

Quantum measurement theory and the quantum Zeno effect

Michael J Gagen

2nd March 1985

i

0.1 Acknowledgements

During this thesis I was supervised by Assoc.Prof. G.J.Milburn. I would like to acknowledge the support of Dr. B.J.Dalton in the early stages of this thesis.

I wish to express my deep appreciation to my supervisor for the guidance offered during this thesis. Surely, one of the more difficult of the objectives of supervision would be the encouragement of creativity in a student - and made all the more so by the student's ignorance and lack of confidence. I have now had the very real pleasure of participating in, and, in part, initiating some rare moments of creative invention in my physics research. For this, I am deeply grateful.

I would also like to extend that same deep appreciation to H.M.Wiseman, a fellow student who delights in tossing ideas around and who contributed enormously to these moments of creativity.

The reader of this thesis will also share my appreciation for the assistance of S.J.Carter, who contributed the plotting routines used to produce most of the figures in this thesis.

0.2 Abstract

This is a theoretical thesis in the area of quantum measurement theory. Due to the extensive breadth of this field we choose to narrow our focus to examine a particular problem - the quantum Zeno effect (defined below).

Quantum measurement theory is introduced in Chap. (1), using the terminology of effects and operations. This approach allows an operational definition of such terms as a state vector, an ensemble, and a measurement device (for instance), and a consideration of interactions between quantum systems and inaccurate measurement devices. We further introduce the quantum trajectories approach to consider the evolution of an individual quantum system subject to measurement.

The quantum Zeno effect is introduced in Chap. (2). Any quantum treatment of a measurement interaction must consider the measurement backaction onto the measured system and this backaction will disrupt the free evolution of the system. The quantum Zeno effect occurs in the strong measurement limit where the measurement backaction totally freezes the evolution of the system, thus rendering the measurement useless. The effect is introduced via projective measurements of two level systems subject to measurement of level populations. At this stage we are able to discuss the main questions addressed by this thesis, and present its structure in Chap. (2).

We then develop a new measurement model for the interaction between a system and a measurement device in Chap. (3). Our motivation in doing this is to better model the usual laboratory meter, and in our approach the meter dynamics are such that it relaxes towards an appropriate readout of the system parameter of interest. The irreducible quantum noise of the meter introduces fluctuations that drive the stochastic dynamical collapse of the system wavefunction. In our model, the measured system dynamics (if treated selectively) are described by a stochastic, nonlinear Schrödinger equation.

A double well system subject to position measurement provides a natural first application for this model. This is done in Chap. (4) where we monitor the coherent tunnelling of a particle from one well to the other. The advantage afforded by considering this system is that it displays differing regimes where the measurement observable (position) is approximated as possessing either, respectively, a continuous or a discrete eigenvalue structure. Thus, we use this one model to explore the quantum Zeno effect in both measurement regimes.

The above treatment is of a theoretical measurement model. In Chap. (5) we turn to consider a recent experimental test of the quantum Zeno effect which examined the dynamics of a two level atom subject to pulsed measurements of atomic level populations. We treat a slightly modified experiment in a fully continuous measurement regime. By first unravelling the optical Bloch equations, and second, using the quantum trajectories approach we demonstrate the existence of certain measurement regimes where there is a quantum Zeno effect, and other regimes where no measurement of the atomic populations is being effected at all. Through these results we demonstrate the importance of making a full analysis of the system-detector interaction before any conclusions can be made. In the remainder of the thesis we propose further possible tests of the quantum Zeno effect. In Chap. (6) the evolution of a Rydberg atom exchanging one photon with a single cavity mode subject to measurement is examined. The measurement is made by monitoring the photon number occupancy of the cavity mode using a beam of Rydberg atoms configured so as to perform phase sensitive detection. In the limit of frequent monitoring we show that the free oscillation of the atomic inversion is disrupted, and the atom is trapped close to its initial state. This is the quantum Zeno effect.

In Chap. (7) we realize the Zeno effect on two possible systems. We consider first, a two level Jaynes-Cumming atom interacting with a cavity mode, and second, two electromagnetic modes configured as a multi-level parametric frequency converter. These systems interact with another cavity mode via a quadratic coupling system based on four wave mixing, and constructed to be a quantum nondemolition measurement of the photon number. This mode is damped to the environment thus effecting a measurement of the system populations. Again we show that this interaction, can manifest the quantum Zeno effect. Our explicit modelling of the system-detector interaction enables us to show how the effect depends on the resolution time of the detector.

Finally, we consider a proposed measurement of the square of the quadrature phase of an electromagnetic mode in Chap. (8). Here, a three mode interaction mediated by a second order nonlinear susceptibility is considered. One mode, the pump, is prepared in a feedback generated photon number state to give insight into the role of pump noise. The other two modes are treated as an angular momentum system, and we show that photon counting on the two mode rotation system effects the above mentioned measurement. In addition, this measurement provides a direct measure of the second order squeezing of the signal.

With that we finish our investigation of the quantum Zeno effect using the techniques of quantum measurement theory. However, in the epilogue [Chap. (9)] we note that no thesis in quantum measurement theory would be complete without some consideration of the "meaning" attributed to the theory. In the epilogue we take a novel historical approach and examine the method by which metaphysical theories are formed to draw conclusions regarding quantum metaphysics.

0.3 List of Publications

Please note : * indicates which publications were included in this thesis.

- Emission at the Rabi frequency in stark coupled driven three level systems,
 B.J.Dalton, M.J.Gagen, Coherence and Quantum Optics V. Editor L.Mandel,
 E.Wolf, (1984)
- 2 Strongly driven stark coupled three level systems and transitions at the Rabi frequency, B.J.Dalton, M.J.Gagen, J.Phys.B:At.Mol.Phys., **18**, 4403-23 (1985)
- 3 Correlated photons in parametric frequency conversion with initial two-mode squeezed states, M.J.Gagen, G.J.Milburn, Optics Comms., **76**, 253, (1990)
- 4 * Quantum nondemolition measurements using a fully quantised parametric interaction, M.J.Gagen, G.J.Milburn, Phys.Rev.A, 43, 6177 (1991)
- The quantum Zeno effect induced by quantum nondemolition measurement of photon number, M.J.Gagen, G.J.Milburn, Phys.Rev.A, 45, 5228 (1992)
- **6** * Rydberg-atom phase-sensitive detection and the quantum Zeno effect,
 G.J.Milburn, M.J.Gagen, Phys.Rev.A., 46 (1992)
- 7 * Atomic tests of the Zeno effect, M.J.Gagen, G.J.Milburn, Phys.Rev.A, 47, 1467 (1993)
- 8 * Continuous position measurements and the quantum Zeno effect, M.J.Gagen,
 H.M.Wiseman, G.J.Milburn, accepted by Phys.Rev.A, (1993)

Contents

	0.1	Acknowledgements	ii
	0.2	Abstract	iii
	0.3	List of Publications	v
C	onter	ats	ix
Li	st of	Figures	xii
Li	st of	Tables	xiii
1	An	introduction to quantum measurement theory	1
	1.1	Measurement in quantum mechanics	1
		1.1.1 The Heisenberg "cut" and related measurement issues	3
	1.2	A guide to quantum measurement theory $\ldots \ldots \ldots$	4
		1.2.1 Instantaneous, accurate measurements - elementary measurement theory	4
		1.2.2 Inaccurate measurement interactions	7
	1.3	Quantum trajectories	10
2	Intr	roduction to the quantum Zeno effect	15
	2.1	The quantum Zeno effect	15
		2.1.1 The quantum Zeno effect in two level systems	17
	2.2	Analogy to the Zeno paradoxes	19
	2.3	Literature survey and questions addressed by this thesis $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	20
	2.4	The structure of this thesis	22
3	A n	ew continuous measurement model	27
	3.1	Model for continuous selective position measurements $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	27
	3.2	Angular Momentum Model	38
	3.3	Conclusion	39

4	The	e quantum Zeno effect in a quartic potential	41
	4.1	The quantum Zeno effect in an arbitrary potential	42
	4.2	Tunnelling in a double well potential	43
		4.2.1 Numerical Solution of exact system	44
		4.2.2 The two level approximation	55
	4.3	Conclusion	61
5	Ato	mic Tests of the Zeno effect	63
	5.1	Measurement interpretations of the atomic test of the quantum Zeno effect $\ldots \ldots \ldots$	63
	5.2	The two level atomic system and the detection scheme	67
	5.3	The atomic level continuous detection regime	71
		5.3.1 Detuned system evolution for small γ	71
		5.3.2 Large damping limit, $\gamma \gg \chi \gg \kappa$	72
	5.4	Quantum trajectories	76
	5.5	Conclusion	87
6	Ryc	lberg-atom phase sensitive detection	91
	6.1	Introduction	92
	6.2	Photon number QND measurements using Rydberg-atoms	92
	6.3	Intracavity dynamics	95
	6.4	Conditional state of the cavity	98
	6.5	A test of the quantum Zeno effect	100
		6.5.1 Regular probe injection	101
		6.5.2 Poisson distributed probe injection	104
		6.5.3 Physical regimes	111
	6.6	Conclusion	113
7	Pho	oton number QND measurement	115
	7.1	Introduction	115
	7.2	Free dynamics.	116
	7.3	Measurement interaction	119
		7.3.1 Detuned evolution for small $\gamma \ll \kappa$	122
		7.3.2 Large damping limit, $\gamma \gg \kappa$	123
	7.4	Signal to Noise Ratio	124
	7.5	Adiabatic elimination of the detector mode	125
	7.6	Reduced system dynamics	128
	7.7	Physical limits of measurement apparatus	132
	7.8	Conclusion	134

8	Full	ly quantized parametric QND measurements	137
	8.1	Introduction	138
	8.2	Two mode rotation Hamiltonian $\ldots \ldots \ldots$	140
	8.3	Signal-to Noise Ratio	145
	8.4	Conditional Measurement	146
	8.5	Non-unit Quantum Detector Efficiency	151
	8.6	Conclusion	157
EI	PILO	OGUE	159
9	\mathbf{Zen}	o and the art of measurement metaphysics	159
	9.1	The relevance of metaphysics to physics	160
	9.2	Quantum metaphysics	162
	9.3	The Zeno paradoxes of motion	164
		9.3.1 Achilles and the Tortoise	165
		9.3.2 The Dichotomy	165
		9.3.3 The Arrow	165
		9.3.4 The Sophisticated Stadium	166
	9.4	Treatment of the Zeno paradoxes of antiquity	166
	9.5	A flaw in the conduct of metaphysics	169
A	PPE	NDIX	171
\mathbf{A}	The	e Angular Momentum model with $N_s = 3$	171
BI	BLI	OGRAPHY	174

List of Figures

2.1	Timing of projective measurement pulses	6
4.1	Free Evolution with $\Gamma = 0$	5
4.2	Random Walk regime with $\Gamma = 0.001$	9
4.3	Random Telegraph regime with $\Gamma = 0.003$	0
4.4	The quantum Zeno effect with $\Gamma = 0.005$	2
4.5	Nonselective evolution with $\Gamma = 0.005$	3
4.6	The energetic particle evolution with $\Gamma = 0.01$	4
4.7	The two level approximation $\Gamma = 0, 0.0003 \dots \dots$	8
4.8	The two level approximation $\Gamma = 0.003, 0.01 \dots \dots$	9
4.9	Non-selective evolution	0
5.1	The atomic two level system and the three level detector	8
5.2	The strongly detuned, free evolution of the two level system	3
5.3	The non-selective, two level, "good measurement" regime	5
5.4	Evolution of the three level system-detector	7
5.5	Three level trajectory with $\gamma = 0, 5 \dots $	0
5.6	Three level trajectory with $\gamma = 5, 10 \ldots $	2
5.7	Selective trajectory with $\gamma = 20$ and nonselective evolution with $\gamma = 10$	3
5.8	Two level trajectory with $\Gamma = 0, 1 \dots $	5
5.9	Two level trajectory with $\Gamma = 5$ and various projectors	6
5.10	Two level trajectory featuring no collapse with $\Gamma = 1, 5 \dots $	8
5.11	Two level trajectory featuring no collapse and strong measurement	9
6.1	The schematic experimental setup	3
6.2	The initial state survival probability with measurement	5
6.3	The initial state survival probability under regular injection	6
6.4	The initial state survival probability under selective measurement interactions 10	7
6.5	Detuned small θ evolution for Poisson arrival times	8

6.6	The initial state survival probability for various θ
7.1	The free evolution rotation
7.2	Schematic experimental layout
7.3	The measured evolution for $N_s = 2$
7.4	The measured evolution for $N_s \gg 2$
7.5	Decay rates for $\Gamma = 2\kappa$
7.6	Dependence of decay rates on N_s
8.1	Schematic outline of our three mode system
8.2	The photon number probability distribution for the conditioning measurement of the b model49
8.3	The conditioned probability distribution for the signal mode quadrature \hat{X}_c , $m = 0 \dots 152$
8.4	The conditioned probability distribution for the signal mode quadrature $\hat{X}_c, m \neq 0 \dots 153$
8.5	The conditioned probability distribution for the signal mode quadrature \hat{X}_c with $m=1$
	and a non-unit quantum efficiency $(\eta < 1) \dots $
9.1	The sophisticated stadium

List of Tables

3.1	Physical parameters specifying meter	35
4.1	The double well eigenvalue structure	43