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Transient Macroscopic Chemistry in the DSMC Method
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Abstract. In the Direct Simulation Monte Carlo method, a combination of statistical and deterministic procedures applied
to a finite number of ‘simulator’ particles are used to model rarefied gas-kinetic processes. Traditionally, chemical
reactions are modelled using information from specific colliding particle pairs. In the Macroscopic Chemistry Method
(MCM), the reactions are decoupled from the specific particle pairs selected for collisions. Information from all of the
particles within a cell is used to determine a reaction rate coefficient for that cell. MCM has previously been applied to
steady flow DSMC simulations. Here we show how MCM can be used to model chemical kinetics in DSMC simulations
of unsteady flow. Results are compared with a collision-based chemistry procedure for two binary reactions in a 1-D
unsteady shock-expansion tube simulation and during the unsteady development of 2-D flow through a cavity. For the
shock tube simulation, close agreement is demonstrated between the two methods for instantaneous, ensemble-averaged
profiles of temperature and species mole fractions. For the cavity flow, a high degree of thermal non-equilibrium is
present and non-equilibrium reaction rate correction factors are employed in MCM. Very close agreement is
demonstrated for ensemble-averaged mole fraction contours predicted by the particle and macroscopic methods at three
different flow-times. A comparison of the accumulated number of net reactions per cell shows that both methods compute
identical numbers of reaction events. For the 2-D flow, MCM required similar CPU and memory resources to the particle
chemistry method. The Macroscopic Chemistry Method is applicable to any general DSMC code using any viscosity or
non-reacting collision models and any non-reacting energy exchange models. MCM can be used to implement any
reaction rate formulations, whether these be from experimental or theoretical studies.
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INTRODUCTION

The Direct Simulation Monte Carlo (DSMC) method [1] is used to model rarefied flows with Knudsen numbers
typically above 0.001. Simulator particles transport mass, momentum, energy and species identity between different
regions within the flow-field. These simulator particles are moved in free-flight over a single computational time-
step and undergo collisions at the end of each time-step. Energy exchange in collisions is computed using statistic
procedures which, when accumulated over a large number of simulator particles, lead to the expected relaxation
rates.

Chemical reactions are usually implemented in DSMC by calculating reaction probabilities for colliding particle
pairs. However, it can be difficult to implement reaction rate data derived from experimental or theoretical studies
since this data is often supplied in a temperature dependent form which is not used directly by particle-based
chemistry methods. The reaction rates which will be produced by a particle-based chemistry model are constrained
by the collision rates set by the collision cross-section, and hence the desired reaction rate coefficient as a function
of temperature may not be realized. These difficulties may be overcome if chemical reactions are decoupled from
the non-reacting collision procedures. A decoupled chemistry procedure known as the Macroscopic Chemistry
Method (MCM) was proposed by Lilley and Macrossan [2] and refined by Goldsworthy et al. [3] [4]. In this method,
chemical reactions are computed by solving the chemical kinetic equations at the end of each time-step, using
information obtained from all the simulator particles in a cell, not just those that are selected for collisions.

Important insight may be gained into the fluid dynamics of a particular problem by observing the transient fluid
motion. In some cases, the flow-field is inherently unsteady and transient simulations are necessary. Here we
demonstrate a procedure for implementing MCM for unsteady flows. We test this procedure by calculating the
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reactions for a ‘model gas’ for which there are two species. Species A may be converted to species B, or B into A,
through the reactions
A+M < B+M ,where M =AorB. (1

Here M is the collision partner. The A — B reaction is endothermic, with heat of reaction —E, (E —Kk0 ) where x

is Boltzmann’s constant. Except for their chemical potential energy, species A and B molecules are assumed to be
identical in all other respects. We compare the results with those from a particle-based chemistry procedure
appropriate to this model gas.

PROCEDURE FOR UNSTEADY FLOWS

The DSMC method is appropriate for a dilute gas assumption in which three body collisions are ignored. For a

general reaction A+B — products, the rate of reactant depletion can be expressed as
AN, =k ,N,N,/V. )

Here N, is the number of species A particles in a region of volume V and k, is the reaction rate coefficient for
the forward reaction. In MCM, the change in the number of a given species A over a computational time-step is
calculated from an expression similar to Eq. (2) and the numbers of each species are then adjusted to account for
this. For steady flows, time-averaged number densities and temperatures are employed in Eq. (2) throughout the
simulation, and this leads to the correct reaction rate in the limit of a large sample. For unsteady flows, time-
averaged values cannot be employed and direct use of Eq. (2) would lead to incorrect ensemble-averaged reaction
rates since NN # NN .

In DSMC collision procedures, the number of collisions involving A and B particles in a computational time-step
depends on the same term N,N, /V as in Eq. (2). Bird [5] has proposed a modification of the method by which the

simulator collision rate is set. In place of NN/V , he uses N (N -=1)/V , where N is the instantaneous number of
particles in a cell, and N/V is the time-averaged ‘best estimate’ of the local flow number density. He shows that if

the fluctuations in N are distributed according to a Poisson distribution, then N(N —1)= NN and the correct

collision rate is obtained. In unsteady simulations, for which the time-averaged number density is not available, we
use the new procedure to set the collision rate and we model instantaneous chemical rates in a similar way.

The net change in the number of species A, over a time-step Az, due to the reaction A + M — B + M where
M = A, B is computed using

AN, = %[—kfw N,(N,=D+k, Ny(N, —1)+2(—ka:8 +k, )NANBJWAt/V. 3)

In this expression the term N, (N, —1) is evaluated only for N, 21. W is the number of real particles represented
by each DSMC simulator particle. Since At is necessarily smaller than the mean collision time, AN, is usually a
fractional number. Thus, the value of AN, is compared to a random fraction; a reaction is processed if the random
number is larger than AN, . In the case where AN, >1, |_AN AJ (the integer part of AN, ) reactions are processed and

if the remaining fraction is greater than a random number, one more reaction is processed. This procedure ensures
that there is no delay in processing reactions and that the correct number of reactions is modelled in the limit of a
large ensemble-average. When the reaction rate coefficient is given as a function of temperature, MCM uses the total
energy of the simulator particles in the cell to estimate the temperature. Here we use the variance of the sample
population to evaluate the kinetic temperature. For a multi-species gas, the overall kinetic temperature is given by

P2 SN (E) | e (£) = 3 [N 3 ~(20) ] @

s =X,¥,2

Here <E‘> is the mean translational energy of species s, m_ is the mass of one particle and N_ is the number of

species s in the cell. When a reaction occurs, reactant particles selected at random from the cell are converted into
product species particles while ensuring that the total mass, momentum and kinetic energy of the products is the
same as that for the reactants. The total net change in chemical energy due to all reactions in a cell is removed from
the thermal energy of all particles in the cell; thus the mean particle velocity must be calculated in each cell at each
time-step. The details of these procedures are given by Lilley and Macrossan [2]. The calculation of the cell mean
velocity and cell kinetic temperature requires little computational expense. The macroscopic chemistry procedure
may be added to a DSMC code by implementing a separate chemistry step after the calculation of collisions.



Chemical Rate Equations for the Model Gas

For simplicity, we make comparisons between the particle and macroscopic chemistry methods for simulations
using a model gas. The model gas consists of species A and B particles with the same properties as argon; they have
no rotational or vibrational energy storage modes. The variable hard sphere [1] (VHS) collision model is employed

with the modified NTC collision procedure, i.e. with N(N —1)/V in place of NN /V . The collision cross-section is
such that the Chapman-Enskog viscosity is given by g = u (T /T, )w , where g =2.3x10" (kg/m/s), T, =300K and

@ =0.72. The only reactions are those in Eq. (1). The reaction rates are taken to be those produced by the following
particle-based chemistry model. In the particle chemistry model, S, =0.2, S, =0.001and E,/x=5000K . Let E,

be the centre of mass energy of the collision pair then:
(1) A — A pairs with E, > E, become B — A with probability S,
(2) B — B pairs become A — B with probability S,
(3) A — B pairs with E, > E, become B — B with probability S, and A — A with probability S,
(4) A — B pairs with E_ < E, become A — A with probability S, .
In order to match the particle-based results with MCM, we require the theoretical reaction rate coefficient
produced by the particle method. The corresponding forward and backward rate coefficients may be expressed as
k, =ZFS, and k,=Z_S,. &)
Here F is the fraction of VHS collision pairs with E, > E, and Z, (m’/s) is the VHS collision constant. Under

thermal equilibrium conditions Z_ and F are given by

-1
7, -+ 154, (Tj . F=T'(25-@.E,/xT), 6)
" f 21 (25-w)(35-w)

T
where f, =2 for A - A and B - B collisions and f, =1for A — B collisions. Note that these rate coefficients are not
in the simple Arrhenius form. In MCM, the thermal equilibrium reaction rates evaluated from the given rate
coefficients, in this case those in Eqgs. (5) and (6), are multiplied by two ‘rate correction factors’ ¥, and ¥, as

described by Goldsworthy et al. [3]; this accounts for the deviation between the actual non-equilibrium distribution
function and the thermal equilibrium distribution function as derived from the cell temperature.

Shock-Expansion Tube Simulation

We have applied the transient MCM procedures to simulations of an unsteady 1-D flow in a shock-expansion
tube, filled with the model gas described above. The initial condition consists of two regions, both at rest and with
temperatures 7, =1000 K and 7, =100K. The density p is uniform along the tube and all cells contain equal

eft right
numbers of both species. Results are normalized by a nominal mean free path A, =2u/pc where ¢ =~8xT/m is
a characteristic thermal speed and p is the gas viscosity, both evaluated forT =T, . The characteristic time is
T = Ao / € - Since the forward reaction rate coefficient is independent of density, the normalized results apply to
any density. Instantaneous results are output at ¢ =500z, . A total of 2000 computational cells (Ax = 0.066 4., )

span the domain. Simulations using the particle and macroscopic chemistry methods with 50000 particles were run.
For each case, results from 1000 separate simulations were combined.

Profiles of temperature T (left) and species A mole fraction X, (right) are shown in Figure 1. MCM results are
shown as solid lines; particle chemistry results are plotted every 25" cell using circles. No spatial or time-averaging
is used. A shock wave has propagated towards the low temperature region a distance of approximately 28.5 4, . The

An expansion wave can be seen moving through the high temperature region.

eft
shock wave spans almost 3.5 4, .
Neither the shock nor the expansion wave has been reflected from the end walls at this elapsed time. Since both

forward reactions are exothermic and have an activation temperature E, / k' =5XT, , the forward reactions resulting

in A — B transitions are much faster in the higher temperature region and act to lower the temperature there. The
reverse transitions B — A are endothermic and the rate at which they occur is proportional to the collision rate. The
temperature in the undisturbed region in front of the shock is slightly higher than the initial value because of these



endothermic reactions. The value of X, reaches a maximum behind the propagating shock wave where the high

density and hence collision rate and relatively low temperature favour the B — A reaction. It is apparent from these
plots that a very close agreement is obtained between MCM and the particle-based method.
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FIGURE 1. Left: Ensemble-averaged profiles of 7/7,
t =500z,
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.« - Right: Ensemble-averaged profiles of X, . Results are shown at

for macroscopic and particle-based chemistry simulations. Particle results are shown for every 25™ cell only.

Cavity Flow Simulation

The unsteady MCM procedure has also been tested by simulating the unsteady startup phase of flow of the model
gas through a two-dimensional cavity. The simulation domain and inflow conditions are shown schematically in
Figure 2. The free-stream consists of 50% species A molecules with M_ =6.2 and Kn =0.12 (based on the step
height). The free-stream (non-reacting) stagnation temperature is 7988K and the chemical activation temperature of
species A is 5000K indicating that the chemical reactions should occur extremely rapidly as the free-stream flow is
slowed by the step. The simulations used an unstructured adapted grid of 9460 triangular cells constructed using a
Delaunay triangulation procedure [6]. A total of 5000 time-steps of size 10™°s were run giving a final number of
400000 particles. Results were obtained using 100 ensemble-averages and comparisons are made between the
particle and macroscopic chemistry methods.

/specular
b, = 2kmis
T, =300K 0.3m
£, =107 ke Ind /dlffuse T, =7,
X,=05
J 1 0.1m
0.3m 1.0m

FIGURE 2. Schematic simulation domain and initial conditions for cavity flow simulation.

Contours of X, are shown in Figure 3 at t =2x10™*, 4x10™* and 6x10™ s. The plots at ¢ =6x10™ s are close

to steady-state conditions; the flow does not become chocked through the cavity for this configuration. Comparison
of the left (macroscopic chemistry) and right (particle chemistry) plots shows that there is very close agreement
between the two models. The endothermic A — B reaction occurs in the high-temperature, stagnation region in
front of the cavity. Along the diffuse cavity surface X, is lower since the B particles are formed in the low speed
region in front of the cavity.

Temperature contours at ¢=5x10"* s, shown in Figure 4, also demonstrate that there is close agreement
between the methods. Contours of the accumulated number of net reactions per cell are shown in Figure 5. The ‘0’
contour corresponds to the boundary between net production and net removal of species A, hence it is sensitive to
the predicted rate of chemical reactions. The two reaction rate correction factors have correctly matched the thermal
non-equilibrium reaction rate predicted by the particle method.
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FIGURE 4. Contours of temperature for macroscopic FIGURE 5. Contours of accumulated number of net
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DISCUSSION

We have demonstrated that the Macroscopic Chemistry Method, when applied to unsteady simulations of a
model gas in hypersonic flow, leads to close agreement with a particle chemistry method. We have chosen to use a
‘model gas’ in these simulations so that the precise reaction rate employed by the particle chemistry model is known.
This reaction rate yields a realistic temperature dependence similar to that given by an Arrhenius type model. In this
report, we have formulated the overall reaction rate in MCM by closely matching the rates predicted by the particle
chemistry method. In practice, the reaction rates in MCM would be implemented directly in an Arrhenius type form,
and the two reaction rate correction factors which account for thermal non-equilibrium effects could then be added if
desired. An important distinction is that we consider that the baseline reaction rates should be those derived from
theoretical or experimental studies, and that any thermal non-equilibrium ‘correction’ factors should be added later,
if required. This is in contrast to the particle chemistry approach in which the reaction rates are ‘predicted’ by the
DSMC simulation, albeit with the aid of model constants calibrated to match external data.

For the 2-D simulations, the CPU and memory requirements were similar for both methods. For the 1-D
simulation, the macroscopic method required considerably more CPU time, though in practice this would be greatly
reduced when a simpler reaction rate model is used.



One further point should be mentioned. Even if real molecules behaved exactly as those of our model gas, it is
possible that, because of the finite sample size in DSMC, the reaction rate per particle might be different in the
simulation from that in the real gas. In MCM we could possibly account for this effect when we calculate the cell

temperature by using the best estimate of the unknown ‘parent population’ variance, i.e. Y (x,—X )* /(N —1), rather

than the finite sample variance which we did use. This measure of cell temperature did produce slightly different
results, though the correct results (those obtained using a large value of N) were found to be given by the simulation
using Eq. (4).

CONCLUSION

We have shown how the macroscopic chemistry method may be used to obtain results in agreement with a
particle-based chemistry method in two unsteady simulations. In traditional DSMC, macroscopic information in the
form of the number density is used to determine the simulator collision rate. The same information is needed in
MCM to set the reaction rates, and we have followed Bird in replacing the time-averaged simulator number density

inacell N/V by (N-1)/V in setting both the collision rate and the reaction rate in unsteady simulations where

N is unavailable. In the macroscopic chemistry method we also use information from the kinetic energy of all the
particles in the cell (i.e. the kinetic temperature); similar information is obtained in the particle-based method by
sampling of particle pairs for possible collisions. In addition, the reaction rate in the particle-based method depends
on the non-equilibrium distribution of particle energies in collision pairs; in MCM the analogous non-equilibrium
information is extracted by comparing information sampled during the collision procedure with the expected
equilibrium values, and adjusting the reaction rate accordingly.

The primary advantage of the macroscopic approach is that any general reaction rate data may be used with any
DSMC collision model, without the need for calibration; thus different reaction rate mechanisms involving large
numbers of reactions can be quickly implemented and compared.
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