = N
(1)
nm(kr)/E

(DDA)
TM,nm.

As we cycle through each combination of n and m, we obtain the solutions for the scattering coefficients pnm

and qnm which represent coupling between the n and m incident and scattered modes; pnm and qnm together
make up one column of the T -matrix at a time.

2.5 Symmetry optimizations

The symmetry optimization employed for the calculations is discussed in detail in our previous publication.18 In
addition to the scheme in (11) for the point-matching method, the discrete rotational symmetry of a scatterer
can be similarly exploited, using phase relations, to reduce the memory footprint and computational time for
the DDA calculations.

When calculating the T -matrix, we further exploited the discrete rotational symmetry of the scatterer using
Floquet’s theorem to bypass calculations for redundant scattered modes. Also, if the scatterer, in this case the
quatrefoil rotor, is always on the beam’s axis, and the type of illumination is always known, we only need to
cycle through a limited number of incident modes.

By combining these optimization methods memory and computational time savings of at least 2 orders of
magnitude can be attained.
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Figure 2. Dipole model of the quatrefoil microrotor.

a) b)
Figure 3. a) Near field matching and b) octant near field matching for a dipole model of the quatrefoil rotor.

2.6 Torque calculation

The linear momentum and the angular momentum fluxes are calculated using the explicit evaluation of Clebsch–
Gordan coefficients.19 The momentum flux divided by the incident power gives the axial trapping efficiency:

Q =
2

Pinc

∞∑
n=1

1

n + 1

n∑
m=−n

{m

n
Re(a∗nmbnm − p∗nmqnm) (13)

+

[
n(n + 2)(n−m + 1)(n + m + 1)

(2n + 1)(2n + 3)

]1/2

×Re(pnmp∗n+1,m + qnmq∗n+1,m − anma∗n+1,m − bnmb∗n+1,m)
}

,

in units of nh̄k per photon (relating to h̄ω energy of the wave) and Pinc is the power of the incident beam. The
angular momentum flux divided by the incident power gives the torque efficiency (or normalized torque) about
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the beam axis:

τz =

Nmax∑
n=1

n∑
m=−n

m(|anm|
2 + |bnm|

2 − |pnm|
2 − |qnm|

2)/Pinc (14)

in units of h̄ per photon. The incident beam power Pinc in units of h̄ per photon is

Pinc =

Nmax∑
n=1

n∑
m=−n

|anm|
2 + |bnm|

2. (15)

3. RESULTS

3.1 Laguerre–Gauss trapping and driving beams

We intend to trap and rotate the fabricated microrotors with Laguerre–Gauss LG02 and LG04 beams, tightly
focussed with the beam convergence at 78◦. Figures 4 and 5 show the cross-sections of the free field LG02 and
LG04 beams respectively, superimposed on the cross-section of the quatrefoil rotor. The LG0� beams have low
intensity cores (dark spot).
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Figure 4. Intensity contour of the LG02 incident beam and quatrefoil rotor profile.

To model the LG incident beams we used the beam shape coefficient (BSC) far field point-matching function20

from the Optical Tweezers Computational Toolbox12 to obtain the incident coefficients. Applying the T -matrix
to the incident beam coefficients (3), we obtained the scattering coefficients and subsequently calculated the
torque using (14).

3.2 Dimensions for optimal torque

The design of micromachines is an ongoing project and our goal for the quatrefoil rotor is to find the optimal
dimensions for h, ra, rb and φ. All linear dimensions are in wavelength units and the angle in radians.

First, we varied the height h whilst keeping the other dimensions constant: φ = π/4, rb = 0 and two different
blade radii, ra = 1 and ra = 2. The torque efficiency plateaued after h = 2.2 for ra = 1 and h = 3.4 for ra = 2
(figure 6) which stands to reason since the beam profiles (figures 4 and 5) show a sharp drop in intensity outside
that vertical region.

It is apparent thus far and in subsequent calculations that we obtain a higher torque efficiency with the LG02

beam. Thus, we will favour design towards the LG02 beam. Now keeping the rotor height at h = 3.4 we varied
the blade radius and found the optimum at ra = 2.6 (figure 7).
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Figure 5. Intensity contour of the LG04 incident beam and quatrefoil rotor profile.

We settled for h = 2.2 and ra = 2.2 to expedite subsequent calculations. The hub radius rb was varied, and
it can be seen that the torque efficiency drops rapidly for rb > 0.4 (figure 8). In the extreme case, rb = ra, the
rotor becomes a cylinder that is lined up with the beam axis and no torque can be generated.

Still keeping h = 2.2 and ra = 2.2, but rb = 0 and varying φ, we now look for the optimal blade angle. It
appears that the blades should sweep an angle between 35◦ and 40◦ (figure 9) to achieve optimal torque.

4. DISCUSSION

The LG04 beam produced lower torque efficiency than the LG02. We did not expect that the torque would
decrease with increasing l for the LG0l beam since orbital angular momentum per photon is just lh̄. This decrease
in torque with increasing l has also been observed by other researchers performing torque measurements with
anisotropic spheres;21 they did not offer a rigorous explanation and one would question the relevance of orbital
angular momentum to spinning anisotropic spheres where the spin angular momentum is what we expect to
drive the sphere.

One possible explanation is that LG04 couples to LG00, in effect shifting the high intensity ring to the centre.
On the other hand LG02 couples to LG0 −2; the ring remains in the same area but the handedness changes. This
suggests the the loss of efficiency of the LG04 is due to weak coupling between incident and scattered modes
with very little overlap in the plane of the rotor. We propose further investigation by examining the scattering
coefficients of the modes in question.

We explored the basic behaviour, namely the torque, of the quatrefoil rotor whilst examining the effects
thickness, radius and blade angle by varying only one parameter at a time. This gave us information on the
efficiency of the incident beam and approximated a starting point for achieving the optimal dimensions. Further
work can be undertaken with a more sophisticated algorithm such as simulated annealing22,23 whereby the global
minimum of the search space (the multi-dimensional space formed by the abovementioned parameters) can be
determined.

The symmetry optimization18 schemes used in conjunction between the DDA and the point-matching methods
to formulate the T -matrix have proven to be sufficiently fast; this method is suitable for aiding the design
of microrotors and other micromachine components. The reduction of the memory footprint is essential for
modelling microrotors as their size would have resulted in interaction matrix RAM requirements that exceed
those available on high-end desktop PCs.

Proc. of SPIE Vol. 7400  74001Z-7

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 11/23/2015 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



a)
0 1 2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
pol = [1 0], θ = 78o, r

a
 = 1

h/λ

To
rq

ue
 e

ffi
ci

en
cy

LG
02

LG
04

b)
0 1 2 3 4 5

0

0.5

1

1.5

2

2.5

3
pol = [1 0], θ = 78o, r

a
 = 2

h/λ

To
rq

ue
 e

ffi
ci

en
cy

LG
02

LG
04

Figure 6. The torque efficiency of the microrotor versus its height at rb = 0 and a) ra = 1λ b) ra = 2λ.
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Figure 7. The torque efficiency of the microrotor versus its blade radius at the optimal height of h = 3.4λ.

Proc. of SPIE Vol. 7400  74001Z-8

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 11/23/2015 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



0 0.5 1 1.5
0

0.5

1

1.5

2

2.5
pol = [1 0], θ = 78o, h = 2.2

r
b
/λ

To
rq

ue
 e

ffi
ci

en
cy

LG
02

LG
04

Figure 8. The torque efficiency of the microrotor versus its hub/axle radius at height of h = 2.2λ and rotor radius of
ra = 2.2λ.
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Figure 9. The torque efficiency of the microrotor versus its blade angle at height of h = 2.2λ and rotor radius of ra = 2.2λ.

Proc. of SPIE Vol. 7400  74001Z-9

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 11/23/2015 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



REFERENCES

[1] Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E., and Chu, S., “Observation of a single-beam gradient force
optical trap for dielectric particles,” Optics Letters 11, 288–290 (1986).

[2] Friese, M. E. J., Nieminen, T. A., Heckenberg, N., and Rubinsztein-Dunlop, H., “Optical torque controlled
by elliptical polarization.,” Optics Letters 23, 1–3 (1998).

[3] He, H., Friese, M. E. J., Heckenberg, N. R., and Rubinsztein-Dunlop, H., “Direct observation of transfer
of angular momentum to absorptive particles from a laser beam with a phase singularity,” Physical Review

Letters 75, 826–829 (1995).

[4] Beth, R. A., “Mechanical detection and measurement of the angular momentum of light,” Physical Re-

view 50, 115–125 (1936).

[5] Friese, M. E. J., Nieminen, T. A., Heckenberg, N., and Rubinsztein-Dunlop, H., “Optical alignment and
spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998). Erratum: Nature 395, 621
(1998).

[6] Bishop, A. I., Nieminen, T. A., Heckenberg, N. R., and Rubinsztein-Dunlop, H., “Optical application and
measurement of torque on microparticles of isotropic nonabsorbing material,” Physical Review A 68, 033802
(2003).

[7] Sato, S., Ishigure, M., and Inaba, H., “Optical trapping and rotational manipulation of microscopic particles
and biological cells using higher-order mode Nd:YAG laser beams,” Electronic Letters 27(20), 1831–1832
(1991).

[8] Loke, V. L., Asavei, T., Nieminen, T. A., Heckenberg, N. R., and Rubinsztein-Dunlop, H., “Optical micro-
rotors: theory, design and fabrication,” Proceedings of SPIE 6644 (2007).

[9] Asavei, T., Nieminen, T. A., Heckenberg, N. R., and Rubinsztein-Dunlop, H., “Fabrication of micro-
structures for optically driven micromachines using two-photon photopolymerization of UV curing resins,”
Journal of Optics A 11(3), 034001 (7pp) (2009).
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