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0.2. ABSTRACT iii

0.2 Abstract

This is a theoretical thesis in the area of quantum measurement theory. Due to the extensive breadth
of this field we choose to narrow our focus to examine a particular problem - the quantum Zeno effect
(defined below).

Quantum measurement theory is introduced in Chap. (1), using the terminology of effects and opera-
tions. This approach allows an operational definition of such terms as a state vector, an ensemble, and
a measurement device (for instance), and a consideration of interactions between quantum systems and
inaccurate measurement devices. We further introduce the quantum trajectories approach to consider
the evolution of an individual quantum system subject to measurement.

The quantum Zeno effect is introduced in Chap. (2). Any quantum treatment of a measurement
interaction must consider the measurement backaction onto the measured system and this backaction
will disrupt the free evolution of the system. The quantum Zeno effect occurs in the strong measurement
limit where the measurement backaction totally freezes the evolution of the system, thus rendering the
measurement useless. The effect is introduced via projective measurements of two level systems subject
to measurement of level populations. At this stage we are able to discuss the main questions addressed
by this thesis, and present its structure in Chap. (2).

We then develop a new measurement model for the interaction between a system and a measurement
device in Chap. (3). Our motivation in doing this is to better model the usual laboratory meter, and in
our approach the meter dynamics are such that it relaxes towards an appropriate readout of the system
parameter of interest. The irreducible quantum noise of the meter introduces fluctuations that drive the
stochastic dynamical collapse of the system wavefunction. In our model, the measured system dynamics
(if treated selectively) are described by a stochastic, nonlinear Schrédinger equation.

A double well system subject to position measurement provides a natural first application for this
model. This is done in Chap. (4) where we monitor the coherent tunnelling of a particle from one well to
the other. The advantage afforded by considering this system is that it displays differing regimes where
the measurement observable (position) is approximated as possessing either, respectively, a continuous
or a discrete eigenvalue structure. Thus, we use this one model to explore the quantum Zeno effect in
both measurement regimes.

The above treatment is of a theoretical measurement model. In Chap. (5) we turn to consider a recent
experimental test of the quantum Zeno effect which examined the dynamics of a two level atom subject
to pulsed measurements of atomic level populations. We treat a slightly modified experiment in a fully
continuous measurement regime. By first unravelling the optical Bloch equations, and second, using
the quantum trajectories approach we demonstrate the existence of certain measurement regimes where
there is a quantum Zeno effect, and other regimes where no measurement of the atomic populations is
being effected at all. Through these results we demonstrate the importance of making a full analysis of

the system-detector interaction before any conclusions can be made.
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In the remainder of the thesis we propose further possible tests of the quantum Zeno effect. In
Chap. (6) the evolution of a Rydberg atom exchanging one photon with a single cavity mode subject to
measurement is examined. The measurement is made by monitoring the photon number occupancy of
the cavity mode using a beam of Rydberg atoms configured so as to perform phase sensitive detection.
In the limit of frequent monitoring we show that the free oscillation of the atomic inversion is disrupted,
and the atom is trapped close to its initial state. This is the quantum Zeno effect.

In Chap. (7) we realize the Zeno effect on two possible systems. We consider first, a two level Jaynes-
Cumming atom interacting with a cavity mode, and second, two electromagnetic modes configured as
a multi-level parametric frequency converter. These systems interact with another cavity mode via a
quadratic coupling system based on four wave mixing, and constructed to be a quantum nondemolition
measurement of the photon number. This mode is damped to the environment thus effecting a mea-
surement of the system populations. Again we show that this interaction, can manifest the quantum
Zeno effect. Our explicit modelling of the system-detector interaction enables us to show how the effect
depends on the resolution time of the detector.

Finally, we consider a proposed measurement of the square of the quadrature phase of an electro-
magnetic mode in Chap. (8). Here, a three mode interaction mediated by a second order nonlinear
susceptibility is considered. One mode, the pump, is prepared in a feedback generated photon number
state to give insight into the role of pump noise. The other two modes are treated as an angular mo-
mentum system, and we show that photon counting on the two mode rotation system effects the above
mentioned measurement. In addition, this measurement provides a direct measure of the second order
squeezing of the signal.

With that we finish our investigation of the quantum Zeno effect using the techniques of quantum
measurement theory. However, in the epilogue [Chap. (9)] we note that no thesis in quantum measure-
ment theory would be complete without some consideration of the “meaning” attributed to the theory.
In the epilogue we take a novel historical approach and examine the method by which metaphysical

theories are formed to draw conclusions regarding quantum metaphysics.



0.3. LIST OF PUBLICATIONS

0.3 List of Publications

Please note : * indicates which publications were included in this thesis.

1 Emission at the Rabi frequency in stark coupled driven three level systems,
B.J.Dalton, M.J.Gagen, Coherence and Quantum Optics V. Editor L.Mandel,
E.Wolf, (1984)

2 Strongly driven stark coupled three level systems and transitions at the Rabi
frequency, B.J.Dalton, M.J.Gagen, J.Phys.B:At.Mol.Phys., 18, 4403-23 (1985)

3 Correlated photons in parametric frequency conversion with initial two-mode
squeezed states, M.J.Gagen, G.J.Milburn, Optics Comms., 76, 253, (1990)

4 *  Quantum nondemolition measurements using a fully quantised parametric in-
teraction, M.J.Gagen, G.J.Milburn, Phys.Rev.A, 43, 6177 (1991)

5 * The quantum Zeno effect induced by quantum nondemolition measurement of
photon number, M.J.Gagen, G.J.Milburn, Phys.Rev.A, 45, 5228 (1992)

6 * Rydberg-atom phase-sensitive detection and the quantum Zeno effect,
G.J.Milburn, M.J.Gagen, Phys.Rev.A., 46 (1992)

7 *  Atomic tests of the Zeno effect, M.J.Gagen, G.J.Milburn, Phys.Rev.A, 47, 1467
(1993)

8 *  Continuous position measurements and the quantum Zeno effect, M.J.Gagen,

H.M.Wiseman, G.J.Milburn, accepted by Phys.Rev.A, (1993)



vi



Contents

0.1 Acknowledgements . . . . . . ... L il

0.2 Abstract . . . . . . . . e e e e e iii
0.3 List of Publications . . . . . . . . . . . . . e e v
Contents ix
List of Figures xii
List of Tables xiii
1 An introduction to quantum measurement theory 1
1.1 Measurement in quantum mechanics . . . . . . . .. ..o L Lo 1
1.1.1 The Heisenberg “cut” and related measurement issues . . . . . . . .. .. ... .. 3

1.2 A guide to quantum measurement theory . . . . . . .. . .. .. ... .. ... ... 4
1.2.1 Instantaneous, accurate measurements - elementary measurement theory . . . . . . 4

1.2.2 Inaccurate measurement interactions . . . . . . . . ... ... Lo 7

1.3 Quantum trajectories. . . . . . . . . . ... e 10

2 Introduction to the quantum Zeno effect 15
2.1 The quantum Zeno effect . . . . . . . .. L 15
2.1.1 The quantum Zeno effect in two level systems . . . . . . .. .. ... ... ... 17

2.2 Analogy to the Zeno paradoxes . . . . . . . . ... Lo 19
2.3 Literature survey and questions addressed by this thesis . . . . ... .. ... ... . ... 20
2.4 The structure of this thesis . . . . . . . . . . L 22

3 A new continuous measurement model 27
3.1 Model for continuous selective position measurements . . . . . . . .. ... ... ... 27
3.2 Angular Momentum Model . . . . . . .. . . 38
3.3 Conclusion . . . . . . .. 39

vii



viii CONTENTS
4 The quantum Zeno effect in a quartic potential 41
4.1 The quantum Zeno effect in an arbitrary potential . . . . . . ... ... ... .. ..... 42
4.2 Tunnelling in a double well potential . . . . . . . . . .. .. ... ... . .. 43
4.2.1 Numerical Solution of exact system . . . . . . . ... ... oL 44

4.2.2 The two level approximation . . . . . ... ... oL L Lo 55

4.3 Conclusion . . . . . ... e e 61

5 Atomic Tests of the Zeno effect 63
5.1 Measurement interpretations of the atomic test of the quantum Zeno effect . . . . . . .. 63
5.2 The two level atomic system and the detection scheme . . . . . . . ... ... ... .... 67
5.3 The atomic level continuous detection regime . . . . . . . . ... ... 0oL 71
5.3.1 Detuned system evolution for small v . . . .. ... ... .. ... ... ... 71

5.3.2 Large damping limit, y>> x> K . . . . . . . .. 72

5.4 Quantum trajectories . . . . . . . .. Lo 76
5.5 Conclusion . . . . . . .. e e 87

6 Rydberg-atom phase sensitive detection 91
6.1 Introduction . . . . . . . . . . . 92
6.2 Photon number QND measurements using Rydberg-atoms . . . . . . ... ... ... ... 92
6.3 Intracavity dynamics . . . . . . .. .o oL 95
6.4 Conditional state of the cavity . . . . . . . .. .. . o 98
6.5 A test of the quantum Zeno effect . . . . . . . . ... ... 100
6.5.1 Regular probe injection . . . . . ... L Lo 101

6.5.2 Poisson distributed probe injection . . . . . .. ..o Lo 104

6.5.3 Physical regimes . . . . . . .. L 111

6.6 Conclusion . . . . . . . . 113

7 Photon number QND measurement 115
7.1 Imtroduction . . . . . . . . . oL e 115

7.2 Free dynamics. . . . . . . . L e e 116
7.3 Measurement interaction . . . . . . . .. Lo 119
7.3.1 Detuned evolution forsmall y <k . . . . . . ... oL o oL 122

7.3.2 Large damping limit, v >k . . . . . . . ..o 123

7.4 Signal to Noise Ratio . . . . . . . . . . . . 124
7.5 Adiabatic elimination of the detector mode . . . . . . . . .. . ... L. 125
7.6 Reduced system dynamics . . . . . . . . .. L Lo 128
7.7 Physical limits of measurement apparatus . . . . .. ... ... L oo oL 132
7.8 Conclusion . . . . . . . . 134



CONTENTS

8 Fully quantized parametric QND measurements
8.1 Imtroduction . . . . . . . . . . .
8.2 Two mode rotation Hamiltonian . . . . . . .. ... ... . o
8.3 Signal-to Noise Ratio . . . . . . . . . . . .
8.4 Conditional Measurement . . . . . . . . . . . ...
8.5 Non-unit Quantum Detector Efficiency . . . . . . .. ... ... oL
8.6 Conclusion . . . . . . . . e
EPILOGUE
9 Zeno and the art of measurement metaphysics
9.1 The relevance of metaphysics to physics . . . . . . . .. .. oo
9.2 Quantum metaphysics . . . . . . ...
9.3 The Zeno paradoxes of motion . . . . . . . . . ...
9.3.1 Achilles and the Tortoise . . . . . . . . . . .. ...
9.3.2 The Dichotomy . . . . . . . . . . e
9.3.3 The Arrow . . . . . . .
9.3.4 The Sophisticated Stadium . . . . . . ... ...
9.4 Treatment of the Zeno paradoxes of antiquity . . . . . . .. ... .. ... ... ... ..
9.5 A flaw in the conduct of metaphysics . . . . . . . .. .. oo
APPENDIX

A The Angular Momentum model with N; =3

BIBLIOGRAPHY

ix

137
138
140
145
146
151
157

159

159
160
162
164
165
165
165
166
166
169

171

171

174



CONTENTS



List of Figures

2.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11

6.1
6.2
6.3
6.4
6.5

Timing of projective measurement pulses . . . . . . . . .. L Lo 16
Free Fvolution with ' =0 . . . . . . . . . e 45
Random Walk regime with T'=0.001 . . . . . . . . . . 49
Random Telegraph regime with ' =0.003 . . . . . . . . .. .. .. .. 50
The quantum Zeno effect with T =0.005 . . . . . . . . . . . . 52
Nonselective evolution with ' =0.005 . . . . . .. ... 53
The energetic particle evolution with T =0.01 . . . . . . . . ... ... ... ... .. ... 54
The two level approzimation T' =0, 0.0003 . . . . . . . . . .. . .. 58
The two level approximation I' = 0.003, 0.01 . . . . . . . . .. .. ... .. ... ...... 59
Non-selective evolution . . . . . . . . . . . e 60
The atomic two level system and the three level detector . . . . . . . . .. ... ... ... 68
The strongly detuned, free evolution of the two level system . . . . . . . . . .. ... ... 73
The non-selective, two level, “good measurement” regime . . . . . . . . .. .. .. ... .. 75
FEvolution of the three level system-detector. . . . . . . . . . . .. ... ... .. 77
Three level trajectory with v =0, 5 . . .« . . . . . . 80
Three level trajectory with v =5, 10 . . . . . . . . . . . 82
Selective trajectory with v = 20 and nonselective evolution with v =10 . . . . . . . .. .. 83
Two level trajectory with T'=0, 1. . . . . . . . . . . e 85
Two level trajectory withl' = 5 and various projectors . . . . . . . . . . . . ... 86
Two level trajectory featuring no collapse with ' =1, 5 . . . . . . .. .. ... ... ... 88
Two level trajectory featuring no collapse and strong measurement . . . . . . . .. .. .. 89
The schematic experimental setup . . . . . . . . . . o 93
The initial state survival probability with measurement . . . . . . . . . . . . .. ... ... 105
The initial state survival probability under regular injection . . . . . . .. .. ... ... 106
The initial state survival probability under selective measurement interactions . . . . . . . 107
Detuned small 0 evolution for Poisson arrival times. . . . . . . . . . . . .. ... ... 108

xi



xii

6.6

7.1
7.2
7.3
7.4
7.5
7.6

8.1
8.2
8.3
8.4
8.5

9.1

LIST OF FIGURES

The initial state survival probability for various 6. . . . . . . . . . . .. ... ... 112
The free evolution rotation . . . . . . . . . . e 119
Schematic experimental layout . . . . . . . . . L e 121
The measured evolution for Ny =2 . . . . . . . . . . . . e 130
The measured evolution for Ny >>2 . . . . . . . . . o o 132
Decay rates for T' =2k . . . . . . . o e 133
Dependence of decay rates on Ng . . . . . . . .. 134
Schematic outline of our three mode system . . . . . . . . . . ... 140

The photon number probability distribution for the conditioning measurement of the b model49
The conditioned probability distribution for the signal mode quadrature X.,m=0..... 152
The conditioned probability distribution for the signal mode quadrature Xc, m#=0. .. .. 153
The conditioned probability distribution for the signal mode quadrature X, withm =1

and a non-unit quantum efficiency M <1). . . . . . .. 156

The sophisticated stadium . . . . . . . . . . e e e e e 167



List of Tables

3.1 Physical parameters specifying meter

4.1 The double well eigenvalue structure

xiii



xiv LIST OF TABLES



