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The rumen bacterium Ruminococcus albus binds to and degrades crystalline cellulosic substrates via a unique
cellulose degradation system. A unique family of carbohydrate-binding modules (CBM37), located at the C
terminus of different glycoside hydrolases, appears to be responsible both for anchoring these enzymes to the
bacterial cell surface and for substrate binding.

Ruminococcus albus is widely recognized as one of the spe-
cialist cellulose-degrading bacteria resident in the rumena and
gastrointestinal tracts of herbivores. Most isolates have been
shown to utilize cellulose, xylan, and cellobiose as carbon
sources and found to produce a wide range of enzymatic ac-
tivities, including �-glucosidase, �-xylosidase, �-galactosidase,
�-arabinosidase, cellulase, polygalacturonase, and �-1,4-xylan-
ase activities (2, 3, 5). Interestingly, many of these glycoside
hydrolases bear a recently described family 37 carbohydrate-
binding module (CBM37), which appears to be exclusive to R.
albus. These �100-residue modules were first identified at the
C-terminal ends of an exoglucanase (Cel48A) and a processive
endocellulase (Cel9B) from R. albus strain 8 (1) and appear to
be nondiscriminatory in their carbohydrate-binding properties,
recognizing a variety of polysaccharides, including cellulose,
xylan, chitin, and lichenan (21). This breadth of adhesive prop-
erties makes the CBM37 family unique among the CBM fam-
ilies known to date. A preliminary examination of the draft
genome sequence for R. albus strain 8 suggests that CBM37
modules, which are grouped into three major subtypes, are
present in numerous R. albus polysaccharide-degrading en-
zymes and other nonenzymatic proteins from this bacterium
(http://blast.jcvi.org/rumenomics/index.cgi).

Previous studies have shown that effective cellulose hydro-
lysis by R. albus strains is conditional on the provision of
micromolar concentrations of phenylacetic and phenylpropi-
onic acids (9, 17, 18). These compounds appear to influence
capsule formation by the bacterium, and cellulase activity is
retained as high-molecular-mass complexes on the bacterial
cell surface. In the absence of phenylacetic and phenylpropi-
onic acids, the adhesion of the bacterium to cellulose (and its

hydrolysis) is negatively affected. Additionally, cellulase activ-
ity is secreted into the culture medium and, by size exclusion
chromatography, is shown to be present in a form suggesting
that there is no aggregation of activity into larger, multiprotein
complexes (17). Although it was long believed that these char-
acteristics were attributable to a cellulosomal mode of enzyme
organization, the identification of CBM37 modules (rather
than dockerins) in these two key enzymes suggests that the
CBM37 modules might play some role(s) in protein retention
to the bacterial cell surface. In the present study, we present
evidence to validate this hypothesis, and we propose that an
additional function for the CBM37 family is the attachment of
the parent protein to the bacterium’s cell surface.

Three different CBM37 modules from R. albus, Cel5G (C-
terminal module of AAT48117), Cel9C (AAT48118), and
Cel48A (AAR01217), were used in this study, and they map to
different branches within the major subgroup of CBM37 mod-
ules (see Fig. S1 in the supplemental material). The three
CBM37s were cloned and fused to the C-terminal end of a
recombinant maltose-binding protein (the resulting fusion
proteins are hereinafter referred to as MBP-CBM5G, MBP-
CBM9C, and MBP-CBM48A, respectively) (Table 1) and ex-
pressed in Escherichia coli as described earlier (21). MBP was
required for solubility of the fusion partner and also served as
a recognition tag. As a control, the MBP was fused to the
catalytic module of Cel5G (hereinafter referred to as MBP-
CD5G). Cellobiose-grown cells of R. albus 8 were harvested by
centrifugation and washed using previously described proce-
dures (1). Aliquots of the cell suspension were mixed with any
one of the four different fusion proteins followed by mouse
anti-MBP antibody and fluorescein isothiocyanate-conjugated
goat anti-mouse antibody, according to the method described
by Orgad et al. (12). The cells were then examined by fluores-
cence microscopy (Fig. 1). All three MBP-CBM fusion pro-
teins could attach to the cell surface; however, the MBP-CD5G
fusion protein did not. These results suggest that the attach-
ment of the recombinant protein to the surface of R. albus 8
cells is mediated via the CBM37 module.

Next, we employed several mutant strains of R. albus 8
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isolated by selective enrichment for defective adhesion to cel-
lulose. Proteomic analysis of these mutant strains showed that
they possess significantly less than wild-type amounts of the
cell-associated CBM37-bearing enzymes Cel9B and Cel48A
and are also defective in terms of cellulose hydrolysis kinetics
compared to the wild-type strain (1). Following cultivation
using cellobiose-containing medium (the same as that used for
the wild-type strain), all three mutant strains appeared to be
unable to bind the MBP-CBM fusion proteins, because no
fluorescent label was detectable by microscopy (data not
shown). To further validate this negative result, a cell-based
enzyme-linked immunosorbent assay (ELISA) was employed,
essentially as described by Rosok et al. (15), using lyophilized
and resuspended bacterial cells (R. albus 8 or its ADM-2 mu-
tant). The results, presented in Fig. 2, confirmed that the MBP-
CBM5G recombinant protein can attach to the cell surface of
wild-type R. albus 8 cells but cannot bind to the cell surface of

the mutant strains. These findings suggest that the mutants all
lack a key feature on the cell surface that is necessary for the
attachment of R. albus proteins via the CBM37 module.

Previous research showed that cell-free enzyme extracts are
often not as effective as the intact cells in cellulose degrada-
tion, demonstrating that essential factors that may be missing
in the extracellular medium are present in the bacterium (20).
In an earlier report (13), transmission electron microscopic
visualization of ruthenium red-labeled R. albus cells indicated
an extensive “coat” layer, described as a compact mat of poly-
saccharide fibers external to the cell wall. This polysaccharide
coat, or “glycocalyx,” was considered in subsequent works to
mediate adhesion of the cells to cellulose (14, 19). In a later
work, it was shown that most of the cellulases and xylanases in
R. albus SY3 were associated with the capsular and cell wall
fraction but were severely reduced on the surfaces of an ad-
hesion-defective mutant (7). Two enzymes critical to effective

TABLE 1. Oligonucleotide primers and plasmids used in this study

MBP fusion proteina Primer name Nucleotide sequence Comment

MBP-CD5G F-GH5G-CD ATATGAATTCGCAACATCAGCAGTGAATGACACC Catalytic domain of Cel5G
(without CBM37)R-GH5G-CD CCCCAAGCTTTTAAGGTGTTTCGGGATCAATGATTATC

MBP-CBM5G F-Cel5G-CBM ATATGAATTCGCTATAAATGTTATGGCGAAAGATG CBM37 of Cel5G
R-Cel5G-CBM CCCCAAGCTTTTACTTTACAGTGATAGTCACAGCG

MBP-CBM48A F-GH48A-CBM ATATGAATTCGATGATAAGACTTATCCTACCAAC CBM37 of Cel48A
R-GH48A-CBM CCCCAAGCTTTTAAACTGTAACGTTAACTACAGA

MBP-CBM9C F-GH9C-CBM ATATGAATTCGATCGTTTCGGCGGTTCGAATCCTG CBM37 of Cel9C
R-GH9C-CBM CCCCAAGCTTTTACTTTATAGTAACAGTACAAGCACG

a Forward (F-) and reverse (R-) primers contain EcoRI and HindIII cleavage sites, respectively (underlined).

FIG. 1. Binding of different CBM37 fusion proteins to R. albus 8 cells by fluorescence microscopy. Log-phase R. albus cells interacted with the
MBP control (MBP-CD5G lacking CBM37) (A), MBP-CBM5G (B), MBP-CBM48A (C), and MBP-CBM9C (D). All test proteins were expressed
as fusion proteins with MBP at the N terminus. The labeled cells were subjected to interaction with mouse anti-MBP antibody followed by
fluorescein isothiocyanate-conjugated donkey anti-mouse antibody and then visualized by fluorescence microscopy. The inset in panel A shows a
phase-contrast micrograph of the R. albus 8 cells used for these studies. Bar � 2 �m.
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solubilization by R. albus 8 (Cel48A and Cel9B) were previ-
ously demonstrated to be cell-associated proteins and to bind
strongly to cellulose (1), presumably via the C-terminal CBM37
modules each enzyme bears. The results of the present study
demonstrate that the same module serves to secure the enzymes
to the cell surface. Consequently, we propose that CBM37 may
function as a shuttle to convey the parent enzyme between the
bacterial cell surface and the polysaccharide substrate.

Preliminary scanning electron microscopy of cationized fer-
ritin-treated R. albus 8 versus its adherence-defective mutants
clearly revealed a protuberance-laden surface in the wild-type
cells as opposed to a smooth surface in the mutant ADM-2 (see
Fig. S2 in the supplemental material), but it is as yet unclear
whether the CBM37-binding component relates directly to this
finding. Preliminary work (not shown) has also demonstrated that
a polysaccharide-containing cell extract of R. albus 8 (obtained by
a combination of lysosyme and DNase, followed by proteinase K
treatments) is highly inhibitory to CBM37 binding to the bacterial
cell surface. In contrast, similar extracts derived from the R. albus
adherence-defective mutants or from Ruminococcus flavefaciens
failed to inhibit the binding. Further work to identify the suspected
cell wall carbohydrate component is currently being pursued.

In conclusion, R. albus cellulases are indeed known to be
released into the medium during growth (16) and are subse-
quently bound to the cellulose fibers, yet cellulose digestion is
facilitated by the proximity of the cells to the cellulose fibers
(6). The model proposed here suggests that the CBM37 acts as
a shuttle which transfers the appended enzymes from the bac-
terial surface to the plant cell wall. Another alternative might
be that the CBM37 has two separate carbohydrate-binding
sites, as shown previously for other CBMs (4). In this case, one
site would bind to the plant cell wall and the other to the
bacterial polysaccharide capsule. It remains to be seen, how-
ever, whether one or more of the remaining CBM37-bearing
nonenzymatic proteins produced by this bacterium might play
some role in the binding of the cells to the substrate. Previous
research has already demonstrated that more than one mech-
anism is involved with the adhesion of R. albus to the substrate
(8, 10, 11), but the localization of the glycanases at the inter-
face appears to be mediated largely by CBM37.
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FIG. 2. ELISA of the binding of CBM37 to the whole cells of R.
albus 8. ELISA plates, containing attached R. albus 8 or its ADM-2
mutant, were reacted with the test protein, MBP-CBM37 from Cel5G
(MBP-CBM5G), at the indicated final concentrations and labeled with
mouse anti-MBP-horseradish peroxidase antibodies. MBP was used as
the control.
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