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Abstract. In the Direct Simulation Monte Carlo method, a combination of statistical and deterministic procedures applied 

to a finite number of ‘simulator’ particles are used to model rarefied gas-kinetic processes. Traditionally, chemical 

reactions are modelled using information from specific colliding particle pairs. In the Macroscopic Chemistry Method 

(MCM), the reactions are decoupled from the specific particle pairs selected for collisions. Information from all of the 

particles within a cell is used to determine a reaction rate coefficient for that cell. MCM has previously been applied to 

steady flow DSMC simulations. Here we show how MCM can be used to model chemical kinetics in DSMC simulations 

of unsteady flow. Results are compared with a collision-based chemistry procedure for two binary reactions in a 1-D 

unsteady shock-expansion tube simulation and during the unsteady development of 2-D flow through a cavity. For the 

shock tube simulation, close agreement is demonstrated between the two methods for instantaneous, ensemble-averaged 

profiles of temperature and species mole fractions. For the cavity flow, a high degree of thermal non-equilibrium is 

present and non-equilibrium reaction rate correction factors are employed in MCM. Very close agreement is 

demonstrated for ensemble-averaged mole fraction contours predicted by the particle and macroscopic methods at three 

different flow-times. A comparison of the accumulated number of net reactions per cell shows that both methods compute 

identical numbers of reaction events. For the 2-D flow, MCM required similar CPU and memory resources to the particle 

chemistry method. The Macroscopic Chemistry Method is applicable to any general DSMC code using any viscosity or 

non-reacting collision models and any non-reacting energy exchange models. MCM can be used to implement any 

reaction rate formulations, whether these be from experimental or theoretical studies. 
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INTRODUCTION 

The Direct Simulation Monte Carlo (DSMC) method [1] is used to model rarefied flows with Knudsen numbers 

typically above 0.001. Simulator particles transport mass, momentum, energy and species identity between different 

regions within the flow-field. These simulator particles are moved in free-flight over a single computational time-

step and undergo collisions at the end of each time-step. Energy exchange in collisions is computed using statistic 

procedures which, when accumulated over a large number of simulator particles, lead to the expected relaxation 

rates.  

Chemical reactions are usually implemented in DSMC by calculating reaction probabilities for colliding particle 

pairs. However, it can be difficult to implement reaction rate data derived from experimental or theoretical studies 

since this data is often supplied in a temperature dependent form which is not used directly by particle-based 

chemistry methods. The reaction rates which will be produced by a particle-based chemistry model are constrained 

by the collision rates set by the collision cross-section, and hence the desired reaction rate coefficient as a function 

of temperature may not be realized. These difficulties may be overcome if chemical reactions are decoupled from 

the non-reacting collision procedures. A decoupled chemistry procedure known as the Macroscopic Chemistry 

Method (MCM) was proposed by Lilley and Macrossan [2] and refined by Goldsworthy et al. [3] [4]. In this method, 

chemical reactions are computed by solving the chemical kinetic equations at the end of each time-step, using 

information obtained from all the simulator particles in a cell, not just those that are selected for collisions.  

Important insight may be gained into the fluid dynamics of a particular problem by observing the transient fluid 

motion. In some cases, the flow-field is inherently unsteady and transient simulations are necessary. Here we 

demonstrate a procedure for implementing MCM for unsteady flows. We test this procedure by calculating the 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/15087018?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


reactions for a ‘model gas’ for which there are two species. Species A may be converted to species B, or B into A, 

through the reactions 

 A M B M+ ↔ + , where  or M A B= . (1) 

Here M is the collision partner. The A → B reaction is endothermic, with heat of reaction ( )a aE κθ− ≡ −  where κ  

is Boltzmann’s constant. Except for their chemical potential energy, species A and B molecules are assumed to be 

identical in all other respects. We compare the results with those from a particle-based chemistry procedure 

appropriate to this model gas. 

 

PROCEDURE FOR UNSTEADY FLOWS 
 

The DSMC method is appropriate for a dilute gas assumption in which three body collisions are ignored. For a 

general reaction A+B → products, the rate of reactant depletion can be expressed as 

 / .A f A BN k N N V∆ =&  (2) 

Here 
AN is the number of species A particles in a region of volume V and fk  is the reaction rate coefficient for 

the forward reaction. In MCM, the change in the number of a given species A over a computational time-step is 

calculated from an expression similar to Eq. (2) and the numbers of each species are then adjusted to account for 

this. For steady flows, time-averaged number densities and temperatures are employed in Eq. (2) throughout the 

simulation, and this leads to the correct reaction rate in the limit of a large sample. For unsteady flows, time-

averaged values cannot be employed and direct use of Eq. (2) would lead to incorrect ensemble-averaged reaction 

rates since NN NN≠ . 

In DSMC collision procedures, the number of collisions involving A and B particles in a computational time-step 

depends on the same term /A BN N V as in Eq. (2). Bird [5] has proposed a modification of the method by which the 

simulator collision rate is set. In place of /NN V , he uses ( 1) /N N V− , where N is the instantaneous number of 

particles in a cell, and /N V  is the time-averaged ‘best estimate’ of the local flow number density. He shows that if 

the fluctuations in N are distributed according to a Poisson distribution, then ( 1)N N NN− = and the correct 

collision rate is obtained. In unsteady simulations, for which the time-averaged number density is not available, we 

use the new procedure to set the collision rate and we model instantaneous chemical rates in a similar way.  

The net change in the number of species A, over a time-step t∆ , due to the reaction A + M → B + M where 

,M A B=  is computed using 

 ( )1

2
( 1) ( 1) 2 / .

M A M B M B M AA f A A b B B f b A BN k N N k N N k k N N W t V
= = = =

 ∆ = − − + − + − + ∆   (3) 

In this expression the term ( 1)i iN N −  is evaluated only for 1iN ≥ . W is the number of real particles represented 

by each DSMC simulator particle. Since t∆  is necessarily smaller than the mean collision time, AN∆  is usually a 

fractional number. Thus, the value of 
AN∆  is compared to a random fraction; a reaction is processed if the random 

number is larger than
AN∆ . In the case where 1AN∆ > , AN∆    (the integer part of

AN∆ ) reactions are processed and 

if the remaining fraction is greater than a random number, one more reaction is processed. This procedure ensures 

that there is no delay in processing reactions and that the correct number of reactions is modelled in the limit of a 

large ensemble-average. When the reaction rate coefficient is given as a function of temperature, MCM uses the total 

energy of the simulator particles in the cell to estimate the temperature. Here we use the variance of the sample 

population to evaluate the kinetic temperature. For a multi-species gas, the overall kinetic temperature is given by 
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Here sE  is the mean translational energy of species s, 
sm  is the mass of one particle and 

sN  is the number of 

species s in the cell. When a reaction occurs, reactant particles selected at random from the cell are converted into 

product species particles while ensuring that the total mass, momentum and kinetic energy of the products is the 

same as that for the reactants. The total net change in chemical energy due to all reactions in a cell is removed from 

the thermal energy of all particles in the cell; thus the mean particle velocity must be calculated in each cell at each 

time-step. The details of these procedures are given by Lilley and Macrossan [2]. The calculation of the cell mean 

velocity and cell kinetic temperature requires little computational expense. The macroscopic chemistry procedure 

may be added to a DSMC code by implementing a separate chemistry step after the calculation of collisions. 



Chemical Rate Equations for the Model Gas 

For simplicity, we make comparisons between the particle and macroscopic chemistry methods for simulations 

using a model gas. The model gas consists of species A and B particles with the same properties as argon; they have 

no rotational or vibrational energy storage modes. The variable hard sphere [1] (VHS) collision model is employed 

with the modified NTC collision procedure, i.e. with ( 1) /N N V− in place of /NN V . The collision cross-section is 

such that the Chapman-Enskog viscosity is given by ( )/r rT T
ω

µ µ= , where 52.3 10rµ −= ×  (kg/m/s), 300rT = K and 

0.72ω = . The only reactions are those in Eq. (1). The reaction rates are taken to be those produced by the following 

particle-based chemistry model. In the particle chemistry model, 0.2fS = , 0.001bS = and / 5000aE Kκ = . Let 
cE  

be the centre of mass energy of the collision pair then: 

(1) A − A pairs with 
c aE E>  become B − A with probability 

fS  

(2) B − B pairs become A − B with probability 
bS  

(3) A − B pairs with 
c aE E>  become B − B with probability fS  and A − A with probability 

bS  

(4) A − B pairs with 
c aE E< become A − A with probability 

bS . 

In order to match the particle-based results with MCM, we require the theoretical reaction rate coefficient 

produced by the particle method. The corresponding forward and backward rate coefficients may be expressed as 

 f c fk Z FS=  and 
b c bk Z S= . (5) 

Here F is the fraction of VHS collision pairs with 
c aE E>  and 

cZ  3( / )m s  is the VHS collision constant. Under 

thermal equilibrium conditions 
cZ  and F are given by 
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,  ( )2.5 , /aF E Tω κ= Γ − , (6) 

where 2sf =  for A − A and B − B collisions and 1sf = for A − B collisions. Note that these rate coefficients are not 

in the simple Arrhenius form. In MCM, the thermal equilibrium reaction rates evaluated from the given rate 

coefficients, in this case those in Eqs. (5) and (6), are multiplied by two ‘rate correction factors’ Zψ  and Fψ as 

described by Goldsworthy et al. [3]; this accounts for the deviation between the actual non-equilibrium distribution 

function and the thermal equilibrium distribution function as derived from the cell temperature.  

 Shock-Expansion Tube Simulation 

We have applied the transient MCM procedures to simulations of an unsteady 1-D flow in a shock-expansion 

tube, filled with the model gas described above. The initial condition consists of two regions, both at rest and with 

temperatures 
left 1000T = K and right 100T = K.  The density ρ  is uniform along the tube and all cells contain equal 

numbers of both species. Results are normalized by a nominal mean free path 
left 2 / cλ µ ρ=  where 8 /c T mκ= is 

a characteristic thermal speed and µ is the gas viscosity, both evaluated for leftT T= . The characteristic time is 

left lef /t cτ λ= . Since the forward reaction rate coefficient is independent of density, the normalized results apply to 

any density. Instantaneous results are output at left500t τ= . A total of 2000 computational cells ( x∆  = 0.066 leftλ ) 

span the domain. Simulations using the particle and macroscopic chemistry methods with 50000 particles were run. 

For each case, results from 1000 separate simulations were combined.  

Profiles of temperature T (left) and species A mole fraction AX  (right) are shown in Figure 1. MCM results are 

shown as solid lines; particle chemistry results are plotted every 25
th

 cell using circles. No spatial or time-averaging 

is used. A shock wave has propagated towards the low temperature region a distance of approximately 28.5
leftλ . The 

shock wave spans almost 3.5
leftλ . An expansion wave can be seen moving through the high temperature region. 

Neither the shock nor the expansion wave has been reflected from the end walls at this elapsed time. Since both 

forward reactions are exothermic and have an activation temperature left/ 5aE Tκ = × , the forward reactions resulting 

in A → B transitions are much faster in the higher temperature region and act to lower the temperature there. The 

reverse transitions B → A are endothermic and the rate at which they occur is proportional to the collision rate. The 

temperature in the undisturbed region in front of the shock is slightly higher than the initial value because of these 



endothermic reactions. The value of 
AX  reaches a maximum behind the propagating shock wave where the high 

density and hence collision rate and relatively low temperature favour the B → A reaction. It is apparent from these 

plots that a very close agreement is obtained between MCM and the particle-based method.  

 

 
FIGURE 1.  Left: Ensemble-averaged profiles of 

left/T T . Right: Ensemble-averaged profiles of 
AX . Results are shown at 

left500t τ=  for macroscopic and particle-based chemistry simulations. Particle results are shown for every 25th cell only.  

Cavity Flow Simulation 

The unsteady MCM procedure has also been tested by simulating the unsteady startup phase of flow of the model 

gas through a two-dimensional cavity. The simulation domain and inflow conditions are shown schematically in 

Figure 2. The free-stream consists of 50% species A molecules with 6.2M ∞ = and 0.12Kn = (based on the step 

height). The free-stream (non-reacting) stagnation temperature is 7988K and the chemical activation temperature of 

species A is 5000K indicating that the chemical reactions should occur extremely rapidly as the free-stream flow is 

slowed by the step. The simulations used an unstructured adapted grid of 9460 triangular cells constructed using a 

Delaunay triangulation procedure [6]. A total of 5000 time-steps of size 610− s were run giving a final number of 

400000 particles. Results were obtained using 100 ensemble-averages and comparisons are made between the 

particle and macroscopic chemistry methods. 

 
FIGURE 2.  Schematic simulation domain and initial conditions for cavity flow simulation. 

 

Contours of 
AX are shown in Figure 3 at 4 42 10 ,  4 10t

− −= × ×  and 46 10  s−× . The plots at 46 10  t s
−= ×  are close 

to steady-state conditions; the flow does not become chocked through the cavity for this configuration. Comparison 

of the left (macroscopic chemistry) and right (particle chemistry) plots shows that there is very close agreement 

between the two models. The endothermic A B→  reaction occurs in the high-temperature, stagnation region in 

front of the cavity. Along the diffuse cavity surface AX  is lower since the B particles are formed in the low speed 

region in front of the cavity.  

Temperature contours at 45 10  t s
−= × , shown in Figure 4, also demonstrate that there is close agreement 

between the methods. Contours of the accumulated number of net reactions per cell are shown in Figure 5. The ‘0’ 

contour corresponds to the boundary between net production and net removal of species A, hence it is sensitive to 

the predicted rate of chemical reactions. The two reaction rate correction factors have correctly matched the thermal 

non-equilibrium reaction rate predicted by the particle method. 
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FIGURE 3.  Contours of 

AX  for macroscopic (left) and particle (right) chemistry for 4 42 10 ,  4 10t − −= × × and 46 10 s−× . 
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FIGURE 4.  Contours of temperature for macroscopic 

(top) and particle (bottom) chemistry at 45 10t s−= × . 
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FIGURE 5.  Contours of accumulated number of net 

reactions per cell for macroscopic (top) and particle 

(bottom) chemistry. 

DISCUSSION 

We have demonstrated that the Macroscopic Chemistry Method, when applied to unsteady simulations of a 

model gas in hypersonic flow, leads to close agreement with a particle chemistry method. We have chosen to use a 

‘model gas’ in these simulations so that the precise reaction rate employed by the particle chemistry model is known. 

This reaction rate yields a realistic temperature dependence similar to that given by an Arrhenius type model. In this 

report, we have formulated the overall reaction rate in MCM by closely matching the rates predicted by the particle 

chemistry method. In practice, the reaction rates in MCM would be implemented directly in an Arrhenius type form, 

and the two reaction rate correction factors which account for thermal non-equilibrium effects could then be added if 

desired. An important distinction is that we consider that the baseline reaction rates should be those derived from 

theoretical or experimental studies, and that any thermal non-equilibrium ‘correction’ factors should be added later, 

if required. This is in contrast to the particle chemistry approach in which the reaction rates are ‘predicted’ by the 

DSMC simulation, albeit with the aid of model constants calibrated to match external data. 

For the 2-D simulations, the CPU and memory requirements were similar for both methods. For the 1-D 

simulation, the macroscopic method required considerably more CPU time, though in practice this would be greatly 

reduced when a simpler reaction rate model is used.  



One further point should be mentioned. Even if real molecules behaved exactly as those of our model gas, it is 

possible that, because of the finite sample size in DSMC, the reaction rate per particle might be different in the 

simulation from that in the real gas. In MCM we could possibly account for this effect when we calculate the cell 

temperature by using the best estimate of the unknown ‘parent population’ variance, i.e. ( ) ( )
2

/ 1
i

i

x x N− −∑ , rather 

than the finite sample variance which we did use. This measure of cell temperature did produce slightly different 

results, though the correct results (those obtained using a large value of N) were found to be given by the simulation 

using Eq. (4). 

CONCLUSION 

We have shown how the macroscopic chemistry method may be used to obtain results in agreement with a 

particle-based chemistry method in two unsteady simulations. In traditional DSMC, macroscopic information in the 

form of the number density is used to determine the simulator collision rate. The same information is needed in 

MCM to set the reaction rates, and we have followed Bird in replacing the time-averaged simulator number density 

in a cell /N V  by ( 1) /N V−  in setting both the collision rate and the reaction rate in unsteady simulations where 

N is unavailable. In the macroscopic chemistry method we also use information from the kinetic energy of all the 

particles in the cell (i.e. the kinetic temperature); similar information is obtained in the particle-based method by 

sampling of particle pairs for possible collisions. In addition, the reaction rate in the particle-based method depends 

on the non-equilibrium distribution of particle energies in collision pairs; in MCM the analogous non-equilibrium 

information is extracted by comparing information sampled during the collision procedure with the expected 

equilibrium values, and adjusting the reaction rate accordingly.  

The primary advantage of the macroscopic approach is that any general reaction rate data may be used with any 

DSMC collision model, without the need for calibration; thus different reaction rate mechanisms involving large 

numbers of reactions can be quickly implemented and compared. 
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