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The output fields of a pair of coherently coupled nonlinear optical cavities are found to exhibit strong optical
entanglement. For sufficiently strong coupling time-delayed quantum correlations are observed providing a
resource for quantum information protocols such as all-optical quantum memories. A straightforward experi-
mental implementation applicable to whispering gallery mode resonators such as microtoroids is proposed.
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I. INTRODUCTION

In the last century, interest in entanglement was motivated
predominately by its fundamental significance as “the char-
acteristic trait of quantum mechanics” �1�. In recent years,
however, a paradigm shift has occurred due to the realization
that entanglement can facilitate powerful measurement, com-
putation, and communication tasks �2�. Optical entanglement
is of particular significance, both enabling applications such
as quantum cryptography, quantum information networks,
and quantum metrology �2� and facilitating the most strin-
gent tests of quantum mechanics performed to date �3�.

Here we investigate optical entanglement generated from
a pair of coherently coupled nonlinear optical cavities. Co-
herently coupled optical cavities are of fundamental interest
enabling for example an all-optical analog to electromagneti-
cally induced transparency �EIT� �4� with the capacity to
both slow and stop light �5�. Consistent with previous work
on nonlinear coupled intracavity waveguides �6�, we show
that the introduction of nonlinearity enables arbitrarily strong
entanglement to be generated. Interestingly, however, for
strong coupling, the entanglement is quenched and a new
form of entanglement exhibiting time-delayed quantum cor-
relations becomes apparent. This entanglement is analogous
to that generated in �-type atomic ensemble quantum memo-
ries �7�, which have already proved to be an enabling tech-
nology in quantum information applications such as quantum
repeaters and on-demand single photon sources �8�. In con-
trast to atomic ensembles, quantum memory capabilities are
not typically available in nonlinear optical systems. Indeed,
they are only present in our system due to the EIT-like nature
of the coupled cavities and to our knowledge have not been
predicted for any other nonlinear optics based entanglement
source. The time-delayed entanglement predicted here has
many applications in quantum information science. For ex-
ample, an all-optical quantum memory could be imple-
mented utilizing time-delayed entanglement as the nonclas-
sical resource for quantum teleportation �9�.

This Rapid Communication models a pair of identical be-
low threshold coherently coupled optical parametric oscilla-
tors �OPOs� each consisting of a ��k+1� general nonlinear me-
dium enclosed in an optical cavity as shown in Fig. 1�a�.
Such a configuration is experimentally relevant, most nota-
bly to ultrahigh quality whispering gallery mode �WGM�
resonators where counterpropagating modes are coupled by
scattering centers �10� as shown in Fig. 1�b�. Silica microto-
roidal resonators �10� and polished crystal microdisks �11�,

for example, respectively exhibit high ��3� and ��2� nonlin-
earity, as well as strong scattering. These resonators are ca-
pable of providing strong optical confinement in a scalable,
robust, microfabricated architecture with high coupling effi-
ciency to optical fiber �10�. They are therefore an ideal can-
didate to produce, in-fiber, the strong entanglement predicted
here. Such entanglement would be an important resource for
scalable quantum information networks, as well as long-
distance fundamental tests of quantum mechanics such as the
EPR paradox �12� and Bell tests �3�. Furthermore, recent
research has demonstrated an exquisite capability to engineer
microresonator mechanical properties �13� providing the po-
tential to suppress noise due to guided wave Brillouin and
Raman scattering, which presents a strong constraint on ex-
isting in-fiber entanglement sources �14�.

II. ANALYSIS

Our model is closely analogous to that used previously to
analyze nonclassical states from a pair of coupled intracavity
nonlinear waveguides �6�. Within each coupled OPO cavity
the nonlinear process converts k pump photons at frequency
�p into a pair of signal and idler photons at frequencies �1
=�−�� and �2=�+��, where to maintain energy conserva-
tion �= k

2�p. Since the pump fields in such systems are typi-
cally bright we treat them classically here, with �x and �y
denoting their coherent amplitudes, and the subscripts x and
y used throughout to distinguish the two cavity modes. As-
suming the nonlinear interaction strength � is identical for
modes x and y, and the coherent coupling rate g is indepen-
dent of detuning ��, as is the experimentally relevant case,
and taking the rotating wave approximation yields the sys-
tem Hamiltonian �6�

H�k+1� = ��
n=1

2

�g�âxnâyn
† + âxn

† âyn� + �
m

�mnâmn
† âmn�

+ i���
m

��m
k âm1

† âm2
† − �m

k�âm1âm2� , �1�

where m� �x ,y	, â is the annihilation operator, and the sub-
scripts 1 and 2 denote the signal and idler fields respectively.
Assuming both cavity modes x and y have identical input
coupling and loss rates, denoted by 	in and 	l, respectively,
as is typical for experimental systems, and applying the
quantum Langevin equation �15� to Eq. �1� we obtain four
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equations of motion for the signal and idler fields,

ȧ̂x1 = ��x
kâx2

† − �	 + i���âx1 − ig�ây1 − 
2	inâin,x1 + 
2	lâl,x1,

ȧ̂x2 = ��x
kâx1

† − �	 − i���âx2 − ig�ây2 − 
2	inâin,x2 + 
2	lâl,x2,

ȧ̂y1 = ��y
kây2

† − �	 + i���ây1 − ig�âx1 − 
2	inâin,y1 + 
2	lâl,y1,

ȧ̂y2 = ��y
kây1

† − �	 − i���ây2 − ig�âx2 − 
2	inâin,y2 + 
2	lâl,y2,

where âin and âl are the fields entering through the input
coupler and loss mechanisms, respectively, and 	=	in+	l is
the total decay rate of each cavity. Assuming �x and �y are
independent of time these equations can be solved in the
frequency domain by taking the Fourier transform. The di-

mensionless quantities Rx=
���x�k

	 , Ry =
���y�k

	 , g=g� /	, �
=�� /	, and 
=	in /	 are used, where 
 is the cavity escape
efficiency and R is a dimensionless pump strength with the
physical significance that R=1 corresponds to the OPO
threshold. The solution can then be expressed compactly as
1
2MÂ=

Âin+
1−
Âl, where

M = �
i� − 1 Rxe

ik�x − ig 0

Rxe
ik�x i� − 1 0 ig

− ig 0 i� − 1 Rye
ik�y

0 ig Rye
−ik�y i� − 1

 , �2�

�x and �y are the phases of the two pumps, and throughout

vectors Âq are of the form Âq= �âq,x1 , âq,x2
† , âq,y1 , âq,y2

† �T.

One can then use the input/output relations Âout=
2	inÂ
+ Âin �15� to solve for the output fields,

Âout = �I4 + 2
M−1�Âin + 2

�1 − 
�M−1Âl, �3�

where I4 is the 4�4 identity matrix. General output field
quadratures for each of the four system modes are then

readily obtained as X̂���= â���e−i+ â†���ei.
Any entanglement generated by our coupled cavity sys-

tem is expected to display Gaussian statistics since the fluc-
tuations of all input fields are Gaussian and the nonlinear

processes involved retain this Gaussian character. Gaussian
continuous variable entanglement between orthogonal field
quadratures pairs of two light beams can be completely char-
acterized by the correlation matrix of the system, which can
be constructed in our case from Eq. �3� for any two pairs of
output fields. Here we follow the procedure of Duan et al.
�16� for bipartite continuous variable systems, who showed
that the correlation matrix of any Gaussian state can be trans-
formed reversibly into a standard form, from which the de-
gree of inseparability I can be defined such that I�1 is a
necessary and sufficient condition for two-mode entangle-
ment, with maximal entanglement characterized by I=0.
The degree of inseparability is the standard tool for experi-
mental characterizations of continuous variable entanglement
due to ease of both measurement and interpretation
�7,17,18�. We use the method of Grosse et al. �17� to numeri-
cally calculate the degree of inseparability from the output
field correlation matrix of the coupled cavity system.

III. RESULTS

In general, entanglement can be observed between the
fields âx1, âx2, ây1, and ây2 through direct individual measure-
ments on each. However, here we consider the more experi-
mentally realistic situation of heterodyne detection per-
formed separately on the outputs of each of the subsystems x
and y with a local oscillator at frequency �. In this case for
each subsystem both signal and idler fields âm1 and âm2 beat
with the local oscillator and, combined, produce a signal
directly proportional to the joint-quadrature operator

X̃m,t
 ��� =

1

2

�X̂m,1
��·t+��� + X̂m,2

−��·t+���� , �4�

where m� �x ,y	,  is the local oscillator phase, and t is the
time at which the measurement occurs. As a result of the
frequency difference between the signal and idler fields we
see that a time delay has the effect of rotating the observed
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FIG. 1. �Color online� Schematics of coupled cavity systems. �a�
Two optical cavities coupled via a partially reflective mirror, each
containing a �k+1�th order nonlinear medium. �b� An equivalent
WGM resonator with two counterpropagating optical modes
coupled by optical scattering and intrinsic nonlinearity.
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FIG. 2. �Color online� Inseparability as a function of detuning �
and coupling rate g. �a� and �c� Undelayed entanglement with ��
=�x−�y =0; �b� and �d� time-delayed entanglement with ��=� /k.
Model parameters: Rx=Ry =0.9 and 
=0.99.
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signal and idler quadratures in opposite directions. Entangle-

ment of the orthogonal quadrature pair X̃x,�x

x ��� and

X̃x,�x

x+�/2��� of field x with the equivalent quadratures of field
y is possible due to the Heisenberg uncertainty relation
�2Xm

 �2Xm
+�/2�1, which originates from the commutation

relation �X̃m
 , X̃m

+�/2�=2i. We analyze entanglement of this
kind henceforth and restrict our analysis to the optimal situ-
ation where x=y =.

In all nonlinear optics based entanglement sources to date,
due to the near instantaneous response of the nonlinearity,
the quantum correlations between output fields are observed
without time delay. Hence, here we begin by considering the
case where the output fields are measured at the same time,
i.e., tx= ty. Figures 2�a� and 2�c� illustrate the degree of in-
separability calculated for this case as a function of coupling
rate and detuning from cavity resonance, where we have cho-
sen equal intensity in-phase pump fields and parameters typi-
cally achieved in experiments. Strong entanglement is ob-
served. When g�1 the best entanglement is near resonance
as one might perhaps expect. However for large coupling one
observes both that the entanglement is quenched and that the
maximum entanglement shifts to nonzero detuning. The shift
can be understood from the well-known mode splitting that
occurs in coupled cavity systems �6,10�. As a result fields
produced at frequencies detuned by g from the unperturbed
resonance frequencies are on resonance within the cavity and
the nonlinear response is enhanced. The entanglement
quenching, however, is surprising since the coupling is a
reversible process. To investigate this further we consider the

time-delayed case where the measurement on field x is de-
layed by a time �= tx− ty.

Figure 3 shows the evolution of entanglement with mea-
surement time delay for three different relative pump phases
��=�x−�y, where we have optimized the inseparability
over detuning � as is typically performed in experiments
using spectral analysis. In Fig. 3�a� the pumps are in phase
and we see the normal behavior for a nonlinear optics based
entanglement source, with maximal entanglement when there
is no time delay ��=0�, and as seen before in Figs. 2�a� and
2�c� a strong dependence on g, with entanglement optimized
at g�0.5. In Fig. 3�b� a pump phase delay of � /2k is intro-
duced and we see an overall reduction in the level of en-
tanglement. However, now as the coupling rate increases and
the undelayed entanglement is quenched, a transition occurs
to time-delayed entanglement, with a delay between detec-
tion events of �=� /2��. In contrast, this time-delayed en-
tanglement is optimized at large g. In Fig. 3�c� where ��
=� /k the undelayed entanglement is no longer apparent for
any g, with time-delayed entanglement present for all but
very small g. The dependence of the degree of inseparability
on coupling rate and detuning for this time-delayed case are
shown in Figs. 2�b� and 2�d�. It is clear that now the maxi-
mum entanglement always occurs at �=g, can be shifted far
from the resonance frequency of the cavity, and is insensitive
to g for g�1. This resonance frequency shift is technically
significant, allowing the optimal entanglement to be moved
away from low frequency noise sources such as the laser
relaxation oscillation which typically limit both entangle-
ment strength and purity.

A standard method of generating optical entanglement is
to interfere a pair of squeezed beams on a 50/50 beam split-
ter �18�, with the relative phase being critical to the strength
of the entanglement. In an analogous manner the coherent
coupling in our scheme interferes the nonclassical fields gen-
erated in the two cavity modes. In contrast, however, here the
coherent coupling also affects the relative phase of the inter-
ference. It is this phase effect which is ultimately responsible
for both the change in relative pump phase required to
achieve strong entanglement when g�1 and the time-
delayed correlations exhibited by such entanglement. The
mechanism is through rotation of the quantum correlated
field quadratures. The signal and idler fields output from
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FIG. 3. �Color online� Inseparability as a function of measure-
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=� /2k, and �c� ��=� /k. Model parameters: Rx=Ry =0.9 and 
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mode x, respectively, experience � /2 and −� /2 phase rota-
tions compared to their counterparts from mode y. Although
a pump path length change smaller than the optical wave-
length is sufficient to cause this rotation, rephasing to allow
observation of the resulting time-delayed entanglement re-
quires a path length increase of c�=�c /2� on output field x,
which for a typical experimental detuning of 1 MHz corre-
sponds to a far longer length of 75 m. Thus the phase effect
due to coherent coupling has, through the nonlinear process,
been transformed to a substantial delay in the quantum cor-
relations between the fields. Since this is inherently a phase
effect between the signal and idler modes, it is worth noting
that identical results could be achieved by delaying output
field y �rather than x�.

Figure 4 compares how the relative pump phase �� af-
fects the entanglement achievable in our system for ��2�, ��3�,
and ��4� nonlinearities. The minimum degree of inseparabil-
ity between the output fields optimized over time delay and
detuning is calculated as a function of relative pump phase
and pump strength. The optimal time delay is found always
to be either �=0 or � /2��. We see that for all orders of
nonlinearity the entanglement increases with increasing
pump strength. As expected, there is a strong dependence on
��. However for high pump strength substantial entangle-
ment can be generated for all �� in distinct contrast to con-
ventional entanglement sources such as the squeezed beam
interferometers discussed above where entanglement genera-
tion fails in some regions. A coupling rate of g=1 is chosen
for the results in Fig. 4 allowing both undelayed and delayed
entanglement to exist simultaneously �see Fig. 3�b��. Where
this occurs, the system exhibits time-delayed 4-partite en-
tanglement, where the time-delayed and non-time-delayed
outputs of x are both entangled to both time-delayed and
non-time-delayed outputs of y. The sectors of Fig. 4 circum-
scribed by the dark line indicate the parameter regimes
where 4-partite entanglement exists. We see that such en-
tanglement is apparent throughout the majority of the param-
eter space. This multipartite entanglement will be investi-
gated further in future work.

Finally we turn our attention to a robust and straightfor-
ward experimental implementation of bipartite entanglement.
Consider the case where only cavity mode x is directly
pumped with mode y pumped indirectly through coherent
coupling from mode x. In this case one finds that �y = ig�x.
Hence the relative phase between the pumps is ��=3� /2,
so that when g=1 single sided pumping tracks the downward
facing arrow in Fig. 4. We see that in the special case of ��3�

nonlinearity relevant to silica microtoroidal resonators �10�
optimum entanglement can be achieved naturally in this
single sided pumping scenario. For this case the simple ana-
lytical solution

I =
1 −
16
R�� − R�1 − 
��

��1 + R�2 + �� − 1�2���1 − R�2 + �� + 1�2�
, �5�

for the inseparability can be obtained. It is clear that as
�R ,
 ,�	→1, I→0. Hence for sufficiently strong pumping
and high efficiency, strong entanglement can be generated
with only a single external pump field.

In conclusion, we have shown that strong entanglement
can be generated between the output fields of a pair of co-
herently coupled nonlinear optical cavities. For sufficiently
strong coupling, the quantum correlations become time de-
layed and can therefore be used in conjunction with quantum
teleportation to achieve an all-optical quantum memory. A
straightforward experimental implementation applicable to
ultrahigh quality WGM microresonators such as silica micro-
toroids is proposed requiring only one external pump field.
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