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Error correction and degeneracy in surface codes suffering loss
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Many proposals for quantum information processing are subject to detectable loss errors. In this paper, we give
a detailed account of recent results in which we showed that topological quantum memories can simultaneously
tolerate both loss errors and computational errors, with a graceful tradeoff between the threshold for each. We
further discuss a number of subtleties that arise when implementing error correction on topological memories.
We particularly focus on the role played by degeneracy in the matching algorithms and present a systematic
study of its effects on thresholds. We also discuss some of the implications of degeneracy for estimating phase

transition temperatures in the random bond Ising model.
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I. INTRODUCTION

Quantum information is delicate. The state of a qubit can be
corrupted by environmental noise, dissipation, or imperfectly
implemented logic operations on the qubit. Among the most
remarkable achievements of quantum information science are
the discoveries of quantum error correction (QEC) [1,2] and
fault tolerant quantum computation (FTQC) [3], which demon-
strate that storage and manipulation of quantum information is
possible, even in the presence of such imperfections. Typically,
this protection is achieved by redundantly encoding the logical
qubits in a larger number of physical qubits.

A physical error may be classified as a computational
error, in which the state of the qubits remains within the
computational basis, or as a loss, in which a physical qubit
(e.g., a photon) is lost from the computer. More generally,
any detectable leakage process taking the qubit out of the
computational basis can be treated as a loss error. Importantly,
losses are presumed to be detectable, and in many qubit
implementations, losses are a significant source of noise.

Previous work by Dawson et al. [4] established thresholds
against simultaneous loss and computational errors, finding
that FTQC is possible provided pioss < 0.3% and peomp <
0.01%. Various studies, considering each error process in
isolation, have derived much higher thresholds for each:
Varnava et al. [5] constructed an encoding with a loss tolerance
threshold of 50%; Knill [6] and Raussendorf et al. [7] have
demonstrated computational error thresholds at the 1% level
for FTQC. In recent work considering the restricted problem
of storing quantum information in surface codes [8—10], we
showed that these thresholds can be achieved in the presence
of simultaneous losses and computational errors [11].

The properties of surface code stabilizers that enable
this synthesis of the known loss and computational error
thresholds for quantum memories are shared by the more
elaborate schemes developed by Raussendorf ef al. [12,13]
that are capable of full FTQC. We therefore fully expect that
the methods we describe here will apply directly to FTQC
schemes, including losses.
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In parallel, a fruitful line of research has established
the intriguing connection between classical error correction
and statistical mechanics models [14]. Similar connections
between quantum error correction and phase transitions in
many-body systems have been made more recently. Notably,
Dennis et al. [10] pointed out that optimally decoding an error
syndrome on a surface code was equivalent to solving the
classical two-dimensional random-bond Ising model (RBIM).
This observation implies that the error correction threshold
coincides with the Nishimori point of the RBIM (i.e., that
the error correction threshold is ~10.9% [15,16]). Further,
numerical studies attempted to both implement computation-
ally efficient error correction algorithms, based on Edmonds’
minimum-weight matching algorithm, and to simultaneously
make predictions about the phase diagram of the RBIM. On
the basis of large Monte Carlo simulations, Wang et al. [15]
established very precise predictions about the location of the
zero-temperature phase transition in the RBIM, namely that
Peo = 10.31% £ 0.01%.

The purpose of this paper is twofold. First, we expand
on the discussion in [11] of a number of subtleties in the
implementation of our loss-tolerant protocol. We provide
a more detailed derivation of the edge weights that were
introduced in [11]. We then discuss the phase diagram in
the parameter space of losses and computational errors,
giving more detailed results of our numerical Monte Carlo
simulations, as well as a new analytic result for the slope of
the phase boundary at small values of the loss rate. We also
give an exposition of the interactions between error chains
and percolated clusters of loss on finite lattices, leading to a
deviation from universal scaling as the loss rate approaches
the percolation threshold.

Second, we discuss the role of degeneracy in matching
algorithms for error correction and for the RBIM. In the context
of error correction, there are in fact very many matchings that
attain the minimum weight, and so in this sense the code is
highly degenerate. This degeneracy was recently discussed
in [17] and was implicit in the edge weighting introduced
in [11]. We derive expressions for the matching probability,
accounting for path degeneracy. We show that the degeneracy
behaves analogously to an entropy term in a quasi-free energy.
On a square lattice, we provide a combinatorial expression
for the shortest path degeneracy of a given matching, and we
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exploit this to improve the error-correction threshold for the
surface code modestly, from 10.3% [15] to above 10.6%.

In the context of the RBIM, the shortest path degeneracy
manifests itself in the very large degeneracy of the ground-
state manifold. The degeneracy becomes important when
computing numerical estimates of the locations of phase
transitions in this and related models. In particular, we show
that it is important to fairly sample from the ground-state
manifold in order to make accurate quantitative predictions
of phase transition thresholds. We also give some evidence to
suggest that existing implementations of matching algorithms
do not do this, so may suffer a systematic inaccuracy in
estimates of p.o.

II. OVERVIEW OF THE PROTOCOL

For the purposes of analysis, the error model we consider
is local and uncorrelated. Each physical qubit is lost with
probability pjoss. Losses are presumed to be detectable: A
projector onto the computational basis of a given qubit, IT; =
|0); (O] + |1); (1], is an observable indicating whether the state
of the qubit has leaked out of the computational basis, without
affecting the computational state of the qubit if it has not. The
remaining qubits are subject to independent bit-flip (X) and
phase (Z) errors, each with probability pcomp. Both errors are
handled in an analogous way in the surface code, so here we
confine our attention to X errors, noting that the thresholds for
Z errors will be identical. Aside from these errors, we assume
other quantum operations (e.g., encoding operations, decoding
operations, and syndrome measurements) can be implemented
perfectly.

Kitaev’s surface codes are defined by a set of stabilizers [ 18]
acting on a set of physical qubits that reside on the edges of a
square lattice. The stabilizer group is generated by plaquette
operators, which are products of Z operators acting on qubits
within a plaquette, P, = ®i p Z;, and star operators, which
are products of X operators acting on qubits within a star,
Sy = ®jes X, as depicted in Fig. 1 [9]. Star and plaquette
operators all mutually commute, and the code space {|C)} is a
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FIG. 1. (Color online) (a) Physical qubits (arrows) reside on the
edges of a square lattice (dashed lines). A plaquette operator is a
product of four Z operators acting on the qubits within the plaquette
(blue), and a star operator is a product of four X operators acting on
the qubits within the star (red). The logical Z operator is a product of
Z operators acting on qubits along the solid vertical (blue) line, and
the logical X operator is a product of X operators acting on qubits
along the solid horizontal (red) line. (b) In the event of a qubit loss,
an equivalent logical operator Z can be routed around the loss.
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simultaneous +1 eigenstate of all star and plaquette operators.
Ifthe L x L lattice has periodic boundary conditions (a torus),
there are 2L physical qubits, L?> — 1 independent plaquette
operators, and L? — 1 independent star operators. There are
therefore two unspecified degrees of freedom, so the code
is capable of encoding two logical qubits, g; (i € {1,2}). A
logical Z; operator corresponds to a product of Z operators
along a homologically nontrivial cycle extending across the
entire lattice, shown in Fig. 1. Likewise, a logical X; operator
corresponds to a cycle of X operators extending across the
entire lattice in the conjugate direction. Z; and X; commute
with the stabilizers but are not contained within the stabilizer
group.

Note that we can obtain a new logical operator by multi-
plying the original one by a plaquette stabilizer, Z; = P,Z;.
The actions of Z; and Z; on the code space are the same,
since Z;|C) = P,Z;|C) = Z; P,|C) = Z;|C). Thus there are
many homologically equivalent cycles spanning the lattice
with which to measure each logical qubit operator, as shown
in Fig. 1(b). This redundancy allows us to obtain the loss
threshold for the case pcomp = 0: If only a few physical qubits
are lost, it is likely that each logical operator can still be
measured by finding a homologically nontrival cycle which
avoids all lost physical qubits. Thus the encoded quantum
information can be reliably recovered.

If pioss 1s too high, there is likely to be a percolated region
of losses that spans the entire lattice, in which case there are
no homologically nontrivial cycles with which to measure the
logical operators. In the limit of large L, the boundary between
recoverable and nonrecoverable errors is a sharp transition
corresponding to the bond percolation threshold on the two-
dimensional square lattice [19]: For pjoss < 0.5 error recovery
can almost surely be achieved, whereas for pjss > 0.5 error
recovery almost surely fails. Notably, this threshold saturates
the fundamental bound on p),ss imposed by the no-cloning
theorem [20].

The case pioss = 0 and peomp > 0 has been well studied
[9,10,15]. Briefly, physical bit-flip errors can lead to logical
bit-flip (X;) errors but not logical phase errors, and vice versa.
An error chain, E, is a set of lattice edges (i.e., physical qubits)
where a bit-flip error has occurred. E changes the eigenvalues
of the plaquette operators only at the boundary, dE, of the
chain to —1. A connected chain of errors leads to a single pair
of plaquettes with eigenvalue —1 at the endpoints of the chain.
Measuring the plaquette operators therefore yields information
about the endpoints of such connected chains. If the logical
Z; operator crosses the error chain an odd number of times,
then the logical qubit suffers an X; error. These errors may
be corrected if the endpoints can be matched by a correction
chain, E’, such that the closed chain C = E + E’ crosses the
logical Z; chain an even number of times (i.e., is homologially
trivial). The error rate below which the correction chain E’
may be successfully constructed is closely related to the phase
boundary of the RBIM [1521]. If peomp < peo = 0.104,!
then in the limit L — oo, the most probable chain, Cpx =
E + E/_,is almost surely homologically trivial and recovery

max?

ISome studies report p.o = 0.1031 [15] but others report p. =
0.1049 [21].
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succeeds. If peomp > peo, then in the limit L — oo, the chain
is homologically trival only 25% of the time.

We can think of these results as endpoints of a “bound-
ary of correctability”: (pioss, Peomp) = (0.5, 0) and (0, 0.104),
respectively. In the remainder of this paper, we demonstrate
that toric codes (and planar codes, by extension) are robust
against both loss and computational errors, with a graceful
tradeoff between the two. We first describe how losses can
be corrected by forming new stabilizer generators, which
are aggregations of plaquettes or stars, called superplaquettes
and superstars, respectively. The superstar and superplaquette
eigenvalues then reveal the error syndromes, and a perfect
matching algorithm is used to find an error correction chain E’.
We illustrate the efficacy of the single round error correction
protocol (i.e., ignoring fault-tolerance considerations) by
calculating numerically the boundary of correctability in the
(pIOSSa pcomp) parameter space.

Consider the lattice shown in Fig. 2(a), which is damaged
by the loss of two physical qubits, marked by the red crosses.
The loss of qubit 3 affects two plaquette stabilizers: Pa =
22,7374 and Pg = Z3Z5Z¢Z7, rendering them unmeasur-
able.

However, the superplaquette Ppag = PaPg =
Z1Z2,Z47Z57Z¢Z7 is independent of the qubit at site 3,
and so is a stablizer. In the absence of errors, Pag has
an eigenvlaue of +1. An error chain ending within the
superplaquette AB changes the eigenvalue of Pag to —1. It
follows that the syndrome associated with a superplaquette
is determined by the parity of the number of error chains
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FIG. 2. (Color online) (a) Lattice with two lost physical qubits.
The physical qubits are represented by the green lines between
plaquettes. Representative physical qubits are labeled 1, ..., 8, and
representative plaquettes are labeled A, B, C, D, E. (b) Connectivity
of (super)plaquettes, where each edge represents a physical qubit.
(c) Degraded lattice showing superedges (thick lines). (d) Restored
lattice with zero-weight edges (dashed) and edges between elements
of superplaquettes with irregular weights (thick lines). Also shown
are the test lines for calculating the homology class of C = E + E’
on the restored lattice.
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that cross its boundary. The fact that superplaquette operators
yield syndrome information with which to construct an
error correction chain, E’, is the basis for our loss-tolerant
error-correction scheme.

In general, given any set of lost qubits, we can form a
complete set of stabilizers on the damaged lattice in the
following way: For each lost qubit g, which participates
in neighboring (super)plaquettes P, and Pq/, we form the
superplaquette operator P, P[;, which is independent of Z,.
In the same way, we form superstar operators from products
of star operators. As discussed earlier, we can also form
new logical X; and Z; operators by deforming the original
logical operators to conform to the boundaries of newly formed
superplaquettes.

We note that in Fig. 2(a) there is a damaged plaquette
operator Z; = Z3Pp = Z1Z,Z4 (or, equivalently, Z3Pg =
ZsZsZ7) associated with the lost qubit 3, which commutes
with all the newly formed stabilizer generators on the damaged
lattice, but whose eigenvalue, £1, is indeterminate. Likewise,
there is a damaged star operator X 7 = X4X7X3 with indeter-
minate eigenvalue that also commutes with the new stabilizers
on the damaged lattice. Having indeterminate eigenvalues,
these mutually anticommuting, damaged operators form a
two-dimensional degree of freedom in an unspecified state.
They therefore describe a completely mixed junk qubit, 7,
which is a consequence of the entanglement between the lost
qubit and the remaining qubits [22]. Since Z7 and X 7 each
commute with the new stabilizers, and with the deformed
logical operators, the junk qubit is therefore in a product state
with the logical qubits: [¢) (V|3 ® |¢){Plz, ® 17/2, and so
the loss does not affect the logical qubits.

When analyzing the pattern of syndromes on the plaquettes
and superplaquettes, we construct a new graph, depicted in
Fig. 2(b), in which a (super)plaquette is represented by a node,
and (super)plaquettes share a bond on the new graph wherever
they share a physical qubit in common. Thus Pag and Pcp
share the qubits 2 and 5, and this is represented as two edges
between the superplaquette nodes AB and CD.

The error-correction syndrome dE arising from an error
chain on the graph in Fig. 2(b) is determined by the
(super)plaquettes that have an eigenvalue of —1. To correct
the errors, we follow the procedure described in previous
work [10,15] to find the most likely error chain giving rise
to dE.

A. Super-edge weights

Calculating the probability of a given error chain is
complicated by the presence of losses. In the case where
Ploss = 0, the probability of an error on a qubit, £ = {i, j},
between two neighboring plaquettes i and j, is uniform,
De = Peomp- With losses, superplaquettes may share common
physical qubits, as shown in Fig. 2(b). In this case, the
superplaquettes {AB, CD} have two qubits in common, 2 and
5, each of which might suffer an error. A nontrivial syndrome
arises only if either qubit 2 or qubit 5 suffered an error, but not
both.

By extension, for a pair of neighboring superplaquettes, £ =
{P, P}, sharing n, physical qubits, a nontrivial error chain
between P and P’ arises only if there are an odd number of
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errors on the ny qubits. This happens with probability

ne

nyg _
Pe = Z <m>p£’:)mp(l - pcomp)W "

m odd

=[1-0- 2pcomp)m]/z- (D

We therefore degrade the graph shown in Fig. 2(b),
replacing multi-edges (i.e., several shared physical qubits)
whose error probabilities are uniform with single superedges
whose error rates depend on the number of physical qubits
shared between neighboring superplaquettes. This degraded
lattice is shown in Fig. 2(c), in which there are no multi-edges,
but the error probabilities are no longer constant. Thus, the
edge weights account for the degeneracy of possible error paths
between neighboring superplaquettes. In subsequent sections,
we will discuss the general issue of degeneracy on an arbitrary
degraded lattice.

B. Chain probabilities

To correct the error chain E, a correction chain E’ is
required, satisfying d E’ = 0 E. Thatis, E’ is a matching for the
boundary of E. In order to evaluate the quality of a candidate
matching, E’, whose boundary is 9 £’ = d E, we compute the
prior distribution for E’ [i.e., P(E’|yg'=y£)]. For completeness,
and to define notation, we recapitulate the derivation of Wang
et al. [15] [Eq. (15)], generalized to include nonuniform edge
weights. The probability of the chain E’ is then

[Ta=po]] pe

(cE LeE’

= 1_[(1 -ro ] ( )
LeE’

T (P

= 1;[0 pw(l —p)

- P (1—uf'y/2

= 1;[0 —m)(l _pz)

= N e, o)

P(E'|yp=sE) =

where N =[]y, ~/p¢(I — p¢) is a normalization constant

independent of E’, e’t = |/ ]p” ¢, and for any chain P

p_[1ifleP, b
”@“{01f1¢1) and up =

~1ifl € P,
+1ifrgp. O

1. Connection to RBIM

Although the chains E and E’ may well differ, they share
the same boundary, and so the combined chain C = E + E’ is
closed. Following [15], ueC must therefore satisfy the closed-
chain constraint [, u§ = 1 for every vertex s.

The connection between error correction on the toric code
and the RBIM becomes clear when we solve the closed-chain
constraints for C at each vertex by introducing Ising spins, o;,

on the dual lattice such that uf; = o;0; for each £ = {i, j}.
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Using the identity u§ = ufuf’, we find that

P(E'op—ap) = N [ [ 077, (4)
(ij)
where E’ is the grain boundary between frustrated regions of
the Ising spin lattice.

This probability distribution is generated by the partition
function for the RBIM,

7 — Zneﬂlﬁuﬁmai
fo} (i)
=D e, )
o}

where

ZJ U;;0,0 (6)

at B = 1. We note that there are two additional sources of
randomness in this model compared to the standard RBIM: (a)
The lattice connectivity is irregular, and (b) the magnitude of
the Ising couplings, Jy, are irregular. However, the probability
distribution from which uf is selected and the magnitude of
the coupling J, are both functions of the probability p,. While
this varies throughout the lattice, each edge satisfies a local
Nishimori condition.

We see from Eq. (4) and Eq. (5) that a path E’ which
maximizes the correction chain probability also minimizes the
energy of the corresponding RBIM Hamiltonian Hy,), S0 is in
the ground-state manifold. Thus, a ground state of this irregular
RBIM can be found by maximizing P(E’ |3 —y) over possible
paths E’ [or equivalently maximizing In P(E’|yp—y£)]:

E/
max In 1_[ ele
b
7

= quz Jgug/

E Ve

= ma}x (Z Jg — Z 2]@)
E LeE'’

= Z Jy — m1nZ2Jg

LeE'
_ZJ‘ manln( )
CeE

For the regular lattice, p, = p, and so this amounts to finding
the shortest path. For a lattice with irregular weights (as we
have), we should weight each edge by In[(1 — p;)/p¢], and
find the path with the minimum additive weight.

The minimization

. (1 - Pz)
min In{ ——
B eE pe

may be accomplished using Edmonds’ minimum-weight,
perfect-matching algorithm [23]. For the case pjoss = 0, this
simply minimizes the total metropolis length of the matching
path and is the same procedure implemented in previous
studies [10,15]. In the case where pjoss > 0, the edges do

max In P(E'|yp=yE) =
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not have uniform weight, since p, depends on the number of
physical qubits, n,, shared between adjacent superplaquettes.

C. Correctable phase diagram

In order to make quantitative estimates of the tolerable error
rates in the presence of loss, we adopt two approaches. First
we perform Monte Carlo simulations to provide statistical
estimates of the boundary for all values of pjos. Second, we
provide a semianalytic estimate for the threshold value of
Dcomp as a function of pjess. These two approaches are in good
agreement.

1. Monte Carlo simulations

For the purposes of simulation, it is easier to determine
homology classes on a square lattice, rather than the degraded
lattice, exemplified in Fig. 2(c). We therefore restore the
square lattice by dividing superplaquettes into their constituent
plaquettes in the following way: (1) An edge between two
plaquettes within a single superplaquette is assigned a weight
of zero; (2) an edge between plaquettes in two neighboring
superplaquettes is given the weight of the superedge in the
degraded lattice, as illustrated in Fig. 2(d). These transforma-
tions do not change the minimum weighted distance between
any pair of syndromes, and so a minimum-weight perfect
matching on the restored lattice is also a minimum-weight
perfect matching on the degraded lattice. Determining the
homology class is then accomplished by counting crossings
of vertical and horizontal test lines in the dual lattice.

In order to test the efficacy of our loss-tolerant error
correction scheme, we generate random losses on a periodic
lattice with rate pjos. On the remaining edges we generate a
set of errors, E, with rate pcomp. Depending on the distribution
of losses, we assign edge weights according to Eq. (1) to edges
in the restored square lattice. The syndrome, o E, is calculated,
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and applying Edmonds’ algorithm to 9 E yields a maximum-
likelihood error correction chain, E’. The homology class of
the chain E + E’ then determines whether error correction
was successful.

For a given value of pj.s we simulate the protocol for
different values of pcomp on different sized lattices, L = 16,
24, and 32. For each value of pcomp and L, the failure rate,
Drail, 18 calculated by averaging over 10* trials. Following [15],
we seek a threshold, pthr (depending on pjss), such that

comp
if Peomp < pg(‘)rmp then pry — 0 as L — oo. Conversely, if

Pcomp > pg(l)rmp then pgy — 3/4 as L — oo.

Results of simulations for different values of pjoss are
shown in Fig. 3. For each value of pj, the error rate is
scaled according to the same prescription as given by Wang
etal: x = (Peomp — Plmmp)L"/". The scaled results generally
collapse on the same linear relationship, pgy = a + bx, also
shown. For each value of pjq, the parameters pg‘fmp, Vo, a, and
b are determined by least-squares fitting. If there is universal
scaling behavior, then pg(‘;np is independent of L. At large
values of pjoss however, universal scaling breaks down, and
the point at which the py,; curves cross depends on L.

Figure 4 is the central result in this paper and shows p.y as
a function of pjs. Since we simulate three different values
of L, there are in principle three different candidates for

tr _indicated by the different colored and sized points. For

pcomp’
Ploss < 0.4, these all coincide, so pf}g);p is well defined. The
failure rate obeys the universal scaling law prii = f[(Pcomp —
pirop) L] with scaling exponent vy in the range 1.4 to 1.5,
consistent with the RBIM universality class [15].

Fitting a quadratic through the points in the interval 0 <
Dloss < 0.4 yields a curve that extrapolates through the point
(0.5, 0). This curve represents the boundary of correctability:
If (pross» Peomp) is in the shaded region then error correction

almost surely works, as L — oo. Importantly, this boundary

ploss:() ploss:0~2 pl<>ss:0-425
] 045 ' 0.40f, A
0.40}
035
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< 030 _ 030
£ 025l £ 025t
0.20f 0.20f
0.15f 0.15f
0.10} | | | | 0.10k | |
006 0065 007 0075 008 0.01 0.015 0.02
Pcomp Pecomp Pecomp
0.32f 1 8-2(5)' 0.40f
030} ] : 035t
0.35
0.28} : ] 0.30
= = 0.30f z F
S 8';6" : S 025 = 0.25 :
0'22' 0.20} : 020}
ot 0.15} 0.15
0205~ | 1 ot0 ‘ | | | 2l ‘ ‘ ‘
~0.06 20.03 0 0.03 ~0.06 —0.03 0 003 0.06 2006 —-0.03 0 003 006

X

X

FIG. 3. (Color online) (Top) Statistical sampling of ppii VS Peomp- (Bottom) Same data scaled according to x = (peomp — Peo)L'/™. Then
Pril(x) = a + bx is fitted to the scaled data. Sample standard-error bars are shown. Red circles are for L = 16, green squares are for L = 24,

and blue diamonds are for L = 32.
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FIG. 4. (Color online) Correctability phase diagram. The shaded
region is correctable in the limit L — oo. Large, red points are the
crossing point of pg; calculated on L = 16 and L = 24 lattices;
medium, green points are the crossing of pgi (VS peomp) 00 L = 16
and L = 32 lattices; and small, blue points are the crossing point of
Prat on L = 24 and L = 32 lattices. The curve is a quadratic fit to the
points in the interval 0 < pjoss < 0.4 for which finite size effects are
negligible. It extrapolates through the point (pioss, Peomp) = (0.5, 0).
The dashed line is the linearized phase boundary for pj, much less
than the percolation threshold, given in Eq. (9).

passes through the known bounds at pj, =0 and 0.5,
demonstrating that the protocol is very robust against loss.

Deviations between the quadratic fit and the simulation data
near pjoss = 0 are the result of finite size effects, discussed in
the following.

2. Linearized approximation for small pgss

If pioss is much less than the percolation threshold, so that
losses are very sparsely distributed, to a very good approxima-
tion the only superplaquettes that arise are those consisting of
two neighboring plaquettes, and contain six physical qubits.
The fact that these superplaquettes contain more physical
qubits than the original plaquettes means that they have a
higher chance of suffering a syndrome error. Therefore, as
PDloss increases, the effective rate of syndrome errors (averaged
over plaquettes and superplaquettes) also increases. We use
this observation—that for a fixed computational error rate, a
lossy lattice has a higher per-stabilizer error rate than a lossless
lattice—to calculate the dependence of the error-correction
threshold on the loss rate, for small pjs.

For small loss rates the probability that a given stabilizer
has a syndrome error is, to a good approximation,

P(stab. error) = P(no loss) P(plag. error)
+ P(1 loss) P(superplaq. error), (7)
where
P(moloss) = 1 — P(1loss) = (1 — pioss)?,
P(plag. error) = [1 — (1 — 2peomp)]*/2,
P(superplaq. error) = [1 — (1 — 2peomp)1°/2

are the probabilities that an odd number of physical qubits
suffer an error on a plaquette (consisting of four qubits) and
on a superplaquette (consisting of six qubits), respectively.?

2The latter two are specific cases of Eq. (1).
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The effective single qubit error rate, p.ss, on a lossless lattice
that duplicates the per-stabilizer error rate of the lossy lattice,
Eq. (7), therefore satisfies

[1-01 - 2peff)]4/2 = P(stab. error). (8)

From [15], the threshold for this effective error rate on the
lossless lattice is pqo = 0.103. Thus, setting pesr = p.o On
the left-hand side of Eq. (8) yields an implicit equation relating
the threshold error correction rate, pg(‘fmp, tO Pioss. Treating pioss
as the independent parameter determining the error threshold,

s0 it o =PI (Ploss), we compute the slope o = pir '(0)

comp ~

by differentiating both sides of Eq. (8) with respect to pjoss.
The result is

o = =29y O[1 = Py O][1 = 2P0, (0)]
= _2176()(1 - Pco)(l - ZPCO)
~ —0.148.

It follows that the linear approximation to the phase boundary
for small pjqgs 18

pg(l)rmp & Pco + A Ploss- (9)

This relationship is shown as the dashed line in Fig. 4.

From the quadratic fit to the simulation data in Fig. 4, « is
found to be —0.154 + 0.0033 (1o). This is in good agreement
with the semianalytic estimate given earlier.

D. Superplaquette percolation and finite size effects

For pjpss = 0.425, the universal scaling law breaks down,
and the points in Fig. 4 lie below the quadratic extrapolation
[though also reaching the point (0.5, 0)]. This is attributed
to the fact that, for pjos > 0.425, the largest superplaquette
onan L < 32 x 32 lattice occupies approximately half of the
lattice sites [24], so finite size effects dominate. This can be
seen in Fig. 5, in which the fit parameters a, b, and vy change
precipitously for large values of pjss.

AS pioss approaches 0.5 (for fixed L), the size of the largest
superplaquette becomes comparable to the size of the lattice, so
it is reasonable to expect that the scaling behavior at large pjoss
breaks down. The size of the largest superplaquette, (1 (Pioss)»
on an L x L lattice is closely related to the size of the largest
percolated cluster, discussed by Bazant [24]. We note that
percolated cluster of losses may contain “islands” of qubits that
were not lost. For our purposes, these isolated islands within
a cluster of losses neither assist in constructing deformed
logical qubit operators nor assist in creating superplaquettes.
Therefore, in analyzing the size of percolated clusters, we treat
these islands as if they are lost.

Figure 6 (left) shows ., versus L2, with u; and L? scaled

vD d/D :
by $p = |Ploss — Pperc|”” and sy, respectively (where v =
4/3 is the percolation length scaling exponent [19,25], D =
91/48 is the fractal dimension of the largest percolated cluster
[24], and d = 2 is the lattice dimension). The results collapse
onto the universal scaling function ®,

L2
HLo_ (W) . (10)

SplOSS sp](YSS

where ®(x) = x log(£ xP/¢ + 1), as shown as the solid line

with fit parameters x = 0.116 and £ = 7.74 in Fig. 6 (left).
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FIG. 5. (Color online) Fit parameters a, b, and v, for data collapse in Fig. 3 (bottom).

Intuitively, when the largest superplaquette is compa-
rable to the size of the lattice, the effective diameter
of the lattice is reduced, leading to an enhanced proba-
bility of attempting to match syndromes with homologi-
cally nontrival paths. This “interaction” between the loss
rate and the computational error rate leads to nonuni-
versal scaling and degrades the performance of the error
correction.

Figure 6 (right) shows the loss rate at which the largest
superplaquette occupies half of the lattice [i.e., pscqle 1S defined
such that (1 (Pscale) = L? /2]. When pioss 2 Pscales the scaling
law expected for small values of pj,s breaks down. When
L = 16, pscare = 0.42, which coincides with the point at which
the red data points in Fig. 4 depart from simple quadratic
behavior. When L = 24, pscae = 0.44, which coincides with
the point at which the blue data points depart from the simple
quadratic behavior.

As L — 00, pscale — 1/2, which is the percolation thresh-
old. Therefore, on larger lattices, the anomalous region, pjoss >
Pscale, Decomes smaller.

II1. USING DEGENERACY TO IMPROVE THE ERROR
CORRECTION THRESHOLD

For a given configuration of the error syndromes, there may
be a large number of degenerate minimum-weight matchings.
Figure 7 exemplifies this for a configuration in which the

1.000 7
0.500 F

0.100 -
0.050F

urls Ploss

0.010F
0.005F

! ! !

0.1 1 10

0.001 0.01 100 1000

2/ dID
L%/ Spy,

eigenvalues of the four numbered plaquette have flipped. There
are two degenerate matchings of the numbered plaquettes
for this case: {{1, 2}, {3,4}} or {{1, 3}, {2, 4}}. The former
matching has only a single matching path, shown in green.
The latter matching has nine degenerate matching paths:
There are three paths of minimum weight between 1 and
3, and likewise between 2 and 4. The higher degeneracy of
the latter matching indicates that it is more likely: There are
more minimum-weight error chains that could have generated
it. The role of degeneracy in improving the performance
of error-correction algorithms has recently been noted by
Duclos-Cianci and Poulin [17].

When trying to find the most likely configuration of errors
given a certain error syndrome, this example demonstrates that
one should account for the fact that some matchings have a
higher degeneracy than others. We now show that the path-
matching degeneracy can be handled by a simple modification
to algorithms based on Edmonds’ perfect matching.

For a given matching, M, the degeneracy of the matching,
Dy, is the number of shortest paths that are consistent with
the matching. In the case of a square lattice this degeneracy
is simple to calculate, by considering the individual pairings
within the matching M = {..., myp, ...}, where m,;, is the
pair of syndrome sites {a, b}. For each pairing, m,;, there are
hp,, horizontal edges and v,,,, vertical edges in any shortest
path between the sites a and b. The set of all shortest paths
between a and b is therefore the number of permutations of a

0.46 - 1

0441 ]

Pscale

042+ 1

0.40

40 50 60
L

FIG. 6. (Color online) (Left) Scaling law for the size of the largest superplaquette onan L x L lattice. . is the number of sites in the largest
superplaquette, s, is the number of sites within a “percolated-correlation length,” s, = | pioss — Pperc |"P, where Ppere = 1/2 s the percolation
threshold for the lattice, v = 4/3 is the correlation length scaling exponent, D = 91/48 is the fractal dimension of the largest percolated cluster,
and d = 2 is the dimensions of the lattice. Points are statistical samples on different lattice sizes ranging from L = 2 to 64, and the solid curve
is a fitted scaling law, given by ®(x) = 0.1161og(7.74 x”/¢ + 1) (adapted from Ref. [24]). (Right) Solving 1, (Pscaie) = L?/2 for pya. as a
function of L. When pjos = Pscale, the largest superplaquette occupies half of the lattice.
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FIG. 7. (Color online) The two minimum-weight matchings of
the numbered nodes: {{1, 2}, {3, 4}} or {{1, 3}, {2, 4}}. The former
has a single minimum-weight matching path (green, dashed lines);
the latter has nine (including the thick, blue line).

string of A,,,, horizontal steps and v,,,, vertical steps:

Dmub — (hmab + vmab> — (hmab + Umab)! ) (11
Umab hmab !vmab !
The matching degeneracy is then
Dy =[] Du- (12)
meM
For the example shown in Fig. 7, the matching

{{1, 3}, {2, 4}} has pairings {1, 3} and {2, 4}. For the pair {1, 3}
there are i; 3 = 1 horizontal and v; 3 = 2 vertical edges on
any shortest path between the plaquettes. It follows that there
are Dy 3 = (3) = 3 different shortest paths between 1 and
3. The same is true for the other pair {2,4}: A4 =1 and
V2,4 = 2,50 Dyp 4y = 3. The degeneracy of the matching is then
D{{1,3}’{2’4}} = D{1,3}D{2’4} = 9; there are nine distinct shortest
paths that are consistent with this matching.

We wish to find the matching that maximizes the matching
probability P(M). There are Dy shortest matching paths,
{Ef,...,E Q)M }, and since they are all of the same length, they
each have the same probabilities

E!
P(E}) = N[ ]e"
Ve
— N/e_ZIEE; 2Je
— N/67 ZmeM d
= P(E)),

where d,,,, is the distance between sites @ and b. In the
absence of loss, d,,, = 2J(hm,, + Vnm,,). The matching path
probability is then

P(M) = Z P(E))
{E]}

= Dy P(E})
— N/efzmeM(dmflan). (13)

Maximizing P(M) is therefore equivalent to finding the
matching that minimizes

G(M) = Z(dm —1InD,,). (14)
meM
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FIG. 8. (Color online) The critical error probability as a function
of the temperature parameter t. The blue squares were calculated on
even lattices with L = 16, 20, 24, 28, and 32. The red circles were
calculated on odd lattices with L = 15, 19, 23, 27, and 31. The same
error instances were used to calculate p. for all 0.1 < v < 1.5, so
the error bars are correlated. The values at t = 0 are taken from [15].
The value at T = 2 is shown to demonstrate the drop in the threshold
as T increases further.

This minimization may be accomplished by using the same
methods described earlier, using Edmonds’ perfect matching,
where the distance between two sites a and b on the lattice is
reduced by the amount In D,,, to account for the number of
degenerate paths between a and b.

The form of Eq. (13) suggests an analogy between the
degeneracy and the entropic contribution to a free energy, G. A
temperature scale does not appear explicitly in this expression:
It is implicitly the “free energy” at T = 1. It follows that the
matching that minimizes Eq. (14) is not necessarily a shortest
path.

To make the analogy with a free energy more explicit, we
modify Eq. (14) to

G:(M) =) (d —TInD,), (15)

meM

interpreting T as a temperature-like parameter. When minimiz-
ing G, in the limit 7 <« 2J ~ 4 (i.e., much less than the RBIM
grain boundary tension), excitations out of the degenerate
ground-state manifold are suppressed, so only microstates
within the ground-state manifold contribute to the entropy.

In any case, we take 7 to be a free parameter with which to
optimize the performance of the matching. We can think of ©
as parameterizing a class of matching algorithms. In order to
study the properties of this class of matching algorithms, we

compute the error correction threshold, pggmp(r), for different

values of 7.* This is shown in Fig. 8.5

3The analogy is not perfect, since we should include all matching
paths for T > 0: although Eq. (13) explicitly includes all matchings,
it only accounts for the shortest matching paths consistent with a
given matching.

“We note that all numerical results we report here with regard to the
degeneracy are at pjoss = 0.

SFor each value of Peomp- the same 10° samples were used to estimate
P for temperatures 0.1 < v < 1.5. As a result, the error bars in
Fig. 8 are not uncorrelated. Results at T = 0 are taken from [15].
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FIG. 9. (Color online) The fraction of matchings that are mini-
mum distance, for different values of T. As 7 increases, an increasing
proportion of the selected matchings are longer than the minimum dis-
tance matchings (i.e., ground-state matchings), but have sufficiently
high degeneracy that their free energy is lower. All simulations shown
were done at peomp = 0.1035, on different sized lattices, as indicated.
Note the disparity between the minimum-distance matching fraction
on even (blue) and odd (red) lattices.

There are a number of conclusions to draw from Fig. 8.
First, for 0 < 7 < 1.5, the error threshold is higher than that
at T = 0. For small 7, the degeneracy in Eq. (15) carries
a small weight, so that G is maximized with matchings in
the ground-state manifold: The matching algorithm chooses
a maximally degenerate matching within that manifold. This
is demonstrated in Fig. 9, where the fraction of matchings
that are also minimum-distance matchings is shown for
different values of 7. For 7 < 0.5, this fraction is essentially
unity, so that all matchings are also minimum-distance
matchings.

The threshold increases with increasing 7, and it peaks
around t = 1.4 or so. Interestingly, this is somewhat better
than the threshold at t = 1, pertaining to Eq. (14). When
7 2 1, the matching algorithm no longer simply maximizes
the matching path probability, P(M). Instead, it favors
more degenerate paths. Finally, the threshold decreases as ©
increases further. This behavior is qualitatively consistent with
the proposed reentrant phase diagram for the RBIM, shown in,
for example, [15].

There is a notable discrepancy between the thresholds
and minimum-distance matching fractions on even and odd
lattices. For T < 1 even lattices appear to have a substantially
higher threshold than do odd lattices. This discrepancy is
much larger than that discussed in [15], shown for T = 0.
The deviation of the minimum-weight matching fraction from
unity also follows different trends depending on the parity of
the lattice: On odd lattices it begins deviating from unity for
T > 0.6, whereas on even lattices the deviation setsinat 7 > 1
(see Fig. 9). Because the system is discrete, there is necessarily
a gap between the ground-state manifold and the low-lying
excited states of the RBIM. In particular, Fig. 9 suggests that
this gap is smaller on odd lattices than on even lattices, so that
at a given “temperature” 7 there a higher chance that an odd
lattice will be in an excited state. The origin of this discrepancy
remains an open problem.

Given the maximum possible threshold set by the Nishi-
mori point at ~10.9% [15], the addition of degeneracy
in the matching algorithm improves the threshold by a
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modest but statistically significant margin to ~10.65% at

T~ 14.

IV. WHAT CAN WE REALLY SAY ABOUT THE RBIM
PHASE DIAGRAM?

The most precise estimate for p., the T =0 phase
transition in the RBIM, is currently the value reported in
[15], and this result has been cited in the study of the
classical two-dimensional RBIM [26]. The observation of the
huge degeneracy in the ground-state manifold of the RBIM
raises the question of how to ensure that the ground states
(i.e., minimum-distance matchings) selected by Edmonds’
algorithm are sampled fairly from the manifold.

As an elementary test of the behavior of Edmonds’
matching, we applied two freely available implementations,
Blossom IV [23] and Blossom V [27], to the simple matching
problem depicted in Fig. 7, permuting vertex labels through
all 24 permutations to reorder the presentation of the complete
graph. Regardless of presentation, Blossom IV always returned
the least degenerate matching, {{1, 2}, {3, 4}}, regardless of
reordering. On the other hand, depending on the vertex labels,
Blossom V returned both possible matchings: Half of the per-
mutations resulted in matching {{1, 2}, {3, 4}}, and the other
half yielded the alternative, {{1, 3}, {2, 4}}. This test serves
to demonstrate that different implementations of Edmonds’
matching sample among the ground states differently.

To compute p.o accurately, we need to sample the ground
states of the RBIM fairly (i.e., with a probability distribution
proportional to the path-matching degeneracy). To see this, we
define an observable O g for the classical RBIM to be the
indicator function determining whether E + E’ is in the trivial
homology class:

) ] 0 if E+ E'is homologically trivial,
EE =11 otherwise.

As in [15], peo is calculated from the scaling behavior of
Prait = (OE g/), which is given by

Z P(E)Or 1)k
= hm Z P(E) Z Opoe o)z

= Z P(E) ) Op,/Dg

OE E’

oEg.S.

= Z P(E) Y Orp/Dk (16)
E'eg.s.

= Z P(E))_ O Dy /D, (17)
I

where Dy, is the matching path degeneracy of the matching
M', Dg = ZM’\BE D), is the ground state (g.s.) degeneracy
of the RBIM instance E, and the grain boundary E’ is
interchangeable with a given Ising spin configuration o (as
described earlier and in [10]). Also we have used the fact that
O g = Og pv is constant over all minimum-weight matching
paths E’ consistent with a given matching M'. Note that in
the limit L — oo, the sum over E is made unnecessary by
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appealing to an ergodic argument: (O) = (O)g, for any E
whose errors are uniformly distributed.

The final result, Eq. (17), establishes the distribution from
which we should sample the matchings: P(M|E) = Dy /Dg.
That is, matchings should be selected with a probability
proportional to their degeneracy, as one might expect. This
result suggests that the direct use of existing implementations
of Edmonds’ perfect matching may not give accurate estimates
Of Pco-

In principle, for a finite lattice, one could enumerate all
matchings, compute the matching path degeneracy for each,
then evaluate Eq. (17) explicitly; however, this is computation-
ally inefficient. We do not know of a computationally efficient
way to ensure a fair statistical sampling.

We note however, that within the ground-state manifold
(i.e., taking 0 < v < 0.5), the error correction threshold is
bounded by about 0.105 (see Fig. 8). This suggests that
Ppeo < 0.105. That this is significantly less than the Nishimori
probability p. gives support to the notion that the phase
diagram is indeed reentrant, as has been discussed elsewhere.
However, we propose that an accurate value of p. may
be higher than that reported in [15]. Indeed, this bound
is consistent with the estimate for p. ~ 0.1049 £ 0.0003
reported in [21].

V. CONCLUSION

We have shown using both numerical studies and analytic
results that the simultaneous expression of both loss and
computational errors can be dealt with in the context of
topological memories. The tradeoff between these processes is
rather gentle. At low loss rates, our analytical results indicate
that, because superplaquettes embody more physical qubits,
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the principle effect of losses is a moderate, linear increase
in the effective error rate per plaquette. At higher loss rates,
changes in the structure and connectivity of the superplaquete
lattice become significant.

We have also shown that the classical algorithms used
to implement topological quantum error correction can be
improved by accounting for degeneracy in matching algo-
rithms. This can take various forms: either in modifying
edge weights between neighboring superplaquettes on an
irregular lattice, as discussed in [11], or by counting the
number of degenerate shortest paths between syndromes,
as discussed here and in [17]. Both approaches may
be implemented with little overhead to existing matching
routines.

This work also highlights the attention that needs to be given
to degeneracy when calculating thresholds in the RBIM and
any related classical statistical mechanics simulations relying
on implementations of Edmonds’ matching algorithm. To
accurately predict p.o, minimum-distance matchings should be
sampled fairly from among the hugely degenerate ground-state
manifold. To our knowledge, achieving this remains an open
problem. We hope that this avenue of research will shed new
light on the RBIM.
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