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Abstract

Most signal processing methods were developed for continuous signals. Digital devices,
such as the computer, process only discrete signals. This dissertation proposes new
techniques to accurately define and efficiently implement an important signal process-
ing method—the time–frequency distribution (TFD)—using discrete signals.

The TFD represents a signal in the joint time–frequency domain. Because these distri-
butions are a function of both time and frequency they, unlike traditional signal processing
methods, can display frequency content that changes over time. TFDs have been used
successfully in many signal processing applications as almost all real-world signals have
time-varying frequency content. Although TFDs are well defined for continuous signals,
defining and computing a TFD for discrete signals is problematic. This work overcomes
these problems by making contributions to the definition, computation, and application
of discrete TFDs.

The first contribution is a new discrete definition of TFDs. A discrete TFD (DTFD)
should be free from the sampling-related distortion known as aliasing and satisfy all the
important mathematical properties that the continuous TFD satisfies. Many different
DTFD definitions exist but none come close to attaining this ideal. I propose three
new components which make up the DTFD: 1) a new discrete Wigner–Ville distribution
(DWVD) definition which satisfies all properties, 2) a new discrete analytic signal which
minimises aliasing in the DWVD, and 3) a new method to define and convolve the discrete
kernel with the DWVD to produce the DTFD. The result: a DTFD definition that,
relative to the existing definitions, better approximates the ideal DTFD.

The second contribution is two sets of computationally efficient algorithms to compute
the proposed DTFD. The first set of algorithms computes the DTFD exactly; the second
set requires less memory than the first set by computing time- and, or frequency-decimated
versions of the DTFD. Both sets of algorithms reduce the computational load by exploiting
symmetries in the DTFD and by constructing kernel-specific algorithms for four different
kernel types.

The third, and final, contribution is a biomedical application for the proposed DTFD
and algorithms. This application is to accurately detect seizure events in newborn elec-
troencephalogram (EEG) signals. Existing detection methods do not perform well enough
for use in a clinical setting. I propose a new method which is more robust than existing
methods and show how using the proposed DTFD, comparative to an existing DTFD,
improves detection performance for this method.

In summary, this dissertation makes practical contributions to the area of time–
frequency signal processing by proposing an improved DTFD definition, efficient DTFD
algorithms, and an improved newborn EEG seizure detection method using DTFDs.
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Chapter 1

Introduction

Quadratic time–frequency distributions (TFDs) are usually defined in the continuous do-
main for continuous signals. To generate a TFD on a computer, or other digital devices,
we need to map the distribution from the continuous domain to the discrete domain.
This mapping can have unintended consequences—the discrete distribution may not sat-
isfy important mathematical properties that the continuous distribution satisfies, or the
discrete distribution may be distorted by aliasing. In addition, because TFDs are two
dimensional functions they require a large computational load and a large amount of
computer memory to compute and store the discrete distribution.

The work in this dissertation has three broad aims. The first aim is to define a
better, comparative to existing methods, discrete TFD definition—a new definition that
is not distorted by aliasing and satisfies more important mathematical properties than
existing definitions satisfy. The second aim is to design algorithms that minimises the
computational load and memory required to compute and store a discrete TFD. The third
and final aim is to show how discrete TFDs can be used to solve engineering problems,
and more specifically how using a better discrete TFD definition can improve results.

This chapter starts with an introduction to discrete TFDs, relating these signal pro-
cessing tools to the broader signal processing context. The next two sections presents the
aims, contributions, and scope of the work. The chapter concludes with an outline of the
dissertation.

1.1 Time–Frequency Signal Processing using Digital

Computers

The common approach for implementing signal processing tools is to use personal comput-
ers, or similar digital computing devices, to do the processing numerically. (I henceforth
use the term computer to refer to any digital computing device.) This approach is no
different for TFDs. This section gives a brief introduction to signal processing using
computers and the specific issues with computing TFDs.

1
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Figure 1.1: A time-domain plot of newborn electroencephalogram (EEG), a measurement
of electrical activity in the brain.

1.1.1 Signals and Signal Processing

One of the most important aims of signal processing is to extract useful information from
signals. Typically, signals are some form of measured quantity, such as sound recorded
as a variation in air pressure on a microphone or a measurement of electrical potential
between two electrodes attached to the scalp. More generally, any mathematical function
of one or more variables is a signal. As signals are recorded on measurement devices over
a period of time, they are usually represented as functions of time. Fig. 1.1 shows an
example of a signal as a function of time. We shall assume here that all signals are a
function of time, although we can easily translate the theory to any variable other than
time.

Analysis of the signal in the time domain is known as time-domain analysis. For exam-
ple, note how the signal in Fig. 1.1 is periodic—that is, it has a certain type of waveform
which repeats over and over. Although all the information in the signal is contained within
the time domain, it may be easier to extract the signal’s information by transforming the
signal to another domain. A useful analysis domain is the frequency domain. Using
frequency-domain analysis, we may extract information about the frequency content of
the signal. Fig. 1.2 is the frequency domain representation for our time-domain signal in
Fig. 1.1. Note that there is a dominant peak, around 1.2 Hz, that represents the frequency
for the repetition of the waveform which we previously noted in the time-domain plot.
To transform the time-domain signal, x(t), to the frequency domain, we use the Fourier
transform [1, pp.7]:

X(f) =

∫ ∞
−∞

x(t) e−j2πtf df (1.1)

where X(f) represents the frequency-domain signal.
We can categorise signals into two groups: stationary signals and nonstationary sig-

nals. Nonstationary signals have frequency content, or statistical properties, that change
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Figure 1.2: A frequency-domain plot of newborn EEG.

over time, unlike stationary signals that have constant frequency, or constant statisti-
cal proprieties, over time. For example, holding down one note on a piano produces
a sound with constant frequency over time—a stationary signal. Conversely, playing a
scale, many different notes in progression, produces a sound with changing frequency over
time—a nonstationary signal. Most real-world signals are nonstationary. For the non-
stationary signals however, frequency-domain analysis may obscure information as the
frequency-domain does not show the time-varying nature of these signal.

1.1.2 Time–Frequency Signal Processing

A more appropriate domain of analysis for nonstationary signals is the joint time–frequency
domain. This two-dimensional domain, which is a function of both time and frequency,
is able to display the time-varying frequency content of the nonstationary signal. Fig. 1.3
shows our EEG signal in the time–frequency domain. Note how the frequency content
of this signal changes over time as the components deviate to the left after about 8 sec-
onds. This time–frequency representation also shows that the EEG signal is composed of
a number of separate spectral components.

Representing the Time–Frequency Domain

There are many ways to represent a signal in the time–frequency domain. A problem
for many time–frequency representations is that the signal transform from time to time–
frequency is not linear. A nonlinear transform can produce artefacts, known as cross-
terms, between signal components in the time–frequency representation. These cross-
terms can distort signal information or make interpretation of the time–frequency repre-
sentation difficult.

Probably the simplest method is the short-time Fourier transform (STFT) [2]. The
method divides the signal into short-time segments and then Fourier transforms these
segments to the frequency domain. This results in an array of Fourier transforms, one for
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Figure 1.3: A time–frequency domain plot of newborn EEG.

each short-time segment. The magnitude squared of the STFT is a real-valued represen-
tation called the spectrogram.

The spectrogram is free from cross-terms but suffers from either poor time or poor
frequency resolution. The method assumes that each time segment is stationary; when
the segment is not stationary, the components in the representation have poor temporal
resolution. In addition, if each segment is very short then the components have poor
spectral resolution. Thus, there is a trade-off between time and frequency resolution,
depending on the segment size. This poor time or frequency resolution limits the use
of the spectrogram as not many nonstationary signals can be simply divided up into,
sufficiently long, stationary periods.

Another method for generating time–frequency representations is the Wavelet trans-
form [3]. The Wavelet transform decomposes the signal into a set of basis functions that
are a function of time and scale. As scale is inversely proportional to frequency, the
Wavelet transform can generate a time–frequency representation called the scalogram.
The Wavelet transform has had many successful applications including image compres-
sion and denosing [4,5]. A limitation of the scalogram is that it does not provide uniform
resolution throughout the time–frequency representation, thus making interpretation of
the representation difficult. Also, the method is not frequency-shift invariant.

We can also generate a time-varying spectrum using a power spectral density (PSD)
estimate method that uses a time-varying auto-regressive moving-average (ARMA) model
[6]. This parametric method estimates a PSD, using the ARMA model, at a discrete-time
interval of the signal. The method is limited by how accurately the ARMA model describes
the signal. In addition, estimating the parameters for the ARMA model is, because of
potential convergence and computational complexity problems, not a simple task [6].

Fig. 1.4 shows the three different time–frequency representations using a test signal
example. The signal consists of two linear frequency modulated (LFM) components; one
component is increasing in frequency and the other component is decreasing in frequency.
The ideal representation is a highly resolved “X” shape in the time–frequency plane.
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Figure 1.4: Time–frequency representations of two LFM components, one increasing with
frequency over time and the other decreasing in frequency over time. (a) Spectrogram, (b)
time-varying PSD estimation, and (c) scalogram.

Quadratic Time–Frequency Distributions

A quadratic time–frequency distribution is a quadratic transform that maps the signal
from the time domain to a time–frequency representation [7,8]. Although there are other
classes of TFDs, the quadratic class is probably the most useful and widely cited class in
the literature [7, 8, 9], and is the focus of this dissertation. The quadratic class of TFDs
is time- and frequency-shift invariant.

For time-domain signal s(t), the quadratic TFD ρz(t, f) has the form

ρz(t, f) = Wz(t, f) ∗
t
∗
f
γ(t, f). (1.2)

where ∗t represents the convolution operation in the time direction t and likewise ∗f
represents the convolution operation in the frequency direction f . There are three steps
involved in forming the TFD:

1. transform the real-valued signal x(t) to a complex-valued analytic signal z(t);
2. form the Wigner–Ville distribution (WVD) for z(t):

Wz(t, f) =

∫ ∞
−∞

z(t+ τ
2
)z∗(t− τ

2
) e−j2πτf dτ (1.3)
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where z∗(t) represents the complex conjugate of z(t).
3. convolve the WVD, in time and frequency, with the time–frequency kernel γ(t, f),

as shown in (1.2).

The time–frequency kernel defines the type of TFD. For example, the WVD, which is a
member of the quadratic TFD class, has the time–frequency kernel γ(t, f) = δ(t)δ(f).
Lets now look at these three steps in more detail.

Step 1: analytic signal The complex-valued analytic signal z(t) is formed from the
real-valued signal x(t) as follows:

z(t) = x(t) + jH{x(t)}

where H{·} is the Hilbert transform [1]. In the frequency domain,

Z(f) = X(f) + jF [H{x(t)}] (1.4)

where F [·] represents the Fourier transform, X(f) = F [x(t)
]
, and Z(f) = F [z(t)

]
.

The Fourier transform of the Hilbert transform is defined as

F [H{x(t)}] =

{
−jX(f), f ≥ 0,

jX(f), f < 0.
(1.5)

Thus, the analytic signal has a zero negative spectrum. No signal information is lost,
as X(f) is (conjugate) symmetrical about f = 0. We can extract the instantaneous
frequency (IF) fi(t) from the analytic signal, as

fi(t) =
1

2π

dθ(t)

dt

where θ(t) is the phase of z(t). Ville proposed using the analytic signal, rather
than the real-valued signal, in the WVD as he showed that the first moment of the
WVD equals the IF of z(t) [10]. Boashash described why the analytic is useful [11]:
the WVD of the real-valued signal has cross-terms between positive and negative
frequency components whereas the WVD of the analytic signal does not. The WVD
of the analytic signal is free from positive–negative frequency cross-terms because
the analytic signal has zero energy at negative frequencies. Fig. 1.5 shows the
difference between the WVDs of the real-valued and analytic signals.

Step 2: Wigner–Ville distribution Ville was the first to apply a function derived by
Wigner [12], in a quantum mechanics context, to signal processing. This function
became known in the signal processing literature as the Wigner–Ville distribution
(WVD). The distribution is a fundamental member of the quadratic TFD class: the
WVD satisfies more useful mathematical properties than any other distribution in
the class does and it uniquely provides optimal resolution for a one of the most
basic types of signals used in signal processing, the sinusoidal signal. In addition,
the WVD has been successfully applied to many engineering problems [13, 14, 15,
16,17,18,19,20].
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Figure 1.5: Wigner–Ville distribution of an LFM signal. Distribution in (a) uses real-valued
signal and distribution in (b) uses analytic associate of signal. Distribution (a) has positive–
negative frequency cross-terms.

The WVD has an optimal time–frequency representation for monocomponent linear
frequency modulated (LFM) signals [1]. The WVD of an LFM signal with an IF of
fi(t) is

Wz(t, f) = δ(f − fi(t))
where this delta function follows the IF law of the signal. When more than one signal
component is present the WVD does not perfectly resolve. Because the transform
from time to time–frequency for the WVD is quadratic, the distribution contains
cross-terms between the signal’s components. Cross-terms are present also for non-
linear frequency modulated signals. These cross-terms make the interpretation of
the WVD difficult, as they add spurious components to the distribution and many
even distort signal components. Convolving the WVD with the time–frequency
kernel γ(t, f) can suppress, or even eliminate, the cross-terms.

Step 3: time–frequency distribution Quadratic TFDs can be expressed as smoothed
WVDs, as shown in (1.2). By convolving the WVD with a kernel, cross-terms can
be suppressed, leaving just the signal components in the distribution. Smoothing,
however, will reduce the resolution of the signal’s components and may result in a
loss of a number of mathematical properties.

Fig. 1.6 shows an example of the WVD compared with a TFD, a smoothed WVD,
using the same LFM signal shown in Fig. 1.4. The WVD in this example resolves the
signal components well but contains many cross-terms around the “X” shaped signal
components; the TFD suppresses the cross-terms but also smears the signal com-
ponents. [The TFD in this example uses a kernel of the form γ(t, f) = g1(t)G2(f),
where g1(t) are G2(f) are Fourier transforms of Tukey windows [21] of different
lengths.] Thus there is a trade off between time–frequency resolution of signal
components on one hand, and suppression of cross-terms and possible loss of math-
ematical properties on the other hand.
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Figure 1.6: Quadratic time–frequency distributions. (a) WVD and (b) TFD with smoothing
kernel.
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Figure 1.7: Discrete signal x(nT ) defined as sample points from the continuous signal x(t).

1.1.3 Digital Signal Processing

The signal processing platform has—over time—changed from pen and paper, to mechan-
ical devices, to analog circuits, and more recently, to digital devices. The transition from
analog circuits to digital devices started in the 1950’s with the introduction of the inte-
grated circuit (IC). The IC brought circuit design into the industrialised age: ICs were
mass produced and had the advantage of reliability and cost over the analog circuit. Soon
the microprocessor, a self-contained IC processing unit, was developed. Today, micro-
processors are integrated into many common devices such as computers, mobile phones,
digital cameras, and personal music players.

To process a signal on a microprocessor, the signal must be discrete. A discrete signal is
a sequence of numbers rather than a continuous function. Digital signal processing (DSP),
a new branch of signal processing, emerged with the advent of the microprocessor.

Sampling Continuous signals

As most real-world signals are continuous, we first need to transform the signal into a
discrete set of points. This process, known as sampling, takes discrete points at a constant
time interval T from a continuous signal. Thus, the discrete signal x(nT ) equals x(t) at
t = nT . Fig. 1.7 shows an example of a discrete signal.

Intuitively, we can tell that the time spacing or period T between the sample points is
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Figure 1.8: Effect of time-domain sampling: (a) X(f), Fourier transform of continuous-time
signal x(t) with bandwidth 2fc, (b) X̃(f), Fourier transform of discrete-time signal x(nT ), when
1/(2T ) > fc, and (c) X̃(f) when 1/(2T ) < fc.

important—the larger this value is the more information we may loose from the continuous
signal. Shannon formalised this [22]: he stated that the sampling frequency 1/T , must
be greater than or equal to twice the highest frequency component fc in the signal; that
is, 1/T ≥ 2fc. Fig. 1.8 shows the effect that sampling has on the frequency domain—the
spectrum of the discrete signal x(nT ) contains multiple frequency-shifted copies of the
spectrum. Note that if we compare Fig. 1.8a with Fig. 1.8b, the spectrum within the range
|f | ≤ 1/(2T ) remains the same. This periodic spectrum X̃(f) equals the nonperiodic
spectrum X(f) within this range because, for the example in Fig. 1.8b, 1/T > 2fc.
Fig. 1.8c shows what happens when 1/T < 2fc: periodic copies in the spectrum overlap
distorting the spectrum within the range |f | ≤ 1/(2T ). This undesirable effect is known
as aliasing.

Discrete Fourier transform

Sampling both the time-domain x(t) and frequency-domain X(f) signals results in the
discrete and periodic signals x̃(nT ) and X̃(k/NT ), for n, k = 0, 1, . . . , N−1. The discrete
Fourier transform (DFT), the discrete version of the Fourier transform in (1.1), transforms
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between x̃(nT ) and X̃(k/NT ), as

X̃( k
NT

) =
N−1∑
n=0

x̃(nT ) e−j2πnk/N .

The properties for the Fourier transform simply translate to the DFT [23]. In addition,
there are computationally efficiently algorithms to compute the DFT [24].

Discrete TFDs

Forming the discrete TFD follows the same three steps as that for the continuous TFD—
namely, form the analytic signal, then the WVD, and finally the TFD. There is an extra
step for the DTFD, which is how to efficiently compute the DTFD. I pose questions at
the end of each segment to highlight the limitations of the existing methods. The work
in this dissertation addresses each of these questions.

Step 1: discrete analytic signal The discrete analytic is usually formed, using a dis-
crete version of the frequency-domain method in (1.4) and (1.5), as follows [25,26]:

1. DFT x̃(nT ) to X̃(k/NT );
2. zero negative-frequency samples: let X̃(k/NT ) = 0 for k = N/2, ...N − 1;
3. Inverse DFT (IDFT) back to time domain and call this signal z̃(nT ).

The WVD of the discrete analytic signal z̃(nT ) is free from artefacts between
positive–negative frequency components. To avoid aliasing in the WVD however,
the discrete signal must satisfy two conditions [27]:

z̃(nT ) = 0, N/2 ≤ n ≤ N − 1, (1.6)

Z̃( k
NT

) = 0, N/2 ≤ k ≤ N − 1, (1.7)

By construction, the discrete analytic signal z̃(nT ) satisfies the second condition
but not the first. To satisfy the first condition without losing signal information, we
can zero-pad z̃(nT ) from length-N to 2N and replace N with 2N in (1.6) and (1.7).
In doing so however, the DFT of the 2N -point z̃(nT ) is no longer zero at negative
frequencies as some spectral energy will leak into the negative-frequency range [27].
Now,

z̃(nT ) = 0, N ≤ n ≤ 2N − 1,

Z̃( k
2NT

) ≈ 0, N ≤ k ≤ 2N − 1, (1.8)

where this approximation represents the spectral leakage caused by the zero-padding
of z̃(nT ). Because Z̃(k/2NT ) does not have an exactly zero negative spectrum, the
WVD of z̃(nT ) will not be completely alias free. In fact, the conditions in (1.6)
and (1.7), for a finite-time and finite-frequency bandwidth signal, are mutually
exclusive [28].

Question 1 Although it is not possible to completely eliminate aliasing from the WVD
of a discrete signal, can we improve on the approximation in (1.8) to minimise this
aliasing?
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Figure 1.9: Discrete time–lag grids with sampling period T for length N = 5 signal: (a)
uniform discrete grid, and (b) nonuniform discrete grid. The black dots represent the time–lag
locations of the sample points.

Step 2: discrete Wigner–Ville distribution The WVD of z̃(nT ) is discrete in both
time and frequency. This discrete-time, discrete-frequency WVD is known simply
as a discrete WVD (DWVD) [29]. Forming the DWVD from z̃(nT ) is problematic:
how can we generate a discrete version of the time–lag function K(t, τ) = z̃(t +
τ/2)z̃∗(t − τ/2) as the discrete signal z̃(nT/2) does not exist for odd values of n?
There are two approaches to tackling this problem. The first approach [30] forms
the discrete time–lag function

KA(nT, 2mT ) = z̃((n+m)T )z̃∗((n−m)T ).

This method is equivalent to sampling K(t, τ) in time t with period T and τ with
period 2T . Fig. 1.9a shows the shape of this discrete time–lag grid.

The second approach [31,27] uses a nonuniform discrete grid, shown in Fig. 1.9b, to
form

KA(nT, 2mT ) = z̃((n+m)T )z̃∗((n−m)T )

KA((n+ 1
2
)T, 2(m+ 1

2
)T ) = z̃((n+m+ 1)T )z̃∗((n−m)T ).

Although this methods still samples in τ with a period of 2T , it also samples in t
with a period of T/2, unlike the first method which samples in t with a period of T .

The DWVD is the DFT of the discrete time–lag function. Thus, we have two
DWVD definitions, one which uses KA, and the other, which uses KB. Lets call
the first definition [30] the DWVD-A and the second [27] the DWVD-B. DWVD-B,
comparative to DWVD-A, retains more mathematical properties of the WVD—a
consequence of the denser sampling grid, and therefore more signal information, in
KB compared with that for KA. But DWVD-B requires 4N2 discrete sample points
to compute, compared with N2 for DWVD-A, and hence DWVD-B requires four
times the computational load of DWVD-A.

Question 2 Can we define a DWVD that retains all important mathematical properties
of the WVD and contains less than 4N2 sample points?

Step 3: discrete time–frequency distribution The discrete time–frequency distribu-
tion (DTFD) can be formed by convolving a DWVD with a discrete kernel. There
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are two commonly-used approaches for defining a DTFD. The first, known as the
generalised DTFD (GDTFD) [32, 33, 34, 35], convolves DWVD-A with a discrete
kernel:

ρA(nT, k
2NT

) = WA(nT, k
2NT

) ~
n

~
k
γA(nT, k

2NT
).

The second method, known as the alias-free GDTFD (AF-GDTFD), is a function
of DWVD-B [36,37,29]:

ρAF(nT, k
2NT

) =

[
WB(n

′T
2
, k′

4NT
) ~
n′

~
k′
γAF(n

′T
2
, k′

4NT
)

]∣∣∣∣∣
n′=n/2,k′=k/2

.

The AF-GDTFD may, depending on the structure of the kernel, be aliased. There
are two sources to this aliasing—aliasing from periodic overlap in the DWVD and
aliasing from the discrete analytic signal’s approximation in (1.8). In contrast, the
GDTFD contains only minimal aliasing from the discrete analytic signal’s approxi-
mation in (1.8). The AF-GDTFD, however, satisfies more mathematical properties
that the GDTFD does. Nonetheless, the AF-GDTFD, which contains 4N2 sam-
ple points, requires four times the computational load to compute compared with
the load for the GDTFD, which contains N2 samples points. In addition, the AF-
GDTFD does not satisfy the time- or frequency-support properties.

Question 3 Can we define a DTFD that satisfies all important mathematical proper-
ties, including the time- and frequency-support properties, contains only minimal
aliasing, and contains less than 4N2 sample points?

Step 4: computing DTFDs To generate a DTFD using a computer, the algorithm
uses a finite number of additions and multiplications, known as the computational
load, and a finite number of memory points to compute and store the DTFD. A
DTFD algorithm requires an approximate computational load of O(aN2 log2N) and
aN2 memory points [26], where a depends on the particular DTFD definition. This
is a large computational load in comparison to DFT algorithms; DFT algorithms
require a computational load of O(N log2N) and N memory points to compute and
store the DFT [38].

Reducing computational time and memory to compute a DTFD would help make the
DTFD a more useful tool for signal processing. All digital devices are constrained
by processing power and memory. Successful signal processing algorithms respect
these limitations—for example the fast Fourier transform, a DFT algorithm, has
been applied successfully in many practical engineering problems.

Question 4 Can we reduce the computational load and memory required to compute a
DTFD?

1.2 Aims

This dissertation aims to improve on existing methods of implementing TFDs on a
computer—how to define and efficiently compute a DTFD. More specifically, the dis-
sertation addresses the questions from the previous section for the four stages involved
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with implementing TFDs. An extra, final stage, of this dissertation is to apply DTFDs to
solve real-world signal processing problems. This application is a nonstationary detection
problem—detecting seizure periods in newborn electroencephalogram (EEG) data.

I divide the aims of this dissertation into the following goals.

• Goal 1: To understand existing DWVD definitions by answering the following:

– what is the relation between the continuous and discrete WVD definitions?
– what properties do the DWVD definitions satisfy?
– to what extent are the different DWVD definitions aliased?
– are the DWVD definitions related to each other?

• Goal 2: To define a new DWVD definition, using the analysis from Goal 1, that
improves—in terms of properties, aliasing, and computational load—on existing
DWVD definitions.

• Goal 3: To define a DTFD that minimises aliasing and satisfies all the important
properties of the continuous TFD.

• Goal 4: To design efficient DTFD algorithms that minimise the computational load
and memory requirements for computing and storing the DTFD.

• Goal 5: To show how DTFDs can be used to solve practical signal processing
problems. In particular, to use DTFDs to improve newborn EEG seizure detection
methods.

1.3 Contributions and Scope

Addressing the goals of the previous section, the following lists the contributions of the
dissertation. In addition, when appropriate, I describe the scope of this research:

• Addressing Goal 1

– Contribution: Section 2.4.7 describes the relations between the DWVD defini-
tions and the WVD. Section 2.5 details aliasing, mathematical properties, and
the relations among the different DWVD definitions.

– Scope: I derive the DWVD definitions using an impulse-train sampling ap-
proach [39], although other derivation approaches could be used, such as the
group theory approach presented by Richman et al. [40]. Also, the properties
examined in Chapter 2 and 4 are a set of mathematical properties that com-
monly appear in the literature [41, 31, 40, 42, 43, 44, 34, 36, 29, 45, 46]; I do not
consider every mathematical property.

• Addressing Goal 2

– Contribution: I propose a new DWVD definition in Section 2.6 [43]. This
DWVD retains all the important mathematical properties of the WVD; con-
tains minimal aliasing; and requires, comparative to the equivalent existing



14 Introduction

definition, only one-half of the computational load required to compute the
distribution.

To further minimise aliasing in the DWVD, I propose a new discrete analytic
signal in Section 3.3. This analytic signal, relative to the commonly used
discrete analytic signal, reduces aliasing in the DWVD by approximately 50%.
This new signal also retains the useful attributes of the commonly-used analytic
signal [47, 46].

– Scope: I compare aliasing in the DWVD with the commonly-used analytic
signal [11,48,26,43] only; I do not compare aliasing with other analytic signal
definitions.

– Scope: I quantify aliasing, caused by the discrete analytic signal, in the DWVD
and not in the more general DTFD form.

• Addressing Goal 3

– Contribution: I propose a new DTFD definition in Section 4.3 that minimises
aliasing and satisfies more important proprieties than other existing DTFD
definitions [49,50]. This proposed DTFD definition uses the proposed DWVD
and proposed discrete analytic signal.

– Scope: The proposed DTFD definition is for the quadratic class of TFDs only;
I do not consider other classes of TFDs.

• Addressing Goal 4

– Contribution: I propose a set algorithms in Section 5.3 to minimise the compu-
tational time and memory needed to compute and store the proposed DTFD
[45,51,52].

– Scope: I do not compare the proposed algorithms with the sum-of-spectrogram
algorithms [53,54] that generate only approximate DTFDs, not exact DTFDs.

• Addressing Goal 5

– Contribution: I propose a newborn EEG seizure detection method, based on
an existing time–frequency method, in Section 6.5.2 [55,56]. The method uses
the proposed DTFD definition and the proposed algorithms.

– Scope: I have not compared the proposed detection method with all other
existing detection methods. I leave this analysis to future work.

1.4 Outline

The rest of the dissertation is organised, chapter by chapter, as follows.

• Chapter 2: Discrete Wigner–Ville Distributions This chapter presents a detailed
analysis of two existing DWVD definitions and proposes two new DWVD defini-
tions. This analysis includes a rigorous derivation for the DWVDs, presents the
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relations between the discrete and continuous domains, and examines the mathe-
matical properties of the DWVD. Then, I show that the two existing definitions
are fundamental DWVD definitions as most other existing DWVD definitions are
simply related to them. Next, I propose two new DWVD definitions. One of the
proposed DWVD definitions, like one of the existing DWVD definitions, retains all
the important properties of the continuous WVD. The proposed DWVD, however,
requires only one-half of the computational load and memory to compute and store
the distribution compared with that for the existing DWVD.

• Chapter 3: Discrete Analytic Signals This chapter proposes a new discrete ana-
lytic signal that minimises aliasing in the DWVD. Unfortunately, the two condi-
tions on the signal for an alias-free DWVD are mutually exclusive. The proposed
analytic signal, however, better approximates these conditions compared with the
commonly-used, or conventional, discrete analytic signal’s approximation. The pro-
posed analytic signal retains the two useful attributes of the conventional analytic
signal: it satisfies the signal recovery and orthogonality properties and it can be
computed simply. Results in this chapter show that the DWVD of the proposed
analytic signal has 50% less aliasing than that for the DWVD of the conventional
analytic signal.

• Chapter 4: Discrete Time–Frequency Distributions This chapter proposes a DTFD
definition that minimises aliasing and satisfies all important properties. The chap-
ter begins with a review of two popular DTFD definitions, the generalised DTFD
(GDTFD) [34] and the alias-free GDTFD (AF-GDTFD) [29]. I show why the AF-
GDTFD is not always alias-free and may contain significant aliasing depending on
the kernel structure; the GDTFD, in comparison, has minimal aliasing. The pro-
posed DTFD definition is closely related to the GDTFD—the GDTFD is a time-
decimated version of the proposed DTFD. The advantage of the proposed DTFD is
that it satisfies more important properties than the GDTFD or AF-GDTFD does
and, like the GDTFD, contains only minimal aliasing.

• Chapter 5: Efficient Algorithms for Discrete Time–Frequency Distributions This
chapter proposes algorithms that aim to minimise the computational time and mem-
ory required to compute and store the proposed DTFD. The chapter presents two
different approaches to this. The first approach presents four different algorithms,
for four different kernel types, that minimises the computational load. For three
of the four kernel types, the memory used to generate the DTFD is also min-
imised. This first approach computes the DTFD exactly. The second approach
again presents four different algorithms for the four different kernel types but this
time it generates a decimated version of the DTFD. We can use this second ap-
proach for computing the DTFD for long signals to avoid running out of memory.
In addition, this second set of algorithms minimise the computational load.

• Chapter 6: Neonatal Electroencephalogram Seizure Detection This chapter proposes
a newborn EEG seizure detection method. The method, which uses the proposed
DTFD from Chapter 4 and the proposed algorithms from Chapter 5, is based on the
time–frequency matched filter. One of the limitations to the existing time–frequency
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matched filter is that it requires a predefined template set. The performance of the
matched filter is sensitive to how we define the template set. The proposed method
generates a time–frequency matched filter without the need for a predefined tem-
plate set. This makes the method more robust to variability in different newborn’s
EEG. The new detection method has promising results. Also, performance is in-
creased when the method uses the proposed DTFD definition compared to using
the GDTFD.

• Chapter 7: Conclusions This chapter presents conclusions—the importance, limita-
tions, and significance—of the contributions in this dissertation. Also, the chapter
presents some recommendations for future work.



Chapter 2

Discrete Wigner–Ville Distributions

2.1 Introduction

The Wigner–Ville distribution (WVD) is an important member of the quadratic class
of TFDs. The WVD is known as the fundamental distribution, as all quadratic TFDs
can be expressed as a function of the WVD and a time–frequency kernel [1]. Also, the
WVD satisfies more desirable mathematical properties than any other distribution in
the quadratic class [30, 1]. Computing a WVD on a digital device, such as a computer,
requires a discrete version of the WVD. The discrete WVD (DWVD) is generated by
transforming the discrete time-domain signal to a discrete two-dimensional WVD function.
Two difficulties arise with this process.

The first problem for the DWVD is aliasing—a distortion of the DWVD’s represen-
tation of the continuous WVD. An alias-free DWVD requires that the discrete signal
x(nT ) satisfies the two mutually exclusive conditions (1.6) and (1.7) from Chapter 1,
where x(nT ) is a Nyquist sampled signal with sampling period T . To approximate these
conditions without losing signal information, we set the negative frequencies of X(k/NT ),
the discrete Fourier transform of x(nT ), to zero and then zero-pad x(nT ) from length-N
to 2N [41, 11]. The resultant signal z(nT ) has the form:

z(nT ) = 0, N ≤ n ≤ 2N − 1,

Z( k
2NT

) ≈ 0, N ≤ k ≤ 2N − 1. (2.1)

Because of the approximation in this equation the DWVD of the 2N -point z(nT ) will
never be completely free from aliasing. Nonetheless, for this chapter I shall assume that
z(nT ) provides a good approximation in (2.1) [27,57,46] and thus refer to the DWVD of
z(nT ) as a pseudo-alias–free DWVD. Likewise, I shall refer to the DWVD of x(nT ) as an
aliased DWVD because x(nT ) does not approximate the conditions.

The second problem for the DWVD is mathematical properties—does the DWVD
satisfy all the important mathematical properties that the WVD satisfies? The DWVD
may not satisfy all of these properties because of the problem with defining the discrete
version of the time–lag function Kz(t, τ), where

Kz(t, τ) = z(t+ τ
2
)z∗(t− τ

2
).

[The WVD equals the Fourier transform of Kz(t, τ), as shown in (1.3).] Specifically, the
problem lies in attaining the τ/2 samples from the discrete signal z(nT ) as the sample

17
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points at z(nT/2) are not available. Incorrect sampling of the discrete time–lag function
can results in a loss of mathematical properties for the DWVD.

Many different DWVD definitions have been proposed [41,31,27,42,58,44] to tackle the
aliasing and properties problems. Among these different definitions, there are two funda-
mental DWVD definitions, which I shall refer to as DWVD-A and DWVD-B. Claasen and
Mecklenbräuker [41] proposed the first DWVD definition, DWVD-A; soon after, Chan [31]
proposed the other definition, DWVD-B, which was later further developed by Peyrin
and Prost [27]. Most other DWVD definitions are linear combinations of DWVD-A or
DWVD-B [59,60,44].

This chapter provides a detailed analysis of DWVD-A and DWVD-B. This analysis
includes a rigorous and unified derivation for the two definitions; a description of the
properties of DWVD-A and DWVD-B; and details the relation between the two definitions
and other DWVD definitions. The analysis shows that DWVD-B preserves all important
properties of the WVD whereas DWVD-A does not. Computing DWVD-B, however,
requires four times the computational load and computer memory compared with that
for DWVD-A.

Additionally, at the end of the chapter, I propose two new DWVD definitions that are
closely related to DWVD-B. One of these new DWVD definitions satisfies all important
properties and requires only one-half of the computational load and memory to compute
compared with that for DWVD-B.

The layout of this chapter is as follows. Section 2.2 introduces the continuous WVD
and lists a set of important WVD properties. Section 2.4 presents the derivation of
DWVD-A and DWVD-B. This section starts by reviewing the formulation of the discrete
Fourier transform, which forms the basis of the method which I use to derive the DWVDs.
Section 2.5 presents the sufficient conditions for the pseudo-alias–free DWVD. Also this
section presents the set of important properties for the DWVD definitions and shows
the relation between existing DWVD definitions. The last section proposes the two new
DWVD definitions, which are time- and frequency-decimated versions of DWVD-B.

2.2 Continuous Wigner–Ville Distribution

We start with some definitions. The continuous Wigner–Ville Distribution (WVD) is
defined in terms of the time–lag function K(t, τ) as 1

Wx(t, f) =

∫
Kx(t, τ) e−j2πfτ dτ. (2.2)

The function Kx(t, τ), called the temporal instantaneous autocorrelation function (TIAF),
is a function of the time-domain signal x(t),

Kx(t, τ) = x(t+ τ
2
)x∗(t− τ

2
). (2.3)

The WVD can also be defined in terms of the Doppler–frequency function KX(ν, f) as

WX(t, f) =

∫
KX(ν, f) e j2πνt dν. (2.4)

1Assume that all integration and summation limits are from −∞ to ∞ unless otherwise stated.
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The function KX(ν, f), called the spectral instantaneous autocorrelation function (SIAF),
is a function of the frequency-domain signal X(f),

KX(ν, f) = X(f + ν
2
)X∗(f − ν

2
). (2.5)

where X(f) represents the Fourier transform of x(t). Although the two expressions in
(2.2) and (2.4) are equal—that is, W (t, f) = W(t, f)—different notation is used here as
it is needed later.

We can also use the TIAF to define the ambiguity function (AF) as

Ax(ν, τ) =

∫
Kx(t, τ) e−j2πtν dt. (2.6)

The AF represents the Doppler–lag (ν, τ) domain. The AF, as a function of the SIAF, is

AX(ν, τ) =

∫
KX(ν, f) e j2πfτ df

where AX(ν, τ) = Ax(ν, τ).
The four functions in (2.2), (2.3), (2.5) and (2.6), which represent four different do-

mains, are linearly related by the Fourier transform as follows:

W (t, f)
F
t→ν−−−→ K(ν, f) ←−−− X(f)

F
τ→f

x F
τ→f

x
x(t) −−−→ K(t, τ)

F
t→ν−−−→ A(ν, τ)

(2.7)

This diagram also highlights the relation of these functions with x(t) and X(f): the TIAF
K(t, τ) is a function of x(t) whereas the SIAF K(ν, f) is function of X(f). Thus, we can
form the WVD or AF from either the time- or frequency-domain signal.

Note on Time-Domain Signals Throughout this chapter, we use two types of signals:
the real-valued signal x(t) and its analytic associate z(t). The analytic signal z(t), which
is complex valued, has zero energy at negative frequencies [1,61]. Therefore, the analytic
signal has half the frequency bandwidth of the real-valued signal. The WVD of the
analytic signal is free from cross-term artefacts—present when the real-valued signal is
used—between the positive- and negative-frequency components in the WVD [11]. In
addition, as we shall see later, using the analytic signal in the WVD significantly reduces
aliasing in DWVD.

Also note that although the term Wigner–Ville distribution usually [8] implies that the
distribution uses the analytic signal rather than the real-valued signal, in this dissertation
I refer to the Wigner–Ville distribution as a distribution that uses either the analytic or
real-valued signal.

2.2.1 Properties

The WVD satisfies more mathematical properties than any other quadratic distribution. I
now introduce and explain a set of properties for the WVD. These properties, which are of
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practical importance, often appear in the literature [41, 31, 40, 42, 43, 44, 34, 36, 29, 45, 46].
All these properties are applicable to either the real-valued signal x(t) or the analytic
signal z(t).

• Quadratic form: The WVD, as a member of the quadratic TFD class, has the
general quadratic form

W (t, f) =

∫ ∫
x(t1)x∗(t2)H(t1, t2; t, f) dt1 dt2

where the function H(t1, t2; t, f) is

H(t1, t2; t, f) = δ(t− t1+t2
2

) e−j2π(t1−t2)f .

• Realness: The WVD Wx(t, f) is real valued for any signal x(t).

• Time–frequency covariance: The WVD is invariant to time and frequency shifts.
That is, a shift in time or frequency in the time-domain signal produces an equivalent
shift in time or frequency in the WVD. A signal of the form

y(t) = x(t− t0) e j2πf0t

produces a shift in the WVD as follows:

Wy(t, f) = Wx(t− t0, f − f0).

• Time marginal: Integrating the WVD over frequency gives the instantaneous
power: ∫

Wx(t, f) df = |x(t)|2

• Frequency marginal: Integrating the WVD over time gives the spectral density:∫
Wx(t, f) dt = |X(f)|2

• Time support: If the signal x(t) is time limited to x(t) = 0 for t < t1 and t > t2,
then the WVD is likewise time limited:

Wx(t, f) = 0, for t < t1 and t > t2.

• Frequency support: If the signal X(f) is frequency limited to X(f) = 0 for
f < f1 and f > f2, then the WVD is likewise frequency limited:

Wx(t, f) = 0, for f < f1 and f > f2.
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• Instantaneous frequency: The first moment, with respect to frequency, of the
WVD is equal to the instantaneous frequency (IF):∫

fWz(t, f) df∫
Wz(t, f) df

= fi(t)

The IF fi(t) is defined as

fi(t) =
1

2π

dφ(t)

dt

where φ(t) is the instantaneous phase of the analytic signal z(t).

• Group delay: The first moment, with respect to time, of the WVD is equal to the
group delay: ∫

tWz(t, f) dt∫
Wz(t, f) dt

= τg(f).

The group delay τg(f) is defined as

τg(f) =
1

2π

dΘ(f)

df

where Θ(f) is the phase of the frequency-domain signal Z(f).

• Moyal’s formula: This property, also known as unitarity or inner-product invari-
ance, states that the inner product of the WVDs of two signals x(t) and y(t) is equal
to the magnitude squared of the inner product of the two time-domain signals:∫ ∫

Wx(t, f)Wy(t, f) dt df =

∣∣∣∣∫ x(t)y∗(t) dt

∣∣∣∣2 .
• Signal recovery: We can recover the time-domain signal, up to a constant phase,

from the WVD: ∫
Wx(

t
2
, f) e j2πft df = x(t)x∗(0).

A notable omission from the preceding list of properties is the nonnegativity property.
For most signal types, the WVD contains negative values. The nonnegativity property
is important for the physical interpretation of the WVD as an energy density function.
Even though the WVD does not satisfy this property, it has many useful engineering
applications [62,63,13,14,15,16,17,18,19,20].

2.3 Discrete Fourier Transform

The Fourier transform maps a time-domain signal to the frequency domain; the WVD
maps a time-domain signal to the time–frequency domain—hence the Fourier transform
and the WVD are, in a limited sense, alike. In fact, the WVD contains a Fourier transform.
As (2.2) shows, the WVD Fourier transforms the time–lag function to the time–frequency
domain. More generally, all four two-dimensional domains in (2.7) are related by Fourier
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Figure 2.1: Effect of time-domain sampling: (a) X(f), Fourier transform of continuous-time
signal, and (b) X̃(f), Fourier transform of discrete-time signal. In this example X(f) is band
limited to |f | < fc with fc < 1/(2T ).

transforms. For these reasons, before defining the discrete WVD, we shall review the
discrete Fourier transform.

The Fourier transform X(f) of continuous time-domain signal x(t) is defined as

X(f) =

∫
x(t) e−j2πtf dt. (2.8)

The inverse Fourier transforms of the continuous frequency-domain signal X(f) is

x(t) =

∫
X(f) e j2πtf df. (2.9)

Let us consider the effects of sampling a continuous signal. Let x(nT ) be a discrete
time-domain signal sampled from x(t) at a discrete set of sample points n separated in
time by T . The Fourier transform of x(nT ) is X̃(f), which is equal to an infinite sum of
scaled and shifted copies of X(f):

X̃(f) =
1

T

∑
n

X(f − n
T

). (2.10)

Fig. 2.1 illustrates the difference between the two frequency-domain signals. Thus, X̃(f)
is a periodic version of X(f). The theory behind this relation is in Appendix A.1.

Similarly, let X(kΛ) be a discrete frequency-domain signal sampled from X(f) at a
discrete set of sample points k separated in frequency by Λ. The inverse Fourier transform
of X(kΛ) is x̃(t), where x̃(t) is an infinite sum of scaled and shifted copies of x(t) (see
Appendix A.3 for details):

x̃(t) =
1

Λ

∑
k

x(t− k
Λ

).
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Thus, x̃(t) is a periodic version of x(t).
A computer requires both a discrete-time and discrete-frequency signal, as it cannot

compute a continuous signal. We must sample, therefore, in both domains. Setting the
frequency-domain sampling rate to 1/Λ = NT [23], then the discrete signals are related
to the continuous signals as follows (see Appendix A.4 for details):

X̃( k
NT

) =
1

T

∑
n

X((k − nN) 1
NT

),

x̃(nT ) = NT
∑
k

x((n− kN)T ),

The discrete signals do not equal samples of the continuous signals but, rather, equal
scaled and shifted copies of the continuous signals. Thus, when X(f) is not band limited
then X̃(f) is aliased; likewise, when x(t) is not band limited then x̃(nT ) is aliased.

Now, if we assume that x(t) is band limited to 0 < t < NT and X(f) is band limited
to |f | < fc, then the discrete signals x̃(nT ) and X̃(k/NT ) should, ideally, equal samples
of the continuous signals x(t) and X(f) in one period:

x̃(nT ) = x(nT ), 0 ≤ n ≤ N − 1,

X̃( k
NT

) = X( k
NT

), 0 ≤ k ≤ N − 1.
(2.11)

when fc ≤ 1/(2T ). This relation is not possible however—the assumption that both the
time-domain and frequency-domain signals are both band limited is not valid [28] as a
finite bandwidth in one domain must have an infinite bandwidth in the other domain.

In practice we assume that x(t) is band limited and X(f) is approximately band
limited [28, 23]—that is, x(t) = 0 for t < 0 and t > NT and X(f) ≈ 0 for |f | > 1/2T—
and therefore

x̃(nT ) = x(nT ), 0 ≤ n ≤ N − 1,

X̃( k
NT

) ≈ X( k
NT

), 0 ≤ k ≤ N − 1,

when fc ≤ 1/(2T ). Because the discrete frequency-domain signal does not exactly equal
samples of the continuous signal, X̃(k/NT ) is aliased. The extent of this aliasing, however,
is controlled by the sampling frequency 1/T ; as 1/T increases, the period for shifted copies
of X(f) increases, as expressed by the relation (2.10). Thus, increasing the sampling
frequency reduces aliasing and for most practical applications, this aliasing is assumed to
be negligible and is usually ignored.

The discrete-time, discrete-frequency Fourier transform, known as the discrete Fourier
transform (DFT), for band limited signals is defined as [23]

X̃( k
NT

) =
N−1∑
n=0

x̃(nT ) e−j2πnk/N

x̃(nT ) =
N−1∑
k=0

X̃( k
NT

) e j2πkn/N .

(2.12)

Fig. 2.2 shows two examples for X̃(k/NT ), assuming that X(f) is band limited to |f | < fc.
The signal X̃(k/NT ) is alias free when 1/(2T ) ≥ fc, known as the Nyquist rate, and
aliased when 1/(2T ) < fc.
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Figure 2.2: Discrete, periodic frequency-domain signal X̃(k/NT ). (a) Alias free as 1/(2T ) >
fc and (b) aliased as 1/(2T ) < fc assuming that X(f) is band limited to |f | < fc. Each dot
represents the sample point k separated by 1/NT in frequency.

2.4 Discrete Wigner–Ville Distribution

The following sections present derivations for the discrete WVD (DWVD), a discrete-time,
discrete-frequency version of the WVD. The derivation methods use a two-dimensional
sampling grid to sample in the time–lag and Doppler–frequency domains. The details
for deriving a DWVD is more complicated than that for the DFT because the DWVD
is a function of two variables and has four Fourier-related domains, but the process is
essentially the same. Sampling in the two-dimensional time–lag domain and the two-
dimensional Doppler–frequency domain produces a DWVD that is periodic in both the
time and frequency directions.

Even though we sample the TIAF and SIAF directly, we must be able to form the
discrete TIAF from x(nT ) and the discrete SIAF from X(k/NT ). Otherwise the resultant
DWVD will not be able to fulfil its purpose—to transform time- or frequency-domain
signals to the time–frequency domain.

The two-dimensional sampling-grid method was originally proposed by Nuttall in the
appendix of his report [39]. I extend his method by using two types of two-dimensional
sampling grids, one denser than the other. The outcome of using two different sampling
grids is two different DWVD definitions. Both these DWVD definitions are existing
definitions that were proposed using different derivations.

The purpose of presenting the following rigorous derivation is to provide a unified
method for deriving DWVDs, something missing in current literature [30,31,64,27,57,40,
42, 44]. I also apply the two-dimensional sampling approach to define discrete-Doppler,
discrete-lag AFs.

2.4.1 Discrete-Time Wigner–Ville Distribution

If we sample only in the time–lag domain, then map this discrete TIAF to the time–
frequency domain, the resultant distribution will be a discrete-time, continuous-frequency
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Figure 2.3: Different time–lag (t, τ) sampling grids with sampling period T for length N = 5
signal: (a) ideal discrete grid (nT,mT ), (b) discrete grid A (nT, 2mT ), and (c) discrete grid B
(nT/2,mT ).

WVD. Here, we shall examine two different approaches for sampling the TIAF. Each
approach results in a different discrete-time WVD definition, and also a different discrete-
lag AF definition. Before we examine the two sampling approaches, we look at an ideal
sampling approach for the TIAF—an approach we could use if we were not constrained
to forming the TIAF from the discrete-time signal.

The derivations for most of the expressions in this section are in Appendix B.1.

The ideal approach is to sample the TIAF K(t, τ) in time and lag with sampling
frequency 1/T . Fig. 2.3a illustrates this sampling grid. This discrete TIAF, in terms of
the discrete-time signal x(nT ), is

K ideal(nT,mT ) = x((n+ m
2

)T )x∗((n− m
2

)T ). (2.13)

Unfortunately, we cannot generate this function because we only have samples of x(nT )
when n is an integer and do not have access to the sample points at x(nT/2).

TIAF Sampling Approach A

Claasen and Mecklenbräuker [41] proposed a simple alternative to the ideal sampling
approach by just ignoring the lag samples in (2.13) when m is odd. This procedure
samples the TIAF in t with sample period T and in τ with sample period 2T ; Fig. 2.3(b)
illustrates this sample grid.
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Unlike the ideal discrete TIAF, we can generate this discrete TIAF KA(nT, 2mT ) from
the discrete-time signal:

KA(nT, 2mT ) = x((n+m)T )x∗((n−m)T ).

Note that this discrete TIAF x(aT )x∗(bT ), where a = n + m and b = n −m, uses only
half of the outer product of this matrix x(aT )x∗(bT ) [36].

To form the discrete-time WVD, we simply take the discrete-time Fourier transform
of KA(nT, 2mT ):

W̃A(nT, f) = 2T
∑
m

KA(nT, 2mT ) e−j4πmTf . (2.14)

(The symbol W̃A represents the discrete-time WVD using sampling approach A.) This
discrete-time WVD is related to the WVD as follows:

W̃A(nT, f) =
∑
m

W (nT, f − m
2T

) (2.15)

see Appendix B.1.1 for the proof. Thus, the discrete-time WVD equals shifted copies of
the WVD, similar to the relation between the discrete-time Fourier transform and Fourier
transform in (2.10); although the discrete-time WVD is periodic in 1/(2T ) whereas the
discrete-time Fourier transform is periodic in 1/T . This result was first noted by Claasen
and Mecklenbräuker [41].

TIAF Sampling Approach B

We now look at a different sampling approach, first presented by Chan [31]. Chan claimed
that his discrete-time WVD was alias free—a claim disproved a year later by Claasen and
Mecklenbräuker [59].

So why should we consider this sampling approach? Chan realised that by using this
approach more signal information is used to the form the discrete TIAF, which results in
a discrete-time WVD that satisfies more important properties than the distribution W̃A.

Chan’s method uses a nonuniform sampling grid, illustrated in Fig. 2.3c. The gird
samples in time t with a period of T/2 and in lag τ with a period T . The discrete TIAF,
as a function of x(nT ), for n and (n+ 1/2) sample values is

KB(nT, 2mT ) = x((n+m)T )x∗((n−m)T )

KB((n+ 1
2
)T, 2(m+ 1

2
)T ) = x((n+m+ 1)T )x∗((n−m)T ).

(2.16)

Because KB(nT/2,mT ) has a nonuniform discrete grid, the function is not defined at the
sample points (nT, 2(m + 1/2)T ) or ((n + 1/2)T, 2mT ). At n sample values, the TIAF
is equal to KA(nT, 2mT ). In the matrix form x(aT )x∗(bT ), the discrete TIAF in (2.16),
unlike the KA(nT, 2mT ), uses the full outer product. This sampling approach, therefore,
uses more signal information compared with that for approach A. We can confirm this by
comparing the density of the two sampling grids in Fig. 2.3b and Fig. 2.3c.

To form the discrete-time WVD, we take the discrete-time Fourier transform of this
discrete TIAF,

W̃B(nT
2
, f) = 2T

∑
m

KB(nT
2
,mT ) e−j2πmTf .
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For n and (n+ 1/2) sample values this equates to

W̃B(nT, f) =
∑
m

KB(nT, 2mT ) e−j4πmTf

W̃B((n+ 1
2
)T, f) =

∑
m

KB((n+ 1
2
)T, 2(m+ 1

2
)T ) e−j4πmTf e−j2πTf

(2.17)

Note, from (2.17), that W̃B(nT, f) = W̃A(nT, f).
The relation between the discrete-time WVD and the continuous WVD (see Ap-

pendix B.1.1 for details) is

W̃B(nT
2
, f) =

∑
m

(−1)nmW (nT
2
, f − m

2T
). (2.18)

Thus, similar to the DWVD W̃A, the DWVD W̃B is periodic in frequency with a period
of 1/(2T ). The periodic copies for WB, however, alternate between positive and negative
values depending on the values of n and m because of the (−1)nm term in (2.18).

2.4.2 Periodic Doppler–Frequency Domain

The discrete-time, discrete-lag TIAF results in periodicity, in Doppler and frequency, in
the Doppler–frequency domain. Examining this continuous Doppler–frequency domain
helps us understand aliasing in the discrete-time WVD.

Assuming that X(f) is band limited to |f | < 1/(2T ) then the SIAF K(ν, f), as defined
in (2.5), is band limited to

|f ± ν
2
| ≤ 1

2T
.

This results in the diamond shaped SIAF [39, 57] illustrated in Fig. 2.4a. If we use the
analytic signal z(t) instead of the real-valued signal x(t), where Z(f) is band limited to
0 < f < 1/(2T ), then this diamond shaped SIAF reduces to

f ± ν
2
≤ 1

2T
.

Fig. 2.4b shows this region of support for the SIAF. Note we assume at this point that
x(t) and z(t) have infinite length.

First, we look at sample approach A. The discrete-time Fourier transform of the
discrete-time WVD results in the periodic SIAF, that is,

K̃A(ν, f) =
∑
n

W̃A(nT, f) e−j2πνnT .

This periodic function K̃A is related to K as follows (see Appendix B.2 for details):

K̃A(ν, f) =
1

T

∑
n

∑
m

K(ν − n
T
, f − m

2T
). (2.19)

Fig. 2.5 displays the periodic SIAFs for both the real-valued signal x(nT ) and the analytic
signal z(nT ). Periodic overlap distorts the SIAF of the real-valued signal whereas the
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Figure 2.4: Regions of support for the continuous bandlimited SIAF K(ν, f) formed from
(a) a real signal, and (b) an analytic signal.
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Figure 2.5: Periodic SIAF K̃A(ν, f) for a (a) real and (b) analytic signal. The periodicity of
the function is due to the sampling in the temporal domain. The signals are band limited in the
frequency domain and infinite extent in the time domain. The two dark lines in each diagram
represents the frequency extent of the discrete-time WVD, which is |f | < 1/(2T ).
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Figure 2.6: Periodic SIAF K̃B(ν, f) for (a) a real and (b) an analytic signal. The signals
are band limited in the frequency domain and infinite extent in the time domain. The two
dark lines in each diagram represents the frequency extent of the discrete-time WVD, which is
|f | < 1/(2T ).

SIAF of the analytic signal is free from periodic overlap. Both SIAFs, however, results
in an aliased discrete-time WVD. This is because the SIAF for the analytic signal is not
zero in the region −1/(2T ) < f < 0, and therefore the discrete-time WVD will not be
zero in this region.

Now we look at sample approach B using a similar approach. The function K̃B(ν, f)
is periodic as follows (see Appendix B.2.2):

K̃B(ν, f) =
2

T

∑
n

∑
m

n+m even

K(ν − n
T
, f − m

2T
). (2.20)

This result was also noted by Nuttall [39].
Fig. 2.6 illustrates this periodicity for both the real and analytic signal. Compared

with the SIAF K̃A, the SIAF K̃B is more spread-out, and therefore we may be tempted to
conclude that W̃B contains less aliasing than W̃A. Yet within the region required to form
the discrete-time WVD, which is bounded by |f | ≤ 1/(2T ), periodic copies are present

when we use either the real or analytic signal. Thus the discrete-time W̃B will be aliased,
as (2.18) confirms.

The following example illustrates the difference between the two discrete-time WVDs
W̃A and W̃B. In this example, we use a linear frequency modulated (LFM) analytic signal.
The two discrete-time WVDs are plotted in Fig. 2.7, where we see that both discrete-time
WVDs are aliased. For the analytic signal, the aliased component is contained within the
negative frequency range, as this region is zero for the continuous WVD. From (2.15) and
(2.18), we can see that the two discrete-time WVDs are related differently to the WVD;

in particular, the periodic copies for W̃B oscillate between positive and negative values,
depending on the parity of n. This is caused by the (−1)nm term in (2.18), which is not
present in (2.15).
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Figure 2.7: Discrete-time WVD of analytic LFM signal. (a) Discrete-time WVD produced
using sampling approach A, and (b) discrete-time WVD produced using sampling approach B.

We can apply the two sampled TIAF functions KA(nT, 2mT ) and KB(nT/2,mT ) to
define a discrete–lag AF; the details are in Appendix C.1.

2.4.3 Discrete-Frequency Wigner Distribution

We now look at sampling the SIAF using a method similar to that in the previous section
for the discrete TIAF. The derivations for most of the expressions in this section are in
Appendix B.3.

SIAF Sampling Approach A

Sampling the SIAF in frequency f with sampling period Λ and in Doppler ν with sampling
period 2Λ results in the discrete SIAF KA,

KA(2lΛ, kΛ) = X((k + l)Λ)X∗((k − l)Λ).

The discrete-frequency WVD is the inverse discrete-frequency Fourier transform, scaled
by 2Λ, of the discrete SIAF,

W̃A(t, kΛ) = 2Λ
∑
l

KA(2lΛ, kΛ) e j4πlΛt. (2.21)

The discrete-frequency WVD is related to the WVD as follows (see Appendix B.3.1
for details):

W̃A(t, kΛ) =
∑
l

W (t− l
2Λ
, kΛ). (2.22)

Thus, the discrete-frequency WVD is periodic in time direction with a period of 1/(2Λ).
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SIAF Sampling Approach B

Similar to KB, we apply a nonuniform sampling grid to form the discrete SIAF KB as
follows:

KB(2lΛ, kΛ) = X((k + l)Λ)X∗((k − l)Λ)

KB(2(l + 1
2
)Λ, (k + 1

2
)Λ) = X((k + l + 1)Λ)X∗((k − l)Λ)

The inverse discrete-frequency Fourier transform of this discrete SIAF KB is the discrete-
frequency WVD W̃B,

W̃B(t, kΛ
2

) = 2Λ
∑
l

KB(lΛ, kΛ
2

) e j2πlΛt.

For k and (k + 1/2) sample values, the preceding relation equates to

W̃B(t, kΛ) = 2Λ
∑
l

KB(2lΛ, kΛ) e j4πlΛt

W̃B(t, (k + 1
2
)Λ) = 2Λ

∑
l

KB(2(l + 1
2
)Λ, (k + 1

2
)Λ) e j4πlΛt e j2πΛt.

(2.23)

This discrete-frequency WVD is related to the WVD as follows (see Appendix B.3.2
for details):

W̃B(t, kΛ
2

) =
∑
l

(−1)klW(t− l
2Λ
, kΛ

2
). (2.24)

Thus, this discrete-frequency WVD W̃B, similar to W̃A, is periodic in time with a period
of 1/(2Λ). The periodic copies for W̃B, however, alternate between positive and negative
values, depending on the values of k and l, because of the (−1)kl term in (2.24).

2.4.4 Periodic Time–Lag Domain

Sampling in the temporal domain causes periodicity in the continuous spectral domain,
as discussed in Section 2.4.2. Likewise, sampling in the spectral domain causes periodicity
in the continuous temporal domain.

If x(t) is time-limited to |t| ≤ 1/(2Λ), with an infinite frequency bandwidth, the
continuous TIAF is bounded by

|t+ τ
2
| ≤ 1

2Λ

resulting in the diamond shaped function illustrated in Fig. 2.8. This region of support
is the same for both the real and analytic signal.

The periodic K̃A(t, τ) is related to K as follows (see Appendix B.4.1 for details):

K̃A(t, τ) =
1

Λ

∑
k

∑
l

K(t− l
2Λ
, τ − k

Λ
). (2.25)

and the periodic K̃B(t, τ) is related to K as follows (see Appendix B.4.2 for details):

K̃B(t, τ) =
2

Λ

∑
k

∑
l

k+l even

K(t− l
2Λ
, τ − k

Λ
). (2.26)
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Figure 2.8: Region of support for the continuous-time TIAF K(t, τ) for either the real-valued
or analytic signal.
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Figure 2.9: The periodic continuous TIAF (a) K̃A(t, τ), and (b) K̃B(t, τ) of either the real-
valued or analytic signal. The signals are band limited in the time domain and have an infinite
extent in the frequency domain. The two dark lines in each diagram represents the time extent
of the discrete-frequency WVD, which is |t| < 1/(2Λ).

Both these periodic TIAFs are illustrated in Fig. 2.9.
Unlike the TIAF K̃A, the TIAF K̃B does not have overlapping periodic components.

The region, however, used to form the discrete-frequency WVD W̃B, bounded by |t| ≤
1/(2Λ), does contain periodic components, as shown in Fig. 2.9b. Thus the discrete-

frequency WVD W̃B will be aliased, as supported by the relation (2.24).
To highlight the differences between the two discrete-frequency WVDs, the distribu-

tions are plotted in Fig. 2.10 using the same LFM analytic signal used in Fig. 2.7. The
periodic copies for the discrete-frequency WVDs overlap in the time direction. For the
discrete-frequency WVD W̃B, these periodic copies oscillate between positive and negative
values depending on the parity of k.

We can form the discrete-Doppler AF using the two discrete SIAFs KA and KB;
Appendix C.2 contains the details.

2.4.5 Discrete-Time, Discrete-Frequency Wigner Distribution

To form a DWVD, which is discrete in time and frequency, we use either the discrete,
periodic TIAF or discrete, periodic SIAF. The discrete, periodic TIAF is formed from the
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Figure 2.10: Discrete-frequency WVD of analytic LFM signal. (a) Discrete-frequency WVD
produced using sampling approach A, and (b) discrete-frequency WVD produced using sampling
approach B.

discrete, periodic signal x̃(nT ); and likewise, the discrete, periodic SIAF is formed from
the discrete, periodic signal X̃(kΛ).

Assume that x̃(nT ) is an alias-free signal of length NT and the frequency domain
sampling rate is Λ = 1/NT , as discussed in Section 2.3. This signal will be used to form
the discrete, periodic TIAF or SIAF. We examine the former first. The following analysis
assumes that N is even. Derivations for this section are in Appendix B.5.

TIAF Sampling Approach A

The discrete and periodic TIAF K̃A(nT, 2mT ) is formed by sampling the periodic TIAF

K̃A(t, τ) using sample approach A. This function, in terms of the discrete and periodic
signal x̃(nT ), is

K̃A(nT, 2mT ) = x̃((n+m)T )x̃∗((n−m)T ) + x̃((n+m+ N
2

)T )x̃∗((n−m− N
2

)T )

for |n| < N/4 and |m| < N/4, which represents one period of the function.

The DWVD is the DFT, scaled by 2/N , of the TIAF K̃A(nT, 2mT ),

WA(nT, k
NT

) =
2

N

∑
|m|<N/4

K̃A(nT, 2mT ) e−j4πmk/N . (2.27)

(I do not use the tilde accent—used thus far to denote periodicity—in the DWVD symbol

WA to distinguish the DWVD WA from the discrete-time WVD W̃A or the discrete-
frequency WVD W̃A. Irrespective of this notation, this discrete distribution WA is peri-
odic in both the time and frequency directions.)

The DWVD WA is related to the WVD as follows:

WA(nT, k
NT

) =
∑
m

∑
l

W ((n− lN
2

)T, (k − mN
2

) 1
NT

) (2.28)

The derivation is in Appendix B.5.1.
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TIAF Sampling Approach B

Sampling the periodic TIAF K̃B(t, τ) with sampling approach B results in the discrete,

periodic TIAF K̃B(nT/2,mT ). This function, in terms of x̃(nT ), is

K̃B(nT, 2mT ) = x̃((n+m)T )x̃∗((n−m)T )

K̃B((n+ 1
2
)T, 2(m+ 1

2
)T ) = x̃((n+m+ 1)T )x̃∗((n−m)T )

(2.29)

for |n| < N and |m| < N , which represents one period.

The DWVD is the DFT transform, scaled by 1/N , of the discrete TIAF K̃B(nT/2,mT ),

WB(nT
2
, k

2NT
) =

1

N

∑
|m|<N

K̃B(nT
2
,mT ) e−jπmk/N . (2.30)

and this DWVD is related to the WVD as follows:

WB(nT
2
, k

2NT
) =

∑
l

∑
m

(−1)nm+lk−lmNW ((n− lN)T
2
, (k −mN) 1

2NT
). (2.31)

The derivation is in Appendix B.5.2.
We could also derive the DWVD by sampling the discrete, periodic SIAF. I show this

in Appendix B.5.3 and Appendix B.5.4.

2.4.6 Periodic Time–Frequency Domain

Here we look at the relation between the discrete WVD definitions and the continuous
WVD definitions for both the analytic and real-valued signals.

Real-valued Signal

Assume that the real-valued signal x(t) has a finite time bandwidth of NT and an ap-
proximate finite frequency bandwidth 1/T ; that is,

x(t) = 0, |t| > NT

2
,

X(f) ≈ 0, |f | > 1

2T
.

(2.32)

The approximation in (2.32) is because of the mutually exclusive constraints of finite time
and frequency bandwidth [28]. Thus, the continuous WVD of x(t) has the form [27]

W (t, f) ≈ 0, for |t| > NT

2
or |f | > 1

2T
. (2.33)

Within the signal’s time–frequency region—that is, within the region |t| ≤ NT/2 and
|f | ≤ 1/(2T )—the two DWVD definitions WA and WB are related to the continuous
WVD as follows:

WA(nT, k
NT

) ≈
1∑

m=−1

1∑
l=−1

W ((n− lN
2

)T, (k − mN
2

) 1
NT

) (2.34)

WB(nT
2
, k

2NT
) ≈

1∑
m=−1

1∑
l=−1

(−1)nm+lk−lmNW ((n− lN)T
2
, (k −mN) 1

2NT
). (2.35)
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Figure 2.11: The DWVD (a) WA and (b) WB represented as a sum of time and frequency
shifted WVD copies using the real-valued signal x(t). The region for the WVD of the signal is
represented by the area occupied by the slanted lines. For clarity only a subset of the terms in the
summations in (2.36) are used. The terms (−1)n, (−1)k and (−1)n+k+N in (b) are multiplicative
factors for the shifted WVD copies.

The approximation sign in the preceding expressions is because W (t, f) is not exactly zero
outside of the signal’s time and frequency band limits, as described in (2.33). Irrespective
of this approximation, both DWVDs are aliased—Fig. 2.11 illustrates. The DWVD WA is
(an approximate) sum of WVDs which overlap in both the time and frequency direction.
For the DWVD WB, similar aliasing occurs, although for this DWVD definition the shifted
WVD copies contain the multiplicative factor (−1)nm+lk−lmN . Otherwise, they are aliased
to the same extent.

Analytic Signal

Assume that complex-valued analytic signal z(t) has a finite time bandwidth of NT and
an approximate frequency bandwidth of 1/(2T ); that is,

z(t) = 0, |t| > NT

2
,

Z(f) ≈ 0, f >
1

2T
or f < 0.

Thus, similar to the real-valued signal bandwidths in (2.32), the analytic signal has only
an approximate finite frequency bandwidth. The WVD of z(t), therefore, is zero outside
the signal’s time–frequency area; that is,

W (t, f) ≈ 0, for |t| > NT

2
, f >

1

2T
, or f < 0,
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Figure 2.12: The DWVD (a) WA and (b) WB represented as a sum of some time and
frequency shifted WVD copies using an analytic signal. For clarity only a subset of the terms
in the summations in (2.36) are used. The terms (−1)n, (−1)k and (−1)n+k+N in (b) are
multiplicative factors for the shifted WVD copies.

Within the signal’s time–frequency region—that is, within the region |t| ≤ NT/2 and
0 ≤ f ≤ 1/(2T )—the two DWVDs are related to the continuous WVD as follows:

WA(nT, k
NT

) ≈
1∑

l=−1

W ((n− lN
2

)T, k
NT

)

WB(nT
2
, k

2NT
) ≈

1∑
l=−1

(−1)lkW ((n− lN)T
2
, k

2NT
).

(2.36)

Again, both DWVD definitions are aliased—Fig. 2.12 illustrates. Note that because the
nonzero region for the WVD of the analytic signal z(t) is smaller than that for the WVD
of the real-valued signal x(t), the extent of the periodic overlap, or aliasing, is smaller for
the DWVD of the analytic signal as aliasing is present in the time direction only within
the region |t| ≤ NT/2 and 0 ≤ f ≤ 1/(2T ).

This section concludes with an example. Fig. 2.13 shows the two DWVDs WA and WB

of a LFM analytic signal. We see that aliasing is present in both the time and frequency
directions but note that within the region |t| ≤ NT/2 and 0 ≤ f ≤ 1/(2T ), aliasing is
present only in the time direction. Note also that both DWVDs are aliased to the same
extent.

2.4.7 Key Results: Relation Between Continuous and Discrete
Domains

To understand the characteristics of a discrete function, we must first understand the
relation between the discrete and continuous function. This section highlights important
results from Section 2.4.1, Section 2.4.3, Section 2.4.5, and Appendix C. Some, but not
all, of these results have been presented by others [31,59,27,57,39,36,65].
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Figure 2.13: DWVD of analytic LFM signal. (a) DWVD produced using sampling approach
A, and (b) DWVD produced using sampling approach B.

Table 2.1: Discrete–continuous relations due to sampling in the time–lag domain.

Domaina Sampling Approach A Sampling Approach B

TL KA(nT, 2mT ) KB(nT
2
,mT )

DF K̃A(ν, f) = 1
T

∑
n

∑
mK(ν − n

T
, f − m

2T
) K̃B(ν, f)

= 2
T

∑
n

∑
m

n+m even

K(ν − n
T
, f − m

2T
)

TF W̃A(nT, f) =
∑

mW (nT, f − m
2T

) W̃B(nT
2
, f)

=
∑

m(−1)nmW (nT
2
, f − m

2T
)

DL ÃA(ν, 2mT ) =
∑

nA(ν − n
T
, 2mT ) ÃB(ν,mT )

=
∑

n(−1)nmA(ν − n
T
,mT )

a Legend TF: time–frequency, TL: time–lag, DF: Doppler–frequency, and DL:
Doppler–lag.

Table 2.1 shows the relation between discrete and continuous domains from sampling
in the time–lag domain. Table 2.2 shows the discrete–continuous relations from sampling
in the Doppler–frequency domain. Table 2.3 and Table 2.4 show the discrete–continuous
relations from sampling in both the time–lag and Doppler–frequency domains.

2.5 Aliasing, Properties, and other DWVD Defini-

tions

For this section we shall examine how to avoid aliasing and the mathematical properties
for two DWVD definitions. In addition, we shall present other existing DWVD definitions
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Table 2.2: Discrete–continuous relations due to sampling in the Doppler–frequency domain.

Domaina Sampling Approach A Sampling Approach B

DF KA(2lΛ, kΛ) KB(lΛ, kΛ
2

)

TL K̃A(t, τ) = 1
Λ

∑
k

∑
lK(t− l

2Λ
, τ − k

Λ
) K̃B(t, τ) = 2

Λ

∑
k

∑
l

k+l even

K(t− l
2Λ
, τ − k

Λ
)

TF W̃A(t, kΛ) =
∑

lW (t− l
2Λ
, kΛ) W̃B(t, kΛ

2
) =

∑
l(−1)klW (t− l

2Λ
, kΛ

2
)

DL ÃA(2lΛ, τ) =
∑

k A(2lΛ, τ − k
Λ

) ÃB(lΛ, τ) =
∑

k(−1)klA(lΛ, τ − k
Λ

)

a Legend TF: time–frequency, TL: time–lag, DF: Doppler–frequency, and DL: Doppler–
lag.

Table 2.3: Discrete–continuous relations due to sampling in the both
the time–lag and Doppler–frequency domains using sampling approach A.

Domain Sampling Approach A

TL K̃A(nT, 2mT ) = NT
∑

k

∑
lK((n− lN

2
)T, (2m− kN)T )

DF K̃A( 2l
NT
, k
NT

) = 1
T

∑
n

∑
mK((2l − nN) 1

NT
, (k − mN

2
) 1
NT

)

TF WA(nT, k
NT

) =
∑

m

∑
lW ((n− lN

2
)T, (k − mN

2
) 1
NT

)

DL AA( 2l
NT
, 2mT ) =

∑
n

∑
k A((2l − nN) 1

NT
, (2m− kN)T )

a Legend TF: time–frequency, TL: time–lag, DF: Doppler–
frequency, and DL: Doppler–lag.

Table 2.4: Discrete–continuous relations due to sampling in both the time–lag and
Doppler–frequency domains using sampling approach B.

Domain Sampling Approach B

TL K̃B(nT
2
,mT ) = 2NT

∑
k

∑
l

k+l even

K((n− lN)T
2
, (m− kN)T )

DF K̃B( l
NT
, k

2NT
) = 2

T

∑
n

∑
m

n+m even

K((l − nN) 1
NT
, (k −mN) 1

2NT
)

TF WB(nT
2
, k

2NT
) =

∑
l

∑
m(−1)nm+lk−lmNW ((n− lN)T

2
, (k −mN) 1

2NT
)

DL AB( l
NT
,mT ) =

∑
n

∑
k(−1)nm+lk−knNA((l − nN) 1

NT
, (m− kN)T )

a Legend TF: time–frequency, TL: time–lag, DF: Doppler–frequency, and DL:
Doppler–lag.
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and relate them to the two presented DWVD definitions.

2.5.1 Aliasing

We saw in Section 2.4.6 that the DWVD of the real-valued signal x̃(nT ) or analytic signal
z̃(nT ) is aliased. For the DWVD of the analytic signal, however, aliasing only occurs in
the time direction within the region |t| ≤ NT/2 and 0 ≤ f ≤ 1/(2T ). Thus, if we halve
the time-bandwidth of the signal, then the DWVD would be free from aliasing within
this region [27]. To do this, lets define a discrete analytic signal z̃pad(nT ) that equals the
N -point signal z̃(nT ) zero-padded to length 2N :

z̃pad(nT ) =

{
z̃(nT ), 0 ≤ n ≤ N − 1,

0, N ≤ n ≤ 2N − 1.
(2.37)

This signal z̃pad(nT ) is periodic with a period of 2N . A consequence of zero-padding
z̃(nT ) is spectral leakage into the ideally-zero negative frequency region of Z̃pad(k/2NT ),
where Z̃pad(k/2NT ) is the DFT of z̃pad(nT ). Thus,

z̃pad(nT ) = 0, N ≤ n ≤ 2N − 1

Z̃pad( k
2NT

) ≈ 0, N ≤ k ≤ 2N − 1.

(2.38)

This relation mirrors the continuous domain relation of (2.32). The next chapter present
a new method for defining the discrete analytic signal that improves on the approximation
in (2.38).

The DWVD of z̃pad(nT ) is related to the continuous WVD as follows:

WA
zpad

(nT, k
2NT

) ≈ Wzpad
(nT, k

2NT
) (2.39)

WB
zpad

(nT
2
, k

4NT
) ≈ Wzpad

(nT
2
, k

4NT
) (2.40)

within the signal’s time–frequency region of extent—that is, for |t| ≤ NT/2 and 0 ≤ f ≤
1/(2T ). Hence these DWVDs are approximately alias free and I therefore refer to them
as pseudo-alias–free DWVDs rather than alias-free DWVDs. I use the term pseudo-alias
free to differentiate between the aliased DWVDs—such as the DWVDs of z̃(nT ) in (2.36),
or the DWVDs of x̃(nT ) in (2.34) and (2.35)—and the approximately alias-free DWVDs
in (2.39) and (2.40).

Assume henceforth that all DWVD definitions, unless otherwise stated, use the 2N -
point analytic signal z̃pad(nT ) and are therefore pseudo-alias–free definitions. Also, we
shall refer to the DWVD definition WA as DWVD-A, and the DWVD definition WB as
DWVD-B. Likewise, we shall refer to the DAF definition AA as DAF-A, and the DAF
definition AB as DAF-B.
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2.5.2 Periodic Discrete Functions

Using the definitions for DWVD-A and DAF-A in (2.27) and (C.9), we find that the four
discrete domains have the following periodic relations:

WA((n+ pN)T, (k + qN) 1
2NT

) = WA(nT, 1
2NT

)

AA((l + pN) 1
NT
, (m+ qN)2T ) = AA( l

NT
, 2mT )

K̃A((n+ pN)T, (m+ qN)2T ) = K̃A(nT, 2mT )

K̃A((l + pN) 1
NT
, (k + qN) 1

2NT
) = K̃A( l

NT
, k
NT

)

where p and q are integers. Fig. 2.14 illustrates this periodicity; the illustration ignores
any periodic overlap caused by the approximation in (2.38).

Using the definitions for DWVD-B and DAF-B in (2.30) and (C.11), we find the
following periodic relations:

WB((n+ p2N)T
2
, (k + q2N) 1

4NT
) = (−1)pk+qn+pq2NWB(nT

2
, k

4NT
)

AB((l + p2N) 1
2NT

, (m+ q2N)T ) = (−1)pm+ql+pq2NAB( l
2NT

,mT ) (2.41)

K̃B((n+ p2N)T
2
, (m+ q2N)T ) = K̃B(nT

2
,mT ), for p+ q even only,

K̃B((l + p2N) 1
2NT

, (k + q2N) 1
4NT

) = K̃B( l
2NT

, k
4NT

), for p+ q even only.

(2.42)

Fig. 2.15 illustrates this periodicity; again, the illustration ignores any periodic overlap
caused by the leaked energy in the approximation (2.38).

2.5.3 Relation Between Definitions

DWVD-A and DWVD-B are closely related: DWVD-A is a decimated, in time and fre-
quency, version of DWVD-B:

WA(nT, k
2NT

) = 2WB(2nT
2
, 2k

4NT
). (2.43)

The proof is in Appendix B.5.5.
DAF-A and DAF-B are similarly related:

AA( l
NT
, 2mT ) = 2AB( 2l

2NT
, 2mT ).

The proof is in Appendix C.3.2.

2.5.4 Relation Between Different Domains

The four different domains for DWVD-A are related by the DFT as follows:

N
2
WA(nT, k

NT
)

DFT
m→k←−−− K̃A(nT, 2mT )

IDFT
l→n

x DFT
n→l

y
K̃A( 2l

NT
, k
NT

)
IDFT
k→m−−−→ N

2
AA( 2l

NT
, 2mT )

(2.44)
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Figure 2.14: The DWVD-A using the analytic signal z̃pad(nT ) in the four Fourier-related
domains. (a) Discrete TIAF, (b) discrete SIAF, (c) discrete AF, DAF-A, and (c) discrete WVD,
DWVD-A. The dark-lined rectangular boxes define the limits for the full time–frequency extent
of the signal, |t| < NT and |f | < 1/(2T ).
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Figure 2.15: The DWVD-B using the analytic signal z̃pad(nT ) in the four Fourier-related
domains. (a) Discrete TIAF, (b) discrete SIAF, (c) discrete AF, DAF-B, and (c) discrete WVD,
DWVD-B. The dark-lined rectangular boxes define the limits for the full time–frequency extent
of the signal, |t| < NT and |f | < 1/(2T ).
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Also, the four different domains for DWVD-B are related as follows:

NWB(nT
2
, k

2NT
) ←−−− × e−jπk/N

for odd n only

DFT
m→k←−−− K̃B(nT

2
,mT )x DFT

n→l

y
× e jπn/N

for odd k only
× e−jπl/N

for odd m only

IDFT
l→n

x y
K̃B( l

NT
, k

2NT
)

IDFT
k→m−−−→ × e jπm/N

for odd l only
−−−→ NAB( l

NT
,mT )

(2.45)

The multiplication, indicated by the × symbol, with the complex exponentials is because
of the nonuniform discrete grids for the TIAF and SIAF, whereas both the DWVD and
DAF have uniform discrete grids.

The direction in (2.44) and (2.45) could be reversed by replacing the DFT with the
IDFT and, likewise, replacing the IDFT with the DFT.

2.5.5 DWVD Properties

Ideally, the DWVD should satisfy all the properties from Section 2.2.1 for the continuous
WVD. The DWVD-B, but not the DWVD-A, satisfies all of these properties. Here, I list
the discrete version of the properties from Section 2.2.1, and show why the DWVD-A
fails to satisfy the relevant properties. The properties are altered to accommodate the
discrete, periodic signal [27,36,40]. Assume that the signals z̃(nT ), s̃(nT ), and ỹ(nT ) are
2N -point discrete analytic signals of the form in (2.38).

• Quadratic form: The DWVD can be written as

N−1∑
a=0

N−1∑
b=0

z̃(aT )z̃∗(bT )H(a, b;n, k) (2.46)

where, for DWVD-B, function H is defined as

H(a, b;n, k) =
1

2N
e−jπk(a−b)/(2N)δ(b− n+ a).

The DWVD-A does not satisfy this property because it has the following form:

WA(nT, k
2NT

) =
N−1∑
a=0

N−1∑
b=0

a+b even

z̃(aT )z̃∗(bT )H1(a, b;n, k)

where a and b only exists for a, b both even or both odd.

• Realness: Both the DWVD-A and DWVD-B are real valued.
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• Time–frequency covariance: Both DWVD definitions are invariant to time and
frequency shifts. The signal

ỹ(nT ) = s̃((n− n0)T ) e jπk0n/N

which is periodic in time with period 2NT and in frequency with a period of 1/T ,
produces the following time–frequency shifts:

WA
y (nT, k

2NT
) = WA

s ((n− n0)T, (k − k0) 1
2NT

)

WB
y (nT

2
, k

4NT
) = WB

s ((n− 2n0)T
2
, (k − 2k0) 1

4NT
).

Because the DWVDs are discrete in both time and frequency, the time–frequency
shifts are circular rather than linear and therefore the DWVDs are shift covariant
in a periodic sense [23]. The two DWVD definitions are periodic as follows:

WA((n+ pN)T, (k + qN) 1
2NT

) = WA(nT, k
2NT

)

WB((n+ p2N)T
2
, (k + q2N) 1

4NT
) = (−1)pk+qnWB(nT

2
, k

4NT
)

where p, q are integers. Note that DWVD-B is not, because of the (−1)pk+qn term
in the preceding relation, periodic in the usual sense.

• Time marginal: We obtain the instantaneous power of the signal, for both DWVD
definitions, by summing the DWVD over frequency:

N−1∑
k=0

WA
z (nT, k

2NT
) = |z̃(nT )|2

2N−1∑
k=0

WB
z (2nT

2
, k

4NT
) = |z̃(nT )|2.

• Frequency marginal: We obtain the spectral energy of the signal, for DWVD-B
only, by summing over time:

2N−1∑
n=0

WB
z (nT

2
, 2k

4NT
) =

1

2N

∣∣∣Z̃( k
2NT

)
∣∣∣2

using only even values of k. DWVD-A does not satisfy this property because

N−1∑
n=0

WA
z (nT, k

2NT
) =

1

2N

[∣∣∣Z̃( k
2NT

)
∣∣∣2 + Z̃((k +N) 1

2NT
)Z̃∗((k −N) 1

2NT
)

]

• Time support: If the signal z̃(nT ) is time limited to z̃(nT ) = 0 for n < n1 and
n > n2, then the DWVD definitions are likewise time limited:

WA
z (nT, k

2NT
) = 0, for n < n1 and n > n2,

WB
z (nT

2
, k

4NT
) = 0, for n < 2n1 and n > 2n2.
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• Frequency support: If the signal Z̃(k/2NT ) is frequency limited to Z̃(k/2NT ) =
0 for k < k1 and k > k2, then the DWVD definitions are likewise frequency limited:

WA
z (nT, k

2NT
) = 0, for k < k1 and k > k2,

WB
z (nT

2
, k

4NT
) = 0, for k < 2k1 and k > 2k2.

• Instantaneous frequency: The first moment, with respect to frequency, of the two
DWVD definitions are equal to the instantaneous frequency (IF). For the discrete
case, I use the central finite difference of the phase of the analytic signal z̃(nT ) to
define the IF fi(nT ) [66, pp. 462], where

fi(nT ) =
1

4πT

({
arg [z̃((n+ 1)T )]− arg [z̃((n− 1)T )]

}
mod 2π

)
. (2.47)

Thus for a signal of the form z̃(nT ) = A(nT ) e jϕ(nT ) then this discrete IF equates
to

fi(nT ) =
1

2πT

[
ϕ((n+ 1)T )− ϕ((n− 1)T )

2
mod π

]
.

For the DWVD-A and DWVD-B,

fi(nT ) =
1

4πT

arg

N−1∑
k=0

WA(nT, k
2NT

) e j2πk/N

 mod 2π


fi(nT ) =

1

4πT

arg

2N−1∑
k=0

WB(2nT
2
, k

4NT
) e jπk/N

 mod 2π

 .

using the discrete periodic moment of the DWVDs [41] [66, pp. 463].

• Group delay: The first moment, with respect to time, of the DWVD-B is equal to
the group delay (GD). Similar to the discrete IF, I use the central finite difference
of the spectral phase to define the discrete group delay τd(k/2NT ), where

τd(
k

2NT
) = −N

2π

({
arg
[
Z̃1((k + 1) 1

2NT
)
]
− arg

[
Z̃1((k − 1) 1

2NT
)
]}

mod − 2π

)
.

(2.48)
Thus for a signal of the form Z̃(k/2NT ) = a(k) e jθ(k) then this discrete GD equates
to

τ( k
2NT

) = −NT
T

[
θ(k + 1)− θ(k − 1)

2
mod − π

]
.

For the DWVD-B,

τd(
k

2NT
) = −N

2π

arg

2N−1∑
n=0

WB
z1

(nT
2
, 2k

4NT
) e−jπn/N

 mod − 2π
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The DWVD-A does not satisfy this property because the first moment equates to

−N
2π

{
arg
[
Z̃1((k + 1) 1

2NT
)Z̃∗1((k − 1) 1

2NT
)

+ Z̃1((k + 1 +N) 1
2NT

)Z̃∗1((k − 1−N) 1
2NT

)
]

mod − 2π

}
• Moyal’s formula: For the DWVD-B, the inner product of the two DWVDs of
s̃(nT ) and ỹ(nT ) equals the magnitude squared of the inner product of the signal
in the time domain:

2N−1∑
n=0

2N−1∑
k=0

WB
s (nT

2
, k

4NT
)WB

y (nT
2
, k

4NT
) =

1

2N

∣∣∣∣∣∣
N−1∑
m=0

s̃(mT )ỹ∗(mT )

∣∣∣∣∣∣
2

.

The DWVD-A does not satisfy this property because

N−1∑
n=0

N−1∑
k=0

WA
s (nT, k

2NT
)WA

y (nT, k
2NT

) =
1

N

∣∣∣∣∣∣
N/2−1∑
m=0

s̃(2mT )ỹ∗(2mT )

∣∣∣∣∣∣
2

+
1

N

∣∣∣∣∣∣
N/2−1∑
m=0

s̃(2(m+ 1
2
)T )ỹ∗(2(m+ 1

2
)T )

∣∣∣∣∣∣
2

• Signal recovery: We can recover the time-domain signal, up to a constant phase,
from the DWVD-B,

2N−1∑
k=0

WB(nT
2
, k

4NT
) e jπkn/(2N) = z̃(nT )z̃∗(0)

The DWVD-A does not satisfy this property because we only obtain a decimated
version of z̃(nT ); that is,

N−1∑
k=0

WA(nT, k
2NT

) e j2πkn/N = z̃(2nT )z̃∗(0)

2.5.6 Other DWVD Definitions

Thus far, we have looked at two important DWVD definitions: the DWVD-A and the
DWVD-B. I presented these definitions first because almost all other DWVD definitions
are related to the DWVD-A or DWVD-B.

Some of these definitions use different signals types, all derived from x̃(nT ), which I
now define:

• x̃(nT ) is a real-valued signal of length N ;
• z̃(nT ) is an analytic associate of x̃(nT ) also of length N ;
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• x̃pad(nT ) is equal to x̃(nT ) zero padded to length 2N ;
• z̃pad(nT ) is equal to z̃(nT ) zero padded to length 2N .
• x̃pad1(nT/2) is an interpolated, by a factor of two, version of x̃(nT ); it is then zero

padded to length 4N ;
• x̃pad2(nT/2) is an interpolated, by a factor of two, version of x̃pad(nT ) and thus is

length 4N .

In 1980 Claasen and Mecklenbräuker [41] presented the first discrete version of the
WVD for a discrete-time signal x̃pad(nT ). The authors noted that the distribution was
aliased unless either the 2N -point analytic signal z̃pad(nT ) or the 4N -point interpolated
signal x̃pad1(nT/2) was used. This DWVD is the DWVD-A.

Chan, in 1982 [31], realised that this distribution did not use all the available signal
information from x̃pad(nT ). Motivated to create a DWVD that satisfies the properties
of the continuous WVD, Chan proposed a discrete-time WVD WB(nT/2, f)—that is, a
discrete-time, continuous-frequency version of DWVD-B. The author claimed that this
distribution was alias free. Addressing this claim, Claasen and Mecklenbräuker in 1983
[59] related the DWVD-B to the DWVD-A and showed that the DWVD-B was aliased.
Claasen and Mecklenbräuker also proposed three new DWVDs, which they defined as
linear combinations of DWVD-A and DWVD-B using the real-valued signal x̃pad(nT ).
Their aim was to reduce the effects of aliasing by an averaging process.

In 1986 Peyrin and Prost [27] presented the discrete-frequency version of Chan’s
distribution—that is, the DWVD-B. The authors noted that either z̃pad(nT ) or x̃pad1(nT/2)
was required to avoid aliasing.

Nuttall, in 1989, presented a thorough analysis of a DWVD and its Fourier-related
domains [39]; Appendix B is partly based on his analysis method. He applied sampling
approach B to the TIAF and SIAF to form the DWVD using only the real-valued signal.
The DWVD he presented, however, is best expressed as the DWVD-A of x̃pad2(nT/2).

In 1993 Beiker [60] introduced three discrete-time WVD definitions, as linear com-
binations of DWVD-A and DWVD-B, similar in approach to the DWVDs proposed by
Claasen and Mecklenbräuker in [59]. These distributions attempted to reduced aliasing
by averaging the different distributions. In 2005 Chassante-Mottin and Pai [44] presented
a discrete-frequency version of one of the distributions presented by Bekir in [60].

Richman et al. [40] proposed a DWVD using group representation theory in 1998. A
year later O’ Neill et al. [42] proposed the same DWVD derived differently. The proposed
DWVD is described as

WON(nT, k
NT

) =
N−1∑
m=0

x̃((n+ cm)T )x̃((n− cm)T ) e−j2πmk/N (2.49)

where c = (N+1)/2 and x̃(nT ) is the N -point real-valued or complex-valued signal. This
DWVD definition, however, exists for N odd only. As the signal x̃(nT ) is not zero padded
in the time direction this DWVD is always aliased. This definition is not related to either
the DWVD-A or DWVD-B because these definitions assume that N is even. (Note this
does not limit DWVD-A or DWVD-B as we use the 2N -point zero-padded signal to avoid
aliasing.)

Table 2.5 displays the relation between these existing DWVD definitions and the
DWVD-A and DWVD-B. I have omitted the O’Neill definition of (2.49) because, as I
previously mentioned, it is not directly related to either DWVD-A or DWVD-B.
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Table 2.5: DWVD definitions in terms of DWVD-A and DWVD-B

Definition DWVD

CM WA(nT, k
2NT

)

CH WB(nT
2
, f)

CM1 1
2

[
WA(nT, f) +WB((n− 1

2
)T, f)

]
CM2 1

2

[
WA(nT, f) +WB((n+ 1

2
)T, f)

]
CM3 1

2

[
2WA(nT, f) +WB((n− 1

2
)T, f) +WB((n+ 1

2
)T, f)

]
PP WB(nT

2
, k

4NT
)

BEa 1
2

[
WA(nT, f) +WB((n+ 1

2
)T, f)

]
, for n even

1
2

[
2WA(nT, f) +WB((n− 1

2
)T, f) +WB((n+ 1

2
)T, f)

]
, for n odd

NT WA(nT
2
, k

4NT
)

CP 1
2

[
WA(nT, k

2NT
) +WB((n+ 1

2
)T, k

2NT
)
]
, for n even

1
2

[
2WA(nT, k

2NT
) +WB((n− 1

2
)T, 2k

4NT
) +WB((n+ 1

2
)T, 2k

4NT
)
]
, for n odd.

a Bekir proposed 3 DWVD definitions in [60]; I show only one here as an example.
Legend: CM: Claasen and Mecklenbräuker in [41]; CH: Chan in [31]; CM(1–3): Claasen
and Mecklenbräuker in [59]; PP: Peyrin and Prost in [27]; BE: Bekir in [60]; NT: Nuttall
in [39]; CP: Chassande-Mottin and Pai in [44].
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2.5.7 Limitations of Existing Definitions

I consider only pseudo-alias–free definitions in this dissertation. Therefore, I do not
consider the definitions of Claasen and Mecklenbräuker in [59], Bekir [60], O’ Neill et
al. [42], or Chassande-Mottin and Pai [44] because they are aliased. That leaves us with
DWVD-A and DWVD-B which, because they are pseudo-alias–free definitions, contain
only minimal aliasing.

The DWVD-B satisfies all important properties; the DWVD-A does not. The DWVD-
A, as we saw in Section 2.5.2, is periodic in the time and frequency direction inN ; thus, one
period of the DWVD-A containsN×N , orN2, sample points. The DWVD-B, on the other
hand, is periodic in the time and frequency direction in 2N and thus contains 2N × 2N ,
or 4N2 sample points. The consequence of this larger array size is that the DWVD-B
requires four times as much computational load and memory to compute compared with
that required for the DWVD-A.

2.6 Proposed DWVD Definitions

Here I propose two new DWVD definitions that are closely related to DWVD-A and
DWVD-B. To the best of my knowledge, these definitions have not been formally proposed
before.

The definitions are based on the decimation relation between DWVD-B and DWVD-A
in (2.43): the first DWVD, which I call the DWVD-C, is a frequency-decimated version
of DWVD-B [43],

WC(nT
2
, k

2NT
) = WB(nT

2
, 2k

4NT
) (2.50)

and the second DWVD WD, which I call the DWVD-D, is a time-decimated version of
DWVD-B,

WD(nT, k
4NT

) = WB(2nT
2
, k

4NT
). (2.51)

Note that both these definitions contain only 2N2 sample points, compared with the
DWVD-B which contains 4N2 samples and therefore have a computational advantage
over the DWVD-B.

2.6.1 Formulation of Proposed DWVDs

Here I define the proposed DWVDs as functions of the discrete, periodic TIAFs and
SIAFs.

DWVD-C

The DWVD-C WC, in terms of the SIAF K̃C, is

WC(nT
2
, k

2NT
) =

1

2N

2N−1∑
l=0

K̃C( l
NT
, k

2NT
) e jπln/N
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where the SIAF K̃C is

K̃C( l
NT
, k

2NT
) = K̃B( l

NT
, 2k

4NT
)

= Z̃((k + l) 1
2NT

)Z̃∗((k − l) 1
2NT

).

The signal z̃(nT ) is the 2N -point discrete analytic signal of the form (2.38).
In terms of the TIAF,

WC(nT
2
, k

2NT
) =

1

2N

2N−1∑
m=0

K̃C(nT
2
,mT ) e−jπmk/N

where the TIAF K̃C is a folded, in the lag direction, version of the TIAF for DWVD-B,
as

K̃C(nT
2
,mT ) = K̃B(nT

2
,mT ) + K̃B(nT

2
, (m+N)T )

which in terms of z̃(nT ) is

K̃C(nT, 2mT ) = z̃((n+m)T )z̃∗((n−m)T )

+ z̃((n+m+N)T )z̃∗((n−m−N)T )

K̃C((n+ 1
2
)T, 2(m+ 1

2
)T ) = z̃((n+m+ 1)T )z̃∗((n−m)T )

+ z̃((n+m+ 1 +N)T )z̃∗((n−m−N)T ).

Because, from (2.38), z̃(nT ) = 0 for N ≤ n ≤ 2N − 1, we can rewrite the previous
expression as

K̃C(nT, 2mT ) = z̃((n+m)T )z̃∗((n−m)T )

K̃C((n+ 1
2
)T, 2(m+ 1

2
)T ) = z̃((n+m+ 1)T )z̃∗((n−m)T ).

Thus the frequency decimation process in (2.50) results in removing the zeros from the

TIAF K̃B and therefore the DWVD-C does not lose any signal information from DWVD-
B. Consequently, as I show in the next section, DWVD-C satisfies all the desirable prop-
erties that DWVD-B satisfies.

DWVD-D

The DWVD-D WD, in terms of the TIAF K̃D, is

WD(nT, k
4NT

) =
1

2N

2N−1∑
m=0

K̃D(nT, 2mT ) e−jπmk/N

with

K̃D(nT, 2mT ) = K̃B(2nT
2
, 2mT )

= z̃((n+m)T )z̃∗((n−m)T ).

The decimation in time by a factor of two leads to a folding in the Doppler direction in
the SIAF. That is, the complementary folded SIAF K̃D is defined as

K̃D( l
NT
, k

4NT
) = K̃B( l

NT
, k

4NT
) + K̃B((l +N) 1

NT
, k

4NT
)
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which in terms of Z̃(k/2NT ) is

K̃D( 2l
NT
, 2k

4NT
) = Z̃((k + l) 1

2NT
)Z̃∗((k − l) 1

2NT
)

+ Z̃((k + l +N) 1
2NT

)Z̃∗((k − l −N) 1
2NT

)

K̃D( (2l+1)
NT

, 2k+1
4NT

) = Z̃((k + l + 1) 1
2NT

)Z̃∗((k − l) 1
2NT

)

+ Z̃((k + l + 1 +N) 1
2NT

)Z̃∗((k − l −N) 1
2NT

),

Because of the approximation in (2.38), we cannot assume that Z̃(k/2NT ) = 0 for N ≤
k ≤ 2N − 1. Thus, this SIAF folding process for DWVD-D will lose signal information
from DWVD-B and consequently, as I show in the next section, DWVD-D does not satisfy
all desirable properties that DWVD-B satisfies.

In terms of the SIAF,

WD(nT, k
4NT

) =
1

2N

2N−1∑
l=0

K̃D( l
NT
, k

4NT
) e jπln/N .

2.6.2 Properties

Here I list the discrete properties from Section 2.5.5 and show that DWVD-C satisfies all
presented properties whereas DWVD-D fails to satisfy all properties. Assume again that
z̃(nT ), s̃(nT ), and ỹ(nT ) are 2N -point discrete analytic signals of the form in (2.38).

• Quadratic form: DWVD-C has the quadratic form

WC(nT
2
, k

2NT
) =

N−1∑
a=0

N−1∑
b=0

z̃(aT )z̃∗(bT )H(a, b;n, k)

with

H(a, b;n, k) =
1

2N
e−jπk(a−b)/(2N)δ(b− n+ a).

DWVD-D does not satisfy this property because it has the following form:

WA(nT, k
2NT

) =
N−1∑
a=0

N−1∑
b=0

a+b even

z̃(aT )z̃∗(bT )H1(a, b;n, k)

where a and b only exist for a, b both even or both odd.

• Realness: Both the DWVD-C and DWVD-D are real valued.

• Time–frequency covariance: Both DWVD definitions are invariant to time and
frequency shifts. The signal

ỹ(nT ) = s̃((n− n0)T ) e jπk0n/N

produces the following time–frequency shifts:

WC
y (nT

2
, k

2NT
) = WC

s ((n− 2n0)T
2
, (k − k0) 1

2NT
)

WD
y (nT, k

4NT
) = WD

s ((n− n0)T, (k − 2k0) 1
4NT

).
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These time–frequency shifts are circular, rather than linear and the two DWVD
definitions have the following periodicity:

WC((n+ p2N)T
2
, (k + qN) 1

2NT
) = (−1)qnWC(nT

2
, k

2NT
)

WD((n+ pN)T, (k + q2N) 1
4NT

) = (−1)pkWD(nT, k
4NT

)

where p, q are integers.

• Time marginal: We obtain the instantaneous power of the signal, for both DWVD
definitions, by summing over frequency:

N−1∑
k=0

WC(2nT
2
, k

2NT
) = |z̃(nT )|2

2N−1∑
k=0

WD(nT, k
4NT

) = |z̃(nT )|2.

• Frequency marginal: We obtain the spectral energy of the signal, for DWVD-C
only, by summing over time:

2N−1∑
n=0

WC(nT
2
, k

2NT
) =

1

2N

∣∣∣Z̃( k
2NT

)
∣∣∣2 .

DWVD-D does not satisfy this property because

N−1∑
n=0

WD(nT, 2k
4NT

) =
1

4N

[∣∣∣Z̃( k
2NT

)
∣∣∣2 + Z̃((k +N) 1

2NT
)Z̃∗((k −N) 1

2NT
)

]
.

• Time support: If the signal z̃(nT ) is time limited to z̃(nT ) = 0 for n < n1 and
n > n2, then the two DWVD definitions are likewise time limited:

WC(nT
2
, k

2NT
) = 0, for n < 2n1 and n > 2n2,

WD(nT, k
2NT

) = 0, for n < n1 and n > n2.

• Frequency support: If the signal Z̃(k/2NT ) is frequency limited to Z̃(k/2NT ) =
0 for k < k1 and k > k2, then the DWVD definitions are likewise frequency limited:

WC(nT
2
, k

2NT
) = 0, for k < k1 and k > k2,

WD(nT, k
4NT

) = 0, for k < 2k1 and k > 2k2.

• Instantaneous frequency: The discrete periodic moment, with respect to fre-
quency, of the two definitions equal the discrete IF,

1

4πT

arg

N−1∑
k=0

WC(2nT
2
, k

2NT
) e j2πk/N

 mod 2π

 = fi(nT )

1

4πT

arg

2N−1∑
k=0

WD(nT, k
4NT

) e jπk/N

 mod 2π

 = fi(nT ).

where the discrete IF function fi(nT ) is defined in (2.47).
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• Group delay: The discrete periodic moment, with respect to time, of the DWVD-C
equals the discrete GD,

−N
2π

arg

2N−1∑
n=0

WC(nT
2
, k

2NT
) e−jπn/N

 mod − 2π

 = τd(
k

2NT
)

where the discrete GD function τd(k/2NT ) is defined in (2.48).

DWVD-D does not satisfy this property because the first moment equates to

−N
2π

{
arg
[
Z̃((k + 1) 1

2NT
)Z̃∗((k − 1) 1

2NT
)

+ Z̃((k + 1 +N) 1
2NT

)Z̃∗((k − 1−N) 1
2NT

)
]

mod − 2π

}
• Moyal’s formula: For DWVD-C,

2N−1∑
n=0

N−1∑
k=0

WC
s (nT

2
, k

2NT
)WC

y (nT
2
, k

2NT
) =

1

4N

∣∣∣∣∣∣
N−1∑
m=0

s̃(mT )ỹ∗(mT )

∣∣∣∣∣∣
2

.

DWVD-D does not satisfy this property because

N−1∑
n=0

2N−1∑
k=0

WD
s (nT, k

4NT
)WD

y (nT, k
4NT

) =
1

2N

∣∣∣∣∣∣
N/2−1∑
m=0

s̃(2mT )ỹ∗(2mT )

∣∣∣∣∣∣
2

+
1

N

∣∣∣∣∣∣
N/2−1∑
m=0

s̃(2(m+ 1
2
)T )ỹ∗(2(m+ 1

2
)T )

∣∣∣∣∣∣
2

• Signal recovery: For DWVD-C,

2N−1∑
k=0

WC(nT
2
, k

2NT
) e jπkn/N = z̃(nT )z̃∗(0)

DWVD-D does not satisfy this property because

2N−1∑
k=0

WD(nT, k
4NT

) e jπkn/(2N) = z̃(2nT )z̃∗(0)

Table 2.6 summaries these results and also includes the results from Section 2.5.5 for
DWVD-A and DWVD-B. Both DWVD-C and DWVD-B satisfy all desirable properties.
The DWVD-C has a computational advantage however—the 2N ×N DWVD-C requires
only one-half of the computational load and memory required to compute the distribution
compared with that for the 2N × 2N DWVD-B.
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Table 2.6: Discrete properties for the four different DWVD definitions.

Properties DWVD-A DWVD-B DWVD-C DWVD-D

quadratic form X X

realness X X X X

time–frequency covariance X X X X

time marginal X X X X

frequency marginal X X

time support X X X X

frequency support X X X X

instantaneous frequency X X X X

group delay X X

Moyal’s formula X X

signal recovery X X

2.7 Summary and Conclusions

Defining a discrete WVD is not a trivial task. The DWVD should, ideally, be alias
free and retain all the important mathematical properties from the continuous WVD.
Unfortunately, the DWVD will always contain some level of aliasing and the DWVD
may not satisfy all important properties. Thus, an optimal DWVD definition is one with
minimal aliasing, which I called a pseudo-alias–free DWVD, and satisfies all important
properties. Also, because the DWVD is a two-dimensional function, it requires a large
computational load and section of memory to compute and store the distribution; reducing
this required load and memory would make the DWVD a more applicable signal processing
tool.

This chapter presented a thorough analysis of two important DWVD definitions,
DWVD-A and DWVD-B. This analysis included a rigorous derivation which details the
relation between the discrete and continuous domains and a study of discrete properties
for DWVD-A and DWVD-B. After this, I proposed two new DWVD definitions, DWVD-C
and DWVD-D.

All four definitions are pseudo-alias–free DWVDs. Both the proposed DWVD-C the
existing DWVD-B satisfy all important properties whereas the proposed DWVD-D and
existing DWVD-A fail to satisfy all properties. The proposed DWVD-C has 2N2 sample
points, whereas the existing DWVD-B definition has 4N2 sample points. Hence the
DWVD-C requires only one-half of the computational load and memory to compute and
store the DWVD compared with that for the DWVD-B. (Algorithm details are in Chapter
5.) For these three reasons—aliasing, properties, and computational load—I propose the
DWVD-C as an optimal DWVD definition.



Chapter 3

Discrete Analytic Signals

3.1 Introduction

A completely alias-free DWVD requires that the discrete analytic signal satisfies two
constraints. Unfortunately, these two constraints are mutually exclusive. This chapter
presents a new discrete analytic signal that improves on the commonly-used discrete
analytic signal’s approximation of these two constraints—and therefore further reduces
aliasing in the DWVD.

The analytic signal, unlike the real-valued signal, has zero energy at negative fre-
quencies. No signal information is lost when the forming the analytic signal from the
real-valued signal, as the spectrum of the real-valued signal X(f) is conjugate symmet-
rical about the origin; that is, X(−f) = X∗(f). The continuous WVD uses the analytic
signal to avoid the cross-term artefacts—present when the real-valued signal is used—
between the positive and negative frequency components [11]. The analytic signal has
another use—it minimises aliasing in the DWVD. To completely eliminate aliasing from
the DWVD however, the 2N -point discrete analytic signal z(nT ) must satisfy the follow-
ing two constraints:

z(nT ) = 0, N ≤ n ≤ 2N − 1, (3.1)

Z( k
2NT

) = 0, N ≤ k ≤ 2N − 1. (3.2)

These two constraints are mutually exclusive [28]. Any violation of the two constraints,
however, will produce some aliasing in the DWVD. We shall refer to (3.1) as the time-
constraint and (3.2) as the frequency-constraint. (Note that I drop the tilde accent, which
I used in previous chapters to signify a periodic signal, for all discrete signals. Thus, z(nT )
is a discrete, periodic signal with a period of 2NT .)

The commonly-used discrete analytic signal [25], which we shall refer to as the conven-
tional analytic signal, satisfies the time-constraint of (3.1) but not the frequency constraint
of (3.2). The conventional analytic signal is popular because it can be computed simply
using DFTs and it satisfies two important properties—namely, its real part is equal to
the original real-valued signal and that its real and imaginary parts are orthogonal [25].

In this chapter, I propose a new discrete analytic signal to better approximate the
frequency-constraint of (3.2) and therefore reduce aliasing in the DWVD. To assess the
performance of this proposed signal, I compare the proposed and conventional signals’

55



56 Discrete Analytic Signals

approximation of the frequency-constraint in (3.2). I measure this approximation by
quantifying the amount of energy in the ideally-zero region in (3.2). Then, I numerically
compare, using a number of test signals, the amount of aliasing energy in the DWVD of
the two signals. I use the proposed DWVD-C from the previous chapter for this numerical
analysis.

The results show that the DWVD of the proposed analytic signal has approximately
50% less aliasing than that for the DWVD of the conventional analytic signal. This
agrees with my initial result—that the proposed signal, relative to the conventional signal,
better approximates the frequency-constraint of (3.2). Furthermore, the proposed signal
retains the useful attributes of the conventional signal: it satisfies the signal recovery and
orthogonality property and can be simpled computed using DFTs.

3.2 Review

There is no unique definition for a discrete analytic signal. (I use the term discrete
analytic signal to refer to a discrete version of the continuous analytic signal, even though
the discrete signal is not an analytic function of a continuous complex variable [25].)
This section presents different definitions and some important mathematical properties of
discrete analytic signals.

3.2.1 Desirable Properties

The discrete definition should conserve as many properties of the continuous analytic
signal as possible. Marple [25] proposed that a discrete analytic signal should at least
satisfy the recovery and orthogonality properties, which I now describe.

For a discrete analytic signal z(nT ), associated with the N -point real-valued signal
s(nT ), the recovery property is

<[z(nT )
]

= s(nT ), for 0 ≤ n ≤ N − 1 (3.3)

and orthogonality property is

N−1∑
n=0

<[z(nT )
]=[z(nT )

]
= 0. (3.4)

The function <[a] represents the real part of a and =[a] represents the imaginary part of
a. (We shall refer to the discrete analytic signal simply as an analytic signal when the
context is clear.)

3.2.2 Existing Methods

We can classify existing methods for forming analytic signals as either time- or frequency-
domain based methods. First, lets look at two time-domain based methods. One method
uses dual quadrature FIR filters to jointly produce the real and imaginary parts of z(nT ),
as described in [61]. The resultant analytic signal satisfies the orthogonality property but
not the recovery property [25]. The other method forms the analytic signal using the
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relation z(nT ) = s(nT ) + jH{s(nT )}, by approximating the Hilbert transform operation
H{·} with an FIR filter [61]. The resultant analytic signal satisfies the recovery property
but not the orthogonality property.

Next, lets look at two frequency-domain based methods. One method forms the ana-
lytic signal by setting the negative frequency samples to zero [25]. This method, originally
proposed in discrete Hilbert transform form by Č́ıžek [67] and Bonzanigo [68], uses the
DFT and inverse DFT (IDFT) to switch between the time and frequency domains. The
method, which we shall refer to as the Č́ıžek–Bonzanigo method, satisfies both proper-
ties. The other frequency-domain based method [69] is a modified version of the Č́ıžek–
Bonzanigo method; it has the additional step of zeroing an extra single value of the
continuous spectrum in the negative frequency range. The method satisfies the recovery
property but not the orthogonality property.

Comparative to the other methods, the analytic signal produced by the Č́ıžek–Bonzanigo
method is particularly attractive for the following reasons:

• its negative frequency samples are exactly zero;
• it preserves the recovery and orthogonality properties;
• it has a simple implementation [25]—no filter design [61] or selection of an arbitrary

frequency point [69] is necessary.

The commonly-used procedure for obtaining an analytic signal for a DWVD uses the
Č́ıžek–Bonzanigo method. The complete procedure, for the N -point real-valued signal
s(nT ), is as follows [11,48,26,43]:

1. take the DFT of signal s(nT ) to obtain S(k/NT );
2. let

Ẑc(k/NT ) = Ĥc(k/NT )S(k/NT )

where

Ĥc(
k
NT

) =


1, k = 0 and k = N

2
,

2, 1 ≤ k ≤ N
2
− 1,

0, N
2

+ 1 ≤ k ≤ N − 1;

3. take the IDFT of Ẑc(k/NT ) to obtain ẑc(nT ) (of length N);
4. let zc(nT ) equal ẑc(nT ) zero-padded to length 2N ; we call zc(nT ) the conventional

analytic signal.

The last step ensures that zc(nT ) satisfies the time-constraint of (3.1), and therefore not
the frequency-constraint of (3.2). In addition, the Č́ıžek–Bonzanigo method does not zero
the Nyquist frequency term, which further violates the frequency-constraint.

3.3 Proposed Discrete Analytic Signal

While developing algorithms for DTFDs using linear convolution [45], I used two methods
to generate the analytic signal. Both these methods are different to the Č́ıžek–Bonzanigo
method, the difference being the order of applying the analytic generating function and
zero-padding operations. I noticed that the three signals, the conventional analytic signal
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and two from [45], all had different levels of non-zero energy in the ideally-zero regions.
After some theoretical and experimental analysis, I was able to show that one of these
analytic signals better approximates, comparative to the conventional analytic signal, the
frequency-constraint. This signal is the discrete analytic signal I propose here.

The procedure to form the proposed analytic signal zp(nT ) [47,46], from the N -point
real-valued signal s(nT ), is as follows:

1. zero-pad s(nT ) to length 2N ; call this sa(nT );
2. take the DFT of sa(nT ) to obtain Sa(k/2NT );
3. let

Za( k
2NT

) = Ha( k
2NT

)Sa( k
2NT

) (3.5)

where Ha(k/2NT ) is defined as

Ha( k
2NT

) =


1, k = 0 and k = N,

2, 1 ≤ k ≤ N − 1,

0, N + 1 ≤ k ≤ 2N − 1;

(3.6)

4. take the IDFT of Za(k/2NT ) to obtain za(nT );
5. and lastly, force the second half of za(nT ) to zero

zp(nT ) =

 za(nT ), 0 ≤ n ≤ N − 1,

0, N ≤ n ≤ 2N − 1.
(3.7)

Steps 2 to 4 implements the Č́ıžek–Bonzanigo method on the zero-padded signal sa(nT )
[45]. We, therefore, do the zero-padding process before we generate the signal za(nT ),
unlike the procedure for zc(nT ), where we do the zero-padding process last. The last step
ensures that zp(nT ) satisfies the time-constraint of (3.1), although at the expense of the
frequency-constraint of (3.2).

The proposed analytic signal satisfies the recovery and orthogonality properties from
Section 3.2.1. The following explains why. From (3.7), zp(nT ) = za(nT ) for 0 ≤ n ≤ N−1;
from [25], <[za(nT )

]
= s(nT ) for 0 ≤ n ≤ N − 1; therefore

<[zp(nT )
]

= s(nT ), 0 ≤ n ≤ N − 1

and thus the proposed signal satisfies the signal recovery property.

From (3.7),

2N−1∑
n=0

<[zp(nT )
]=[zp(nT )

]
=

N−1∑
n=0

<[za(nT )
]=[za(nT )

]
.

Because za(nT ) satisfies the orthogonality property [25] the proposed analytic signal there-
fore satisfies the orthogonality property.
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3.3.1 Time-Domain Analysis

The two analytic signals are related to the 2N -point real-valued signal sa(nT ) as follows:

zc(nT ) =
[
sa(nT ) ~ hc(nT )

]
ut(nT ) (3.8)

zp(nT ) =
[
sa(nT ) ~ ha(nT )

]
ut(nT ) (3.9)

where ~ represents circular convolution. The time-reversed and time-shifted step function
ut(nT ) is defined as ut(nT ) = u((N − 1 − n)T ), where u(nT ) represents the unit step
function. The impulse function ha(nT ) is the IDFT of the frequency-response function
Ha(k/2NT ), defined in (3.6). We can show that this impulse function equates to

ha(nT ) =

{
δ(n), n even,
j
N

cot ( πn
2N

), n odd,

where δ(n) is the Kronecker delta function. The relation between the two convolving
functions hc(nT ) and ha(nT ) is

hc(nT ) = ha(nT ) + ha((n+N)T ). (3.10)

The presence of ut(nT ) in (3.8) and (3.9) guarantees that zc(nT ) and zp(nT ) both satisfy
the time-constraint.

To highlight the differences between the two analytic signals, we use the N -point
impulse signal s(nT ) = δ(nT ) as an example. As both analytic signals preserve the
real-valued signal, only the imaginary parts for the signals are plotted in Fig. 3.1. As
expected, the imaginary parts of zc(nT ) and zp(nT ) are zero for N ≤ n ≤ 2N − 1,
because the presence of ut(nT ) in (3.8) and (3.9) guarantee that both signals satisfy the
time-constraint. Also, zc(nT ) has a significant negative component around n = N − 1,
whereas zp(nT ) does not. The relation in (3.10) explains this difference.

3.3.2 Frequency-Domain Analysis

In the frequency domain, the two analytic signals as a function of Sa(k/2NT ) are

Zc(
k

2NT
) =

[
Sa( k

2NT
)Hc(

k
2NT

)
]

~ Ut(
k

2NT
) (3.11)

Zp( k
2NT

) =
[
Sa( k

2NT
)Ha( k

2NT
)
]

~ Ut(
k

2NT
). (3.12)

where Sa(k/2NT ) is the DFT of sa(nT ) and Ut(k/2NT ) is the DFT of ut(nT ). The
frequency-response function Hc(k/2NT ) is

Hc(
k

2NT
) =

{
2Ha( k

2NT
), k even,

0, k odd,
(3.13)

with Ha(k/2NT ) defined in (3.6). Because of the convolution with Ut(k/2NT ) in (3.11)
and (3.12), neither Zc(k/2NT ) nor Zp(k/2NT ) satisfy the frequency-constraint.

To illustrate the difference between the two analytic signals’ spectra, we use the
impulse signal once more. These results are displayed in Fig. 3.2. For this signal
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Figure 3.1: Imaginary part of the conventional and proposed analytic signals formed from
the N -point impulse signal, where N = 64.

Sa(k/2NT ) = 1 for all values of k. Neither signal satisfies the frequency-constraint.
The conventional analytic signal’s approximation—comparative to the proposed analytic
signal—of the frequency-constraint, however, is marred by significant oscillation between
the odd and even values of k. The oscillatory nature of Hc(k/2NT ), described in (3.13),
causes this behaviour.

3.4 Performance of Proposed Analytic Signal

We shall now examine the relative performance of the proposed analytic signal at approx-
imating the frequency-constraint in (3.2).

3.4.1 Relative Performance

I use the signals’ spectral energy, at the Nyquist and negative frequencies, as a relative
performance measure. The following proposition describes this measure.

Proposition 1 The spectral energy relation of Zp(k/2NT ) and Zc(k/2NT ), at Nyquist
and negative frequencies, is

2N−1∑
k=N

∣∣∣Zp( k
2NT

)
∣∣∣2 =

1

2

2N−1∑
k=N

∣∣∣Zc(
k

2NT
)
∣∣∣2 +

1

2

(∣∣∣Zp( N
2NT

)
∣∣∣2 − ∣∣∣Ẑ( 0

2NT
)
∣∣∣2 − C) (3.14)

where Ẑ(k/2NT ) = Za(k/2NT )− Zp(k/2NT ), with Za(k/2NT ) defined in (3.5), and

C =

0, N even,

2
∣∣∣Ẑ( N

2NT
)
∣∣∣2 , N odd.
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Figure 3.2: Discrete spectra of the two analytic signals formed from the test impulse signal.

Proof: See Appendix D.
From (3.14), we see that the energy relation between Zp(k/2NT ) and Zc(k/2NT ) is

dependent on the value of Za(k/2NT ) and Zp(k/2NT ) at k = 0 and k = N . If the
second term in the right hand side of (3.14) is small, relative to the first term, then we
can rewrite (3.14) as

2N−1∑
k=N

∣∣∣Zp( k
2NT

)
∣∣∣2 ≈ 1

2

2N−1∑
k=N

∣∣∣Zc(
k

2NT
)
∣∣∣2 . (3.15)

This equation states that the spectral energy for Zp(k/2NT ) is approximately half of the
spectral energy for Zc(k/2NT ) in the specified range. I numerically verify this approxi-
mation in the next subsection using a number of test signals.

3.4.2 Numerical Examples

This section provides examples to confirm the approximation in (3.15). To start, I define
the ratio

η =

∑2N−1
k=N

∣∣∣Zp( k
2NT

)
∣∣∣2∑2N−1

k=N

∣∣∣Zc(
k

2NT
)
∣∣∣2 .

Next, I compute this ratio with six different signal types: an impulse function, a step func-
tion, a sinusoidal signal, a nonlinear frequency modulated signal (NLFM) signal, white
Gaussian noise (WGN), and a real-world signal. This last signal is an electroencephalo-
gram (EEG) recording from a newborn baby. The length N for each signal was arbitrarily
set to even values between 14 and 2048; 1 was added to this value to obtain N odd.

The results, in Table 3.1, for most of the test signals confirm the approximation stated
in (3.15). The exceptions to this include the WGN realisations, where the mean ratio value
is < 0.6, and the sinusoidal signal when N is odd, where the ratio value is also < 0.6.
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Table 3.1: Performance ratio measures comparing
the proposed with the conventional analytic signal.

Signal Type η (N even) η (N odd)

Impulse 0.5078 0.4711

Step 0.4137 0.4136

Sinusoid 0.4595 0.5709

NLFM 0.5055 0.4999

WGNac 0.5883 (0.0976) 0.5319 (0.0983)

EEGb 0.4184 (0.0671) 0.4155 (0.0650)

a 1000 realisations used.
b 1000 epochs used. a,b Values are in the form,
mean (standard deviation).

In addition, I plot, in Fig. 3.3, the spectra of the conventional and proposed analytic
signals using two of the tests signals: the sinusoidal signal with N = 14, and an EEG
epoch with N = 99. Note, from Fig. 3.3 and Fig. 3.2, that the amount of energy in
the negative spectral region is signal dependent, but the ratio η comparing the analytic
signals remains approximately the same.

3.5 Reduced Aliased DWVD

This section compares the performance of the analytic signals by their contribution to
aliasing in the DWVD. I use the DWVD-C definition from Chapter 2 to quantify the
aliasing, although either of the four DWVD definitions from Chapter 2 will produce
the same results because of their close relation in (2.43) and (2.50). We may write the
DWVD-C from the relation in (2.50), for spectral signal Z(k/2NT ), as

WC(nT
2
, k

2NT
) =

e−jπkn/N

4N2

2N−1∑
l=0

Z( l
2NT

)Z∗((2k − l) 1
2NT

) e jπlk/N . (3.16)

3.5.1 Aliasing in the DWVD

To begin, recall how we quantify aliasing in the discrete-time domain. Consider the signal
y(t) which is bandlimited in the frequency-domain to the region |f | < 1/(2T ). We sample
y(t), with sampling period T , to obtain the discrete-time signal y(nT ). This signal y(nT )
is alias free because the periodic copies in the frequency domain for y(nT ) do not overlap.
Now consider another discrete signal y1(nT ), obtained by sampling y(t) with sampling
period T1 = 2T . This discrete signal y1(nT ) is aliased because the periodic copies in the
frequency-domain do overlap. If we know the spectral content for y(t), then we are able
to measure the spectral periodic overlap for y1(nT ), and are therefore able to quantify
the aliasing in y1(nT ). Similarly, to evaluate aliasing in the DWVD, we measure spectral
content in a specific region of the Doppler–frequency domain.
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Figure 3.3: Discrete spectra comparing the two analytic signals for two test signals: (a)
a sinusoidal signal, and (b) an EEG epoch. The inset plots show a portion of the negative
frequency axis with a reduced magnitude range.
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Figure 3.4: Asymmetrical SIAF using discrete analytic signal. Area outside shaded re-
gion represents the ideally-zero Doppler–frequency region. Doppler and frequency axes are
normalised.

The Doppler–frequency function,

K( l
2NT

, k
2NT

) = Z( l
2NT

)Z∗((2k − l) 1
2NT

) (3.17)

from (3.16), is the asymmetrical spectral instantaneous function (SIAF), which differs
from the symmetrical SIAF from Chapter 2. I use the asymmetrical, rather than sym-
metrical, SIAF to simplify calculations.

If we assume that Z(k/2NT ) satisfies the frequency-constraint of (3.2), then the
nonzero content (or energy) in K is contained within a specific region in Fig. 3.4. Any en-
ergy outside this region results in aliasing in the DWVD. We shall refer to this undesirable
phenomenon as spectral-leakage.

As Zc(k/2NT ) does not satisfy the frequency-constraint, its asymmetrical SIAF Kc

contains spectral-leakage. This is true also for the Doppler–frequency function of Zp(k/2NT ),
Kp. I quantify this spectral-leakage by summing the squared error over this region, where
the ideal here is zero. Accordingly, to asses the relative merit of the proposed analytic
signal, I use the ratio squared error measure

µ =
α(Kp)

α(Kc)

where α(K) is a measure of the two-dimensional spectral-leakage for K, defined as

α(K) =
2N−1∑
k=0

2N−1∑
l=N

∣∣∣K( l
2NT

, k
2NT

)
∣∣∣2 +

2N−1∑
k=N

k−N∑
l=0

∣∣∣K( l
2NT

, k
2NT

)
∣∣∣2 +

N∑
k=0

N∑
l=k+1

∣∣∣K( l
2NT

, k
2NT

)
∣∣∣2 .

As the function K is quadratic in Z(k/2NT ), cross-terms between the positive and neg-
atives frequencies will be present in the resultant DWVD. These cross-terms are part of
the spectral-leakage in the Doppler–frequency function, and are therefore incorporated
into the α(K) measure. We consider these cross-terms as aliasing as they would not be
present if the frequency-constraint was satisfied.
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Table 3.2: Ratio measure comparing aliasing in
the DWVD of the proposed analytic signal with the
DWVD of the conventional analytic signal.

Signal Type µ (N even) µ (N odd)

Impulse 0.4671 0.4444

Step 0.4465 0.4463

Sinusoid 0.4583 0.5666

NLFM 0.5055 0.4999

WGNa 0.5863 (0.0986) 0.5327 (0.0996)

EEGb 0.4237 (0.0743) 0.4210 (0.0726)

a 1000 realisations used.
b 1000 epochs used. a,b Values are in the form,
mean (standard deviation).

3.5.2 Numerical Examples

I present the results in Table 3.2 for the same set of example signals used in Section 3.4.2.
The results for µ are not equal to η because the Doppler–frequency function K is quadratic
in the signal Z(k/2NT ). We see from the results, however, that µ approximates η for
all test signals apart from the impulse signal, where µ is less than η. From these re-
sults we infer that the amount of spectral-leakage for Kp is approximately half of the
spectral-leakage for Kc. Hence, the amount of aliasing present in the DWVD of zp(nT ) is
approximately half of the aliasing present in the DWVD of zc(nT ).

To show some examples of this reduced aliasing, I plot the DWVDs of the two analytic
signals using two different signals from the test set—namely, the impulse signal and an
EEG epoch. Fig. 3.5 shows the two DWVDs of the impulse signal. For this signal, the
energy in the DWVD should, ideally, be concentrated around the time sample n = 0, as
δ(nT ) = 0 for n > 0. Fig. 3.5 shows that the DWVD of the proposed analytic signal
better approximates this ideal compared with the DWVD of the conventional analytic
signal.

Fig. 3.6 shows the two DWVDs using the EEG epoch. We previously plotted the
spectra of the two analytic signals for this EEG epoch in Fig. 3.3b. From this frequency-
domain plot, we can see that very little relative energy is present above the normalised
frequency value of 0.25. Thus, we expect little energy in the DWVD above the frequency
value 0.25. Accordingly, from Fig. 3.6, we see that the DWVD of the proposed signal has
less energy in this region compared with that for the DWVD of the conventional analytic
signal.

3.6 Summary and Conclusions

The failure of a discrete analytic signal to satisfy both a finite-time and finite-frequency
bandwidth constraint causes aliasing in the DWVD. I presented, in this chapter, a new
discrete analytic signal which, compared with the conventional discrete analytic signal,
better approximates these constraints and consequently reduces aliasing in the DWVD.
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Figure 3.5: DWVDs of the two analytic signals using the impulse test signal δ(n): absolute
value of the DWVD for the (a) conventional analytic signal, and (b) proposed analytic signal.
Both DWVDs are normalised.
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Figure 3.6: DWVDs of the two analytic signals using an EEG epoch: absolute value of the
DWVD for the (a) conventional analytic signal, and (b) proposed analytic signal. To highlight
the differences between the distributions, (c) and (d) display a portion of the distribution where,
for this particular signal, we expect little energy. The plot in (c) is one-half of the distribution in
(a); likewise, the plot in (d) is one-half of the distribution in (b). Both DWVDs are normalised.
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I showed that the DWVD of the proposed analytic signal has approximately 50% less
aliasing than that for the DWVD of the conventional analytic signal. The proposed
signal retains two useful attributes of the conventional signal: it satisfies the recovery and
orthogonality properties and has a simple implementation using DFTs.
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Chapter 4

Discrete Time–Frequency
Distributions

4.1 Introduction

This chapter proposes a new DTFD definition that incorporates the proposed DWVD-C
from Chapter 2 and the proposed discrete analytic signal from Chapter 3. The purpose
of the proposed DTFD definition is to better approximate, relative to existing DTFD
definitions, the ideal DTFD. An ideal DTFD equals samples of the continuous TFD,
and is therefore alias free, and satisfies all important mathematical properties that the
continuous TFD satisfies.

The continuous TFD of z(t), in terms of the WVD, is

ρz(t, f) = Wz(t, f) ∗
t
∗
f
γ(t, f) (4.1)

where ∗t represents the convolution operation in the time direction, and likewise ∗f rep-
resents convolution in the frequency direction; the γ(t, f) function is called the time–
frequency kernel and is independent of the signal z(t). The purpose of convolving the
WVD with the kernel is to suppress the cross-terms introduced by the WVD [1]. Cross-
terms appear in the WVD for particular signal types, such as multicomponent or nonlinear
frequency modulated signals, because the WVD is quadratic—rather than linear—in the
signal. Possible consequences of convolving the WVD with the time–frequency kernel in
(4.1) include a loss of resolution in the distribution, loss of mathematical properties, or
both.

To form a DTFD, we need to convolve a DWVD with a discrete time–frequency kernel.
Because we define the DTFD solely for the purpose of implementing the continuous TFD
on a computer, we would like the DTFD to closely resemble the continuous TFD. The
DTFD should therefore be free from aliasing and should satisfy the set of important
properties that the TFD satisfies.

The DTFD can have three different types of aliasing: 1) aliasing from the wrap-around
artefacts caused by the circular convolution operation of the discrete WVD (DWVD)
with the discrete kernel [23], 2) aliasing from the discrete analytic signal’s approximation
of two mutually exclusive constraints (2.38), and 3) aliasing from the periodic overlap
in the DWVD (2.36). We shall ignore the first and second types of aliasing because

69
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we can eliminate the first type of aliasing by replacing circular convolution with linear
convolution [23] and, although we never completely eliminate the second type of aliasing,
we can minimise it by using the discrete analytic signal proposed in the previous chapter.
This second type of aliasing is, for most signals, small compared with the aliasing caused
by the periodic overlap in the DWVD, the third type of aliasing—the difference between
(2.36) and (2.39), (2.40). Thus, we shall use the term pseudo-alias–free DTFD to mean
that the DTFD is free from periodic overlap caused by the underlying DWVD.

Different methods exist for defining DTFDs. In this chapter, I consider the widely-used
definitions; namely, the generalised discrete TFD (GDTFD) [32,33,34] and the alias-free
GDTFD (AF-GDTFD) [36, 29]. The GDTFD is a pseudo-alias–free DTFD but fails to
satisfy all properties listed in Section 2.2.1. The AF-GDTFD satisfies all properties,
except the time- and frequency-support properties, but is not always a pseudo-alias–free
DTFD [59,29,58].

To address the limitations of the GDTFD and AF-GDTFD, I propose a new DTFD
definition. This proposed definition is a more general form of the GDTFD, as the GDTFD
is a time-decimated version of the proposed definition. The proposed definition satisfies
all properties, and like the GDTFD, is a pseudo-alias–free definition.

4.2 Review

We now examine two commonly used DTFD definitions which use the DWVD definitions
introduced in Chapter 2. Assume that all definitions use the 2N -point discrete analytic
signal z(nT ) proposed in Chapter 3.

The first, known as the generalised DTFD (GDTFD), uses the DWVD-A and is defined
as [32,33,34,35]

ρA(nT, k
2NT

) = WA(nT, k
2NT

) ~
n

~
k
γA(nT, k

2NT
) (4.2)

for n, k = 0, 1, . . . , N − 1, where the symbol ~ represents the circular convolution opera-
tion. The discrete time–frequency kernel γA is formed in the Doppler–lag domain (ν, τ)
by sampling g(ν, τ) with the discrete grid (ν = l/NT, τ = 2mT ) to form gA(l/NT, 2mT ).
Mapping gA(l/NT, 2mT ) to time–frequency results in the discrete kernel γA(nT, k/2NT ).
As the definition is formed by convolving a pseudo-alias–free DWVD with a time–frequency
kernel, the GDTFD is therefore a pseudo-alias–free definition.

Fig. 4.1 shows the convolution process from (4.2) in the time–lag domain. Convolving
the TIAF with the time–lag kernel results in the smoothed TIAF RA,

RA(nT, 2mT ) = KA(nT, 2mT ) ~
n
GA(nT, 2mT )

where the time–lag kernel GA is the IDFT of the Doppler–lag function gA. Because RA

and KA have the same sample grid, (t = nT, τ = 2mT ), the GDTFD has the same
periodicity as DWVD-A [34]; that is,

ρA(nT, k
2NT

) = ρA((n+ pN)T, (k + qN) 1
2NT

)

where p and q are integers. Hence all the signal information is contained within the
quarter plane time–frequency region 0 ≤ t ≤ NT and 0 ≤ f ≤ 1/(2T ). We shall therefore
call the GDTFD a quarter-plane distribution.
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Figure 4.1: Forming the GDTFD in the time–lag domain. TIAF KA(nT, 2mT ) in (a) is con-
volved, in time, with kernel GA(nT, 2mT ) in (b) to produce the smoothed TIAF RA(nT, 2mT )
in (c) for signal of length 2N = 10. Open circles represent zero values; filled circles represent
the sample points of the function.

GDTFD is related to the continuous WVD and continuous kernel as follows:

ρA(nT, k
2NT

) ≈ W (nT, k
2NT

) ~
n

~
k

[
γ(nT, k

2NT
) + γ(nT, k+N

2NT
)
]

(4.3)

for 0 ≤ n ≤ N − 1 and 0 ≤ k ≤ N − 1. The approximation in this equation is caused by
the approximation in (2.39), which shows that the DWVD-A only approximates samples
of the WVD.

We assume that the time–frequency kernel γ(t, f) is time and frequency bandlimited to
the half-plane region 0 ≤ t ≤ NT and |f | ≤ 1/(2T ). Because the kernel gA is sampled in
the lag direction with a period of 2T , the kernel in (4.3) is folded in the frequency direction.
This folding is necessary to represent the kernel’s frequency extent of |f | ≤ 1/(2T ) in the
0 ≤ f ≤ 1/(2T ) convolution region in (4.3). Thus, the GDTFD approximates a WVD
convolved with a time–frequency kernel and because we do not consider the potential
wrap around effects from the circular convolution operation as aliasing [23], the GDTFD
is a pseudo-alias–free definition.

The second definition is known as the alias-free generalised DTFD (AF-GDTFD) [36]
and is, despite its name, not always alias free [29, 58]. I present the AF-GDTFD as

ρAF(nT, k
2NT

) = F (2nT
2
, 2k

4NT
) (4.4)

for n, k = 0, 1, . . . , 2N − 1 where F is defined in terms of DWVD-B as

F (nT
2
, k

4NT
) = WB(nT

2
, k

4NT
) ~
n

~
k
γAF(nT

2
, k

4NT
) (4.5)

for n, k = 0, 1, . . . , 4N −1. The discrete time–frequency kernel γAF is formed in the time–
lag domain by sampling g(t, τ) with the nonuniform discrete grid (t = nT, τ = 2mT ) and
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(t = (n+ 1/2)T, τ = 2(m+ 1/2)T ) to form GAF(nT/2,mT ). This time–lag kernel has the
same nonuniform sample grid as that for the TIAF KB.

The 4N × 4N DWVD-B in (4.5) encompasses the time–frequency area 0 ≤ t ≤ 2NT
and |f | ≤ 1/(2T )—a larger area than we saw in Section 2.4.5 for the DWVD-B. This
extension process is equivalent to inserting zeros into the discrete time–lag grid for KB

as shown in Fig. 4.2a. Also, KB is periodically extended from 2N to 4N in the time
direction using the periodic relation in [27]. The AF-GDTFD is not always pseudo-alias
free because the 4N × 4N DWVD-B in (4.4) is aliased [27], although the extent of this
aliasing is controlled by the convolution operation with the kernel.

Note that we consider only the even values of n and k from F in (4.4) because the odd
values of both n and k are zero. The time–lag domain provides insight: the convolution
of the two similar shaped sample grids in Fig. 4.2(a) and Fig. 4.2(b) produces a different
sample grid in Fig. 4.2(c) which is zero at odd time samples. A similar process occurs
in the Doppler–frequency domain, which results in zero values at odd discrete-frequency
samples. These two processes combined result in the zero sample points at odd time and
frequency samples from the convolution in (4.5).

The AF-GDTFD, unlike the GDTFD, is periodic over the full time–frequency extent
of the signal, as

ρAF(nT, k
2NT

) = ρAF((n− p2N)T, (k − q2N) 1
2NT

)

where p, q are integers. Thus, the AF-GDTFD requires the full time–frequency region
0 ≤ t ≤ 2N and |f | ≤ 1/2 to represent all the signal information. Therefore, we refer to
the AF-GDTFD as a full-plane distribution.

The AF-GDTFD is related to the WVD and continuous kernel as follows:

F (n
2
, k

4N
) ≈

 1∑
m=0

1∑
l=0

(−1)nm+lkW ((n− l2N)1
2
, (k −m2N) 1

4N
)

~
n

~
k
γ(n

2
, k

4N
) (4.6)

where the AF-GDTFD is related to F in (4.4). This relation is not exact because, as (2.40)
shows, DWVD-B only approximates samples of the WVD. Thus, the AF-GDTFD does
not approximate samples of the WVD convolved with a kernel but rather approximates
samples of the sum of time- and frequency-shifted copies of the WVD convolved with a
kernel.

Another notable DTFD definition was proposed by Nuttall [39]. The definition uses
an interpolated, zero-padded, real-valued signal. The interpolation rate is determined by
the time–frequency bandwidth of the kernel, thus avoiding the wrap around effects from
circular convolution. Because we can rewrite Nuttall’s original definition as the GDTFD
of the interpolated signal, I do not consider it as a separate definition for this chapter.

4.3 Proposed DTFD Definition

The DWVD-C definition from Chapter 2 requires only 2N2 sample points and satisfies
all important mathematical properties. Inspired by this DWVD definition, I attempted
to define an equivalent DTFD definition. The result is a DTFD definition which extends
the DWVD-C to the more general DTFD form.

The proposed DTFD definition is formed as follows [49,51,50]:
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Figure 4.2: Forming the AF-GDTFD in the time–lag domain. TIAF KA
s (nT/2,mT ) in (a)

is convolved, in time, with the kernel GAF(nT/2,mT ) in (b) to produce the smoothed TIAF
RAF
s (nT,mT ) in (c) for signal of length 2N = 10. Open circles represent zero values; filled

circles represent the sample points of the function.

1. form the DWVD-C WC(nT/2, k/2NT ) for n, k = 0, 1, . . . , 2N − 1;

2. form the time–frequency kernel:

(a) sample the Doppler–lag kernel g(ν, τ) with the discrete grid (ν = l/NT, τ =
mT ) for l = 0, 1, . . . , N − 1 and m = 0, 1, . . . , 2N − 1;

(b) periodically extend this kernel gC(l/NT,mT ) in the Doppler l direction from
N to 2N ;

(c) and map gC(l/NT,mT ) to the time–frequency domain to obtain the discrete
kernel γC(nT/2, k/2NT );

3. convolve the 2N × 2N DWVD with the 2N × 2N kernel:

ρC(nT
2
, k

2NT
) =

[
WC(nT

2
, k

2NT
) ~

n
~
k
γC(nT

2
, k

2NT
)

]∣∣∣∣∣
k=0,1,...,N−1

. (4.7)

The DWVD-C and the kernel γC in (4.7) extend over the negative and positive fre-
quency range, but limiting the frequency axis to k = 0, 1, . . . , N − 1 means we take only
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Figure 4.3: Forming the proposed definition in the time–lag domain. Convolving, in time,
the TIAF KC(nT/2,mT ) in (a) with the kernel GC(nT/2,mT ) in (b) produces the smoothed
TIAF RC(nT/2,mT ) in (c) for signal of length 2N = 10. The time–lag kernel GC(nT/2,mT )
is the IDFT of the Doppler–lag kernel gC(l/NT,mT ). Open circles represent zero values; filled
circles represent the sample points of the function.

the positive frequencies. I do this because the proposed definition is a quarter-plane
distribution—that is, the distribution is periodic over the quarter-plane region:

ρC(nT
2
, k

2NT
) = (−1)qnρC((n− p2N)nT

2
, (k − qN) 1

2NT
) (4.8)

where p, q are integers. The definition is a quarter-plane distribution because the smoothed
TIAF RC has the same-shaped nonuniform sample grid as the KC function.

We could rewrite (4.7) to equal a pseudo-alias–free DWVD convolved with a kernel,
for n/2 in terms of n and n+ 1/2, as

ρC(nT, k
2NT

) = WC(nT, k
2NT

) ~
n

~
k

[
γC(nT, k

2NT
) + γC(nT, k+N

2NT
)
]

(4.9)

ρC((n+ 1
2
)T, k

2NT
) = WC((n+ 1

2
)T, k

2NT
) ~

n
~̂
k

[
γC(nT, k

2NT
)− γC(nT, k+N

2NT
)
]
. (4.10)

Thus, the proposed definition is a pseudo-alias–free definition. The symbol ~̂ repre-
sents a modified circular convolution operation that differs from the convolution oper-
ation ~ as follows: for an arbitrary length-N function a(nT ), the modified convolu-
tion operation a(nT ) ~̂ a(nT ) assumes that a(nT ) has the nonstandard periodic relation
a(nT ) = −a((n−N)T ), rather than the usual periodic relation a(nT ) = a((n−N)T ).

Using (4.9) and (4.10), the proposed definition in terms of the WVD and the continuous
kernel is

ρC(nT, k
2NT

) ≈ W (nT, k
2NT

) ~
n

~
k

[
γ(nT, k

2NT
) + γ(nT, k+N

2NT
)
]

ρC((n+ 1
2
)T, k

2NT
) ≈ W ((n+ 1

2
)T, k

2NT
) ~

n
~̂
k

[
γ(nT, k

2NT
)− γ(nT, k+N

2NT
)
]
.

(4.11)
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4.3.1 Properties

Here we examine the set of mathematical properties for the DTFD definitions; these
properties were presented in Chapter 2 for the DWVD. Each property requires a different
constraint on the kernel, some of which are mutually exclusive which means that no
single DTFD is capable of satisfying all properties simultaneously. Therefore, different
distributions in the quadratic TFD class satisfy different properties.

I show that the proposed DTFD definition may satisfy all of these discrete properties,
provided that the kernel satisfies the particular constraint. A DTFD from the GDTFD or
AF-GDTFD, will not, regardless of kernel constraint, satisfy all these properties [35,36,29].
The following lists the properties and the sufficient kernel constraints. Assume that the
signals z(nT ), s(nT ), and y(nT ) are 2N -point discrete analytic signals of the form in
(2.38). The proof for these properties is in [70].

• Quadratic form: the proposed definition has the form

ρC(nT
2
, k

2NT
) =

N−1∑
a=0

N−1∑
b=0

z(aT )z∗(bT )H(a, b;n, k)

where the function H(a, b;n, k) is defined as

H(a, b;n, k) =
2N−1∑
p=0

e−jπp(a−b)/NγC((n− b− a)T
2
, (k − p) 1

2NT
).

Note that the GDTFD does not satisfy this property because it uses the DWVD-A
which, as described in Section 2.5.5, does not satisfy the quadratic form property.

• Real: The proposed DTFD is real-valued if

GC(nT
2
,mT ) =

[
GC(nT

2
, (2N −m)T )

]∗
.

(I use the notation [GC]
∗

to represent the complex conjugate of GC, if indeed GC is
complex.)

• Time–frequency covariance: A time and frequency shift in the time-domain
signal causes the same time and frequency shift in the proposed DTFD. A signal of
the form

y(nT ) = x((n− n0)T ) e jπk0n/N

produces a shift in the DTFD:

ρC
y (nT

2
, k

2NT
) = ρC

x ((n− 2n0)T
2
, (k − k0) 1

2NT
).

Note that the proposed definition has nonstandard periodicity in the frequency
direction, as we detailed in (4.8). This property, which is a necessary property of
the quadratic class [7], is always satisfied.
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• Time marginal: Summing along the frequency direction of the proposed DTFD
yields the instantaneous power of the signal:

2
N−1∑
k=0

ρC(2nT
2
, k

2NT
) =

∣∣z(nT )
∣∣2

if

GC(nT
2
, 0) = δ(n).

• Frequency marginal: Summing along the time direction of the proposed DTFD
yields the energy spectrum:

2N−1∑
n=0

ρC(nT
2
, k

2NT
) =

1

2N

∣∣∣Z( k
2NT

)
∣∣∣2

if

GC( 0
NT
, k

2NT
) = δ(k).

where GC(l/NT, k/2NT ) is the Doppler–frequency kernel.

Note that the GDTFD does not satisfy this property, as

2N−1∑
n=0

ρA(nT, k
2NT

) =
1

4N

[∣∣∣Z( k
2NT

)
∣∣∣2 + Z(k+N

2NT
)Z∗(k−N

2NT
)

]
.

• Time support: The time support of z(nT ) is reflected in the time–frequency
domain; that is, when z(nT ) = 0 for n < n1 and n > n2, then

ρC(nT
2
, k

2NT
) = 0, for n < 2n1 and n > 2n2

over the quarter-plane region n = 0, 1, . . . , 2N − 1 and k = 0, 1, . . . , N − 1, if

GC(nT
2
,mT ) = 0, for |n| > |m|.

Note that the AF-GDTFD does not satisfy this property because it is aliased.

• Frequency support: The frequency support of Z(k/2NT ) is reflected in the time–
frequency domain; that is, when Z(k/2NT ) = 0 for k < k1 and k > k2, then

ρC(nT
2
, k

2NT
) = 0, for k < k1 and k > k2

over the quarter-plane region n = 0, 1, . . . , 2N − 1 and k = 0, 1, . . . , N − 1, if

GC( l
NT
, k

2NT
) = 0, for |k| > |l|.

Note that, again, the AF-GDTFD does not satisfy this property because it is aliased.
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• Instantaneous frequency: The periodic first moment [41] [66, pp. 463] of the
DTFD, with respect to frequency, is equal to the instantaneous frequency f(nT ) of
the signal:

1

4πT

arg

N−1∑
k=0

ρC(2nT
2
, k

2NT
) e j2πk/N

 mod 2π

 = f(nT )

where instantaneous frequency f(nT ), for a signal of the form z(nT ) = A(n) e jϕ(n),
is

f(nT ) =
1

2πT

[
ϕ(n+ 1)− ϕ(n− 1)

2
mod π

]
.

The property requires that
GC(nT

2
, 2T ) = aδ(n)

where a is a positive constant.

• Group delay: The periodic first moment of the DTFD, with respect to time, is
equal to the group delay τ(k/2NT ) of the signal:

−NT
2π

arg

2N−1∑
n=0

ρC(nT
2
, k

2NT
) e−jπn/N

 mod − 2π

 = τ( k
2NT

)

where the group delay function τ(k/2NT ), for a signal of the form Z(k/2NT ) =
a(k) e jθ(k), is

τ( k
2NT

) = −NT
2π

[
θ(k + 1)− θ(k − 1)

2
mod − π

]
.

The property requires that

GC( 1
NT
, k

2NT
) = aδ(k)

where a is a positive constant.

Note that the GDTFD does not satisfy this property, as τ(k/2NT ) equates to

τ( k
2NT

) = −N
2π

{
arg
[
Z((k + 1) 1

2NT
)Z∗((k − 1) 1

2NT
)

+ Z((k + 1 +N) 1
2NT

)Z∗((k − 1−N) 1
2NT

)
]

mod − 2π

}
.

• Moyal’s formula: The inner product in the time–frequency domain equates to the
magnitude squared of the inner product in the time domain—that is,

4N
2N−1∑
n=0

N−1∑
k=0

ρC
s (nT

2
, k

2NT
)ρC
y (nT

2
, k

2NT
) =

∣∣∣∣∣∣
N−1∑
n=0

s(nT )y(nT )

∣∣∣∣∣∣
2



78 Discrete Time–Frequency Distributions

if
2N−1∑
p=0

GC(pT
2
,mT )G∗C((n− p)T

2
,mT ) = δ(n).

Note that the GDTFD does not satisfy this property, as

4N
N−1∑
n=0

N−1∑
k=0

ρA
s (nT, k

2NT
)ρA
y (nT, k

2NT
)

=

∣∣∣∣∣∣
N/2−1∑
n=0

s(2nT )y(2nT )

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
N/2−1∑
n=0

s((2n+ 1)T )y((2n+ 1)T )

∣∣∣∣∣∣
2

.

• Signal recovery: We can recover the time-domain signal, up to a constant phase,
from the DTFD:

2
N−1∑
k=0

ρC(nT
2
, k

4NT
) e jπkn/N = z(nT )z∗(0)

if GC(nT/2,mT ) = δ(n) for all values of m.

Note that the GDTFD does not satisfy this property, as

2
N−1∑
k=0

ρA(nT, k
2NT

) e jπkn/N = z(2nT )z∗(0).

Table 4.1 summarises the properties for the three DTFD definitions, assuming that
the kernel is appropriately constrained for each property. Neither the GDTFD nor the
AF-GDTFD satisfy all properties. Note that the DWVD associated with the AF-GDTFD
only exists when the signal length is odd [29], which never happens as z(nT ) is length 2N .
The proposed definition, however, satisfies all properties and contains a DWVD definition.

Recall that the DWVD-A does not satisfy all properties whereas the DWVD-C does
satisfy all properties, as we saw in Table 4.1. Likewise, the proposed definition, which uses
the DWVD-C, satisfies all properties, and the GDTFD, which uses the DWVD-A, does not
satisfy all properties. Also, the AF-GDTFD, which uses the DWVD-B, does not satisfy
the time- or frequency-support properties because the DWVD-B in (4.4) is defined over
the full plane region 0 ≤ nT ≤ 2NT and |f | ≤ 1/(2T ), whereas the DWVD-B in Chapter
2 is defined over the smaller quarter plane region 0 ≤ t ≤ NT and 0 ≤ f ≤ 1/(2T ).
The full plane region DWVD-B is aliased and will not, therefore, satisfy the time- or
frequency-support properties.

4.3.2 Relation to the GDTFD and AF-GDTFD

The GDTFD is a time-decimated version of the proposed definition,

ρC(2nT
2
, k

2NT
) = ρA(nT, k

2NT
). (4.12)

I obtain this results by substituting γA(nT, k/2NT ) = γC(nT, k/2NT ) + γC(nT, (k +
N)/2NT ) into (4.9) and comparing with the definition of the GDTFD in (4.2). The
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Table 4.1: Discrete properties satisfied by the three DTFD defini-
tions.

properties1 GDTFD AF-GDTFD proposed

quadratic form X X

real X X X

time–frequency covariance X X X

time marginal X X X

frequency marginal X X

time support X X

frequency support X X

instantaneous frequency X X X

group delay X X

Moyal’s formula X X

signal recovery X X
1 assuming that the kernel satisfies the appropriate constraint.

kernel γA(nT, k/2NT ) equals a folded, in frequency, version of γC(nT, k/2NT ) because
the kernel GA(nT, 2mT ) is a decimated, in lag, version of the kernel GC(nT,mT ).

The proposed DTFD definition is, however, considerably different to the AF-GDTFD
because of the following reasons.

• The Doppler–lag region of the AF-GDTFD’s kernel is larger than the region of
the proposed DTFD’s kernel. The AF-GDTFD’s kernel extends over the region
|ν| ≤ 1/T and |m| ≤ 2NT whereas the proposed definition’s kernel extends over the
smaller region |ν| ≤ 1/(2T ) and |m| ≤ NT .

• The time–lag kernels have different discrete grids: the AF-GDTFD’s kernel has a
nonuniform discrete grid, illustrated in Fig. 4.2b whereas the DTFD-C’s kernel has
a uniform discrete gird, illustrated in Fig. 4.3b.

• The AF-GDTFD is a full-plane distribution, periodic over the time–frequency region
0 ≤ t ≤ 2NT and |f | ≤ 1/(2T ), whereas the proposed DTFD is a quarter-plane
distribution, periodic over the smaller region 0 ≤ t ≤ NT and 0 ≤ f ≤ 1/(2T ).

4.3.3 Examples

I present two examples to illustrate the difference between the AF-GDTFD and the pro-
posed definition—specifically to show that AF-GDTFD may be aliased whereas the pro-
posed definition is a pseudo-alias–free definition. I do not show the GDTFD here because
the GDTFD is a time-decimated version of the proposed definition. Each distribution uses
three different Doppler–lag kernel types: a lag-independent kernel, which uses a Hamming
window; a Doppler-independent kernel, which uses a Hanning window; and a separable
kernel, which combines the Hamming and Hanning windows [8].
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I use two test signals, a linear frequency modulated (LFM) signal x1(nT ) and a sinu-
soidal signal with Gaussian amplitude modulation x2(nT ):

x1(nT ) = cos (2π(0.1n+ 0.3n2/128))

x2(nT ) = e−(n−32)2/25 cos (πn/3)

for n = 0, 1, . . . , N − 1, where N = 64 and T = 1. The DTFDs for x1(nT ), using the
three different kernel types, are plotted in Fig. 4.4; likewise, the DTFDs for x2(nT ) are
plotted in Fig. 4.5. I transformed the real-valued signals x1(nT ) and x2(nT ) into the
2N -point complex-valued signals using the proposed method from the previous chapter.
Both signal types produce the same following results.

In a full-plane distribution, such as the AF-GDTFD, the signal energy should be
contained within the bottom right-hand corner quadrant 0 ≤ t ≤ NT and 0 ≤ f ≤ 1/(2T )
because of the zero regions of the analytic signal in (2.38). As the plots show, this is
not so; although, depending on the kernel structure these aliased components may be
suppressed—for example, when the AF-GDTFD uses the separable kernel the aliasing
energy is suppressed. The proposed definition, however, remains alias-free for all kernel
types. I provide an analysis, in Appendix E, which explains why and when the AF-
GDTFD is aliased.

4.4 Discussion

The proposed definition, and the GDTFD, are pseudo-alias–free definitions; the AF-
GDTFD, however, may be aliased. Recall how we define the term pseudo-alias free in
the introduction: I ignore aliasing from the non-ideal discrete analytic signal and aliasing
from the circular convolution operations. As the examples in Section 4.3.3 show, the
aliasing in the AF-GDTFD, which is caused by periodic overlap in the underlying DWVD
in (4.6), is significant compared with the other two sources of aliasing.

This AF-GDTFD, in this chapter, uses the analytic signal to provide a more equal
comparison with the proposed definition, although the authors never specified that the
analytic signal was necessary [36, 29]. If we use the real-valued signal with the AF-
GDTFD, then the periodic overlap occurs over the quarter-plane region, and the aliased
components are within the region of the signal components—I show this aliasing for the
two test signals in Fig. 4.6. Thus, using the real-valued signal may distort the signal
components in the DTFD to a greater extent compared with the distortion from aliasing
when we use the analytic signal. Yet using the real-valued N -point signals results in
a N × N AF-GDTFD, whereas using the analytic signals results in a 2N × 2N AG-
GDTFD. Hence there is a computational advantage to using the AF-GDTFD with the
N -point signal.

We now examine the merits of the proposed definition comparative to the existing
definitions. The advantage of the proposed definition, over the GDTFD, is that the pro-
posed definition satisfies all important properties. The disadvantage is that the proposed
definition contains 2N × N sample points whereas the GDTFD contains N × N sample
points; thus, the proposed definition requires twice the computational load compared with
that for the GDTFD [52].

The proposed definition also has some advantages over the AF-GDTFD:
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Figure 4.4: Comparison of AF-GDTFD and proposed DTFD definition of a LFM signal
x1(nT ): left-hand side column is AF-GDTFD with (a) lag-independent kernel, (c) Doppler-
independent kernel, and (e) separable kernel; right-hand side column is proposed definition with
(b) lag-independent kernel, (d) Doppler-independent kernel, and (f) separable kernel. In the
AF-GDTFD, any energy outside the bottom right quadrant is caused by aliasing.
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Figure 4.5: Comparison of AF-GDTFD and proposed DTFD definition of a Gaussian mod-
ulated sinusoidal signal x2(nT ): left-hand side column is AF-GDTFD with (a) lag-independent
kernel, (c) Doppler-independent kernel, and (e) separable kernel; right-hand side column is
proposed definition with (b) lag-independent kernel, (d) Doppler-independent kernel, and (f)
separable kernel. For the AF-GDTFD, any energy outside the bottom right quadrant is caused
by aliasing.



4.4 Discussion 83

T
IM

E

FREQUENCY

AF-GDTFD

0

NT

-1/(2T) 0 1/(2T)

(a)

T
IM

E

FREQUENCY

AF-GDTFD

0

NT

-1/(2T) 0 1/(2T)

(b)

T
IM

E

FREQUENCY

AF-GDTFD

0

NT

-1/(2T) 0 1/(2T)

(c)

T
IM

E

FREQUENCY

AF-GDTFD

0

NT

-1/(2T) 0 1/(2T)

(d)

T
IM

E

FREQUENCY

AF-GDTFD

0

NT

-1/(2T) 0 1/(2T)

(e)

T
IM

E

FREQUENCY

AF-GDTFD

0

NT

-1/(2T) 0 1/(2T)

(f)

Figure 4.6: AF-GDTFD using a real-valued signal: left-hand side column is the LFM
signal x1(nT ) with (a) lag-independent kernel, (c) Doppler-independent kernel, and (e) separable
kernel; right-hand side column is the Gaussian modulated signal x2(nT ) with (b) lag-independent
kernel, (d) Doppler-independent kernel, and (f) separable kernel.
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• the proposed definition is always pseudo-alias free, regardless of kernel structure;

• the AF-GDTFD contains a DWVD only when the signal length is odd. Thus,
because the signal length 2N is always even, the AF-GDTFD does not contain a
DWVD, although the authors in [29] proposed an approximation to the DWVD.
This pseudo-DWVD does not satisfy important DWVD properties such as Moyal’s
formula and signal recovery [29]. The proposed definition, in contrast, contains a
DWVD which satisfies these properties, regardless of signal-length parity;

• the proposed definition satisfies the time- and frequency-support properties;

• the AF-GDTFD contains 2N × 2N sample points and thus requires approximately
twice the computational load compared with that for the proposed definition, which
contains only 2N ×N sample points.

• the proposed definition has a direct relation with the continuous WVD—it (approx-
imately) equals a WVD convolved with a kernel.

A disadvantage to the proposed definition, comparative to the AF-GDTFD, is that it
does not contain a spectrogram. Although the spectrogram is a member of the (continu-
ous) quadratic TFD class, we would always implement the spectrogram in its original form,
as this is the most computational efficient approach [26]. Note that the proposed definition
can produce a nonnegative distribution which closely approximates the spectrogram [50].
Also, the proposed definition analyses real-valued signals only; the AF-GDTFD, however,
may analyse complex-valued, non-analytic signals. As all measurable real-world signals
are real valued we do not consider this a significant limitation.

4.5 Summary and Conclusions

This chapter presented a new discrete definition of the quadratic TFD class. The chapter
also reviewed the GDTFD and AF-GDTFD to show their limitations and justify the need
for a new definition.

The proposed definition is, comparative to the GDTFD or AF-GDTFD, closer to the
ideal DTFD—it satisfies all desirable properties and is (approximately) equal to samples
of the continuous WVD convolved with a time–frequency kernel. Neither the GDTFD
nor the AF-GDTFD satisfy all desirable properties and only the GDTFD approximates
samples of the continuous WVD convolved with a kernel. Also, the proposed definition—
unlike either the GDTFD or AF-GDTFD—contains a DWVD definition that satisfies
important DWVD properties such as Moyal’s formula and signal recovery. The proposed
definition, like the existing definitions, may be computed on a computer by a simple and
efficient algorithm; the next chapter presents this algorithm.

The proposed DTFD definition should, therefore, appeal to the signal analyst: it
reduces, comparative to the GDTFD and AF-GDTFD, the error in going from the design
stage in the continuous domain to the implementation stage in the discrete domain.



Chapter 5

Efficient Algorithms for Discrete
Time–Frequency Distributions

5.1 Introduction

Computing a DTFD is a large computational task that requires a large amount of com-
puter memory. For example, the DFT algorithm, known as the fast Fourier transform
(FFT), requires typically O(N log2N) multiplications and additions and N sample points
of memory to compute for an N -point signal [38], whereas DTFD algorithms typically
require O(N2 log2N) multiplications and additions and N2 sample points of memory [34].
To compound this computational problem, the proposed DTFD, from the preceding chap-
ter, requires twice as many sample points as an existing popular DTFD definition: the
GDTFD has N2 sample points whereas the proposed DTFD has 2N2 sample points. This
chapter presents algorithms that aim to minimise the computational time and memory
required to compute the proposed DTFD.

The first efficient DTFD algorithms were for the DWVD, or more specifically the
DWVD-A [41,71] and a frequency-decimation version of the DWVD-A [33,72,73]. Later
came algorithms for the general quadratic DTFD class, including algorithms for the
GDTFD [34] and the AF-GDTFD [74]. Other DTFD algorithms include approxima-
tions to the DTFD, most notably the sum-of-spectrograms approach [53,54]. The sum-of-
spectrograms approach constructs the AF-GDTFD from a weighted sum of spectrograms,
and depending on the accuracy required, the computational load can be reduced by ap-
proximating the DTFD by a limited number of spectrograms. Similarly, the Zak transform
can also produce a band limited version of the DTFD approximation [75].

This chapter presents algorithms for computing the proposed DTFD. These algorithms
aim to minimise the computational load and the amount of memory required to compute
the proposed DTFD. I define the computational load as the total number of real-valued
multiplications and additions that the algorithm requires; I define the memory require-
ment as the number of real-valued numbers, for each sample point, that the algorithm
requires to compute and store the DTFD. Reducing the computational load of an algo-
rithm reduces the time taken for the algorithm to compute. For example, if an algorithm
with a computational load of N takes 1 minute to compute, then the same algorithm
with a larger computational load of N2 will take 1 hour to compute. Algorithms also
require computer memory to compute and store the DTFD, which is limited by the fixed
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size of the computer’s memory. This may become an issue for DTFDs, which require
typically N2 sample points, because if the memory is not large enough to store N2 sample
points, then the algorithm will not compute. For example, the FFT of a signal of length
N = 16, 000 requires N sample points of memory which equals 65 kilobytes of computer
memory, assuming that 4 bytes stores one sample point; a DTFD algorithm that requires
N2 sample points, however, uses 1 gigabyte of computer memory.

I present two approaches for the proposed algorithms. The first approach, computes
the proposed DTFD exactly. The aim is to reduce computational load and memory by
using kernel specific algorithms. I group the kernels into four different categories—namely,
nonseparable, separable, Doppler–independent, and lag–independent kernels—and design
an algorithm for each kernel type. The second approach efficiently computes a decimated
DTFD. The decimated DTFD requires less memory than the original, non-decimated
DTFD. Nonetheless, as the decimated DTFD does not represent the full DTFD, the
decimated DTFD may not contain all the signal information.

The algorithms of the first approach compute the exact DTFD efficiently: some DTFD
kernel types require significantly less computational load and memory than other kernel
types. Also, for all kernel types except the nonseparable-kernel DTFD, the size of the
DTFD may be reduced. For example, the nonseparable-kernel DTFD requires NtNf

sample points, where Nt ≤ 2N and Nf ≤ N ; the two values Nf and Nt depend on the
parameters of the kernel. The second set of algorithms compute the decimated DTFD
efficiently by using kernel-specific algorithms to minimise the computational load.

The layout of this chapter is as follows. Section 5.2 presents a review of existing DWVD
and DTFD algorithms; more specifically, algorithms for the DWVD-A and the GDTFD.
These algorithms form the basis for the proposed algorithms. Section 5.3 presents the
first set of algorithms that compute the kernel-specific DTFDs. Section 5.4 presents the
second set of algorithms that compute the kernel-specific decimated DTFDs.

5.2 Review

Here we look at some of the existing efficient algorithms for computing the DWVD-A
and GDTFD [71,34]. To simply notation, I drop the sampling information in the discrete
functions and use sequence notation wherever possible. For example, I use the notation
WA[n, k] to represent WA(nT/2, k/2NT ). Sequence notation often appears in digital
signal processing literature [23,38,76,24].

5.2.1 DWVD-A Algorithms

We can compute the DWVD-A by first forming the time–lag function KA from the discrete
signal z[n] as

KA[n,m] = z[n+m]z∗[n−m] (5.1)

for n,m = 0, 1, . . . , N − 1 and then take the DFT of the KA; that is,

WA[n, k] = DFT
m→k

(
KA[n,m]

)
(5.2)

where the DFT{·} function, with m → k, represents the DFT from the lag domain m
to the frequency domain k. Fig. 5.1 illustrates this simple algorithm. Recall that z[n] is
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Figure 5.1: DWVD-A algorithm.

the discrete analytic signal of the form, z[n] = 0 for N ≤ n ≤ 2N − 1. We can use the
use the fast Fourier transform (FFT) algorithm to implement the DFT operation in the
preceding equation [38]. Thus, computing (5.2) requires N FFT−N operations, using the
notation FFT−N to represent one FFT operation on a signal of length-N .

Boashash and Black [71] proposed an algorithm, initially suggested by Claasen and
Mecklenbräuker [41], for the DWVD-A that requires only N/2 FFT−N operations. To
do so, the algorithm uses one FFT operation to simultaneously compute two DFTs for
two different values of n, which is possible because the DWVD is a real-valued function.
The algorithm works as follows. Let

KA
combined[n′,m] = KA[n1,m] + jKA[n2,m] (5.3)

where n1 and n2 are two successive values in the sequence 0, 1, . . . , N − 1. The DFT of
KA

combined[n,m] yields both the DFT of KA[n1,m] and KA[n2,m] as

DFT
m→k

(
KA[n1,m]

)
=<
{

DFT
m→k

(
KA

combined[n′,m]
)}

DFT
m→k

(
KA[n2,m]

)
==
{

DFT
m→k

(
KA

combined[n′,m]
)}

.

Thus, we may recover the values for WA[n1, k] and WA[n2, k] from the one FFT operation
on KA

combined[n,m]. Iterating this process on all values of n′ results in an algorithm that
requires only N/2 FFT−N operations.

The FFT operation on KA
combined requires a complex-valued FFT algorithm. An alter-

native to the Boashash–Black algorithm is to use an inverse real-valued FFT algorithm
for each time value of n to implement the N length-N DFT operations in (5.2). The
inverse real-valued FFT algorithm requires just less than half of the computational load
of the complex-valued FFT algorithm [77]. Thus, using this FFT algorithm has a slight
advantage over the Boashash–Black method as it does not require the overhead in (5.3).
The disadvantage to using the inverse real-valued FFT algorithm is that the algorithm
is not, to date, available in the many hardware-optimised FFT libraries used by popular
signal processing software packages such as Matlab and Octave [78].

I proposed an alternative to these two methods that uses a forward real-valued FFT
algorithm [43]. The advantage of the method, over the two preceding methods, is that
it requires slightly less computational load than the Boashash–Black method and the
forward real-valued FFT algorithm is available in the Matlab and Octave packages. The
method does, however, require slightly more overhead than the inverse real-valued FFT
method.

This new method exploits the fact that the DFT of a real and even function is a real-
valued function and the DFT of a real and odd function is an imaginary-valued function.
Thus, we let

u[n,m] = <
(
KA[n,m]

)
+ =

(
KA[n,m]

)
(5.4)
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where the real part of KA is an even function in m and imaginary part of KA is an odd
function in m because KA is conjugate symmetrical in m [41]. Thus, we retrieve the
DWVD from

WA[n, k] = <(U [n, k]
)−=(U [n, k]

)
(5.5)

where
U [n, k] = DFT

m→k
(
u[n, k]

)
.

We implement this DFT operation with the real-valued FFT algorithm as u[n,m] is
real valued. Although (5.4) and (5.5) require some additional overhead, this method has
slightly less computational load than the Boashash–Black method because the real-valued
FFT algorithm requires slightly less than half of the computational load compared with
the load for the complex-valued FFT algorithm [43].

Other DWVD algorithms include those proposed by Martin and Flandrin [33], Sun
et al. [72], and Chan [73], all of which compute a frequency-decimated version of the
DWVD-A, WA[n, 2k]. Chan’s method simply folds the time–lag function KA[n,m] in the
lag direction to produce the frequency-decimated DWVD [73]. I shall use this concept in
the decimated-DTFD algorithms in Section 5.4.

5.2.2 GDTFD Algorithm

Boashash and Reilly proposed an algorithm to efficiently compute the GDTFD [34]. The
algorithm exploits the Hermitian property of the KA function. (A Hermitian signal is
conjugate symmetrical.) As we saw in (4.2), we form the GDTFD by convolving the
DWVD-A with the time–frequency kernel γA:

ρA[n, k] = WA[n, k] ~
n

~
k
γA[n, k].

The algorithm, outlined in Fig. 5.2, uses DFTs to implement the convolution operations
as follows:

1. Generate the time–lag function KA[n,m] from z[n] using (5.1).

2. Obtain the smoothed time–lag function RA as follows:

RA[n,m] = IDFT
l→n

{
DFT
n→l

(
KA[n,m]

)
gA[l,m]

}
, 0 ≤ m ≤ N/2

Because RA, like KA, is Hermitian in the lag direction m, we need only compute
the preceding equation for m = 0, 1, . . . , N/2, the positive lag values, rather than
the full lag support which consists of positive and negative lag values. This halves
the number of FFT operations required.

3. Recover the negative lag values from the positive lag values for the smoothed time–
lag function RA from the relation,

RA[n,m] =
(
RA[n,N −m]

)∗
, N/2 + 1 ≤ m ≤ N − 1.

The function RA[n,m] is periodic in the lag m direction in N , thus the lag values
N/2 + 1 ≤ m ≤ N − 1 represent the negative values. The operator (a)∗ represents
the complex conjugate operation of a.
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Figure 5.2: GDTFD algorithm.

4. DFT to the time–frequency domain:

ρA[n, k] = DFT
m→k

(
RA[n,m]

)
using the Boashash–Black method, which we examined in the previous section, by
substituting RA for KA.

The method requires 3N/2 FFT−N operations to compute the N × N GDTFD. The
following proposed algorithms use this GDTFD algorithm as a basis—the algorithms im-
plement the convolution by a multiplication in the Doppler–lag domain and compute only
one-half, in the lag direction, of the smoothed time–lag function. The nonuniform time–
lag discrete grid for the proposed DTFD, however, complicates the following algorithms
somewhat.

5.3 Proposed DTFD Algorithms

The purpose of the following algorithms is to minimise the computational load and mem-
ory required to compute the proposed DTFD. I achieve this by exploiting the Hermitian
property of the time–lag functions and specifying kernel-specific algorithms for different
kernel types.

The following algorithms use two different forms of the discrete time–lag functions KC

and RC because the nonuniform sample grid, represented in Fig. 5.3(a), is not a suitable
form for storage in an array—the time samples n in KC((n/2)T,mT ) are not integer
values. We have two options: either we shift the sample points at KC((n+ 1/2)T, 2(m+
1/2)T ), highlighted as the grey points in Fig. 5.3a, across in the lag direction by T or
we shift these sample points down in the time direction by T/2. We call the time-shifted
function the shifted-down array KC

d [n,m] and the lag-shifted function the shifted-across
array KC

a [n,m]—Fig. 5.3 illustrates this process. Note that both arrays contain the same
sample points but are ordered differently.

5.3.1 DWVD-C Algorithm

The DWVD, as we saw Chapter 2, is an important member of the DTFD class. For this
reason, and because the proposed DTFD algorithm is based on the DWVD-C algorithm,
I first present a computationally efficient DWVD-C algorithm [43].

The DWVD-C algorithm is similar to the DWVD-A algorithm: we first form the
discrete time–lag function, this time the 2N ×N shifted-across array KC

a [n,m], and then
DFT this function to obtain the DWVD. A problem arises, however, for 2n+ 1 values, as
the DFT of KC

a [2n+ 1,m] results in a complex valued DWVD—because KC
a [2n+ 1,m] 6=
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Figure 5.3: Two ways to store the time–lag function KC(nT/2,mT ) as an array. (a)
KC(nT/2,mT ), (b) the shifted-down array KC

d [n,m], and (c) the shifted-across array KC
a [n,m].

The grey circles in (a) represent the sample points shifted either down in (b) or across in (c).

(
KC

a [2n+ 1, N −m]
)∗

. The output of the DFT is modulated to ensure a real-valued

DWVD [27]:

WC[2n+ 1, k] = e−jπk/NDFT
m→k

(
KC

a [2n+ 1,m]
)

(5.6)

unlike for 2n, which is similar to (5.2) as

WC[2n, k] = DFT
m→k

(
KC

a [2n,m]
)
.

Thus, we cannot use the methods in Section 5.2.1 because the DFT in (5.6) produces a
complex-valued output.

To implement (5.6) efficiently, we can do the following: rewrite (5.6) as

WC[2n+ 1, k] =

[
cos2(πk/N)

sin(πk/N)
+ sin(πk/N)

]
=
{

DFT
m→k

(
KC

a [2n+ 1,m]
)}

(5.7)

for k = 1, . . . , N − 1. Next, define the array K̂C
a [n,m] so that

DFT
m→k

(
K̂C

a [n,m]
)

= =
{

DFT
m→k

(
KC

a [n,m]
)}

(5.8)

Thus, because the DFT of K̂C
a [n,m] is real valued, we can reduce the computational load

using the methods discussed in Section 5.2.1.
Note that when k = 0, (5.7) is undefined. For this special case, we simply sum along

the lag values:

WC[2n+ 1, 0] =
N−1∑
m=0

KC
a [2n+ 1,m].

Fig. 5.4 outlines the algorithm, and the following details the complete method.

ALGORITHM-1: DWVD-C

• INPUT: 2N -point analytic signal z[n]
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Figure 5.4: DWVD-C algorithm.

• OUTPUT: 2N ×N DWVD WC[n, k].

1. Let Nh = dN/2e and form the time–lag array KC
a [n,m] from the signal z[n] using

the relation in (2.29),

KC
a [2n,m] = z[n+m]z∗[n−m]

KC
a [2n+ 1,m] = z[n+m+ 1]z∗[n−m]

for n = 0, 1, . . . , N−1 and m = 0, 1, . . . , Nh. The array KC
a [n,m] is the shifted-down

version of the function KC(nT/2,mT ), as illustrated in Fig. 5.3(c). Next, recover
the negative lag values from the positive ones:

KC
a [2n,N −m] =

(
KC

a [2n,m]
)∗
, m = 1, 2, . . . , Nh − 1,

KC
a [2n+ 1, N −m− 1] =

(
KC

a [2n+ 1,m+ 1]
)∗
, m = 0, 1, . . . , Nh − 1,

over all n = 0, 1, . . . , N − 1.

2. Transform to the time–frequency domain for even–odd values of n :

(a) For n even, we get

WC[2n, k] = DFT
m→k

(
KC

a [2n,m]
)

(b) (To make this segment more general so that other algorithms in this chapter
can refer to it, I use the variable Nf to represent number of discrete-frequency
sample points k; that is, k = 0, 1, . . . , Nf −1. For the DWVD-C, Nf = N .) For
n odd, we do the following

i. Let

h[k] =

{
sin(πk/Nf) + cos2(πk/Nf)/ sin(πk/Nf), 1 ≤ k ≤ Nf − 1,

0, k = 0.

ii. Form the function K̂C
a so that it satisfies (5.8),

K̂C
a [2n+ 1, 0] = =

(
KC

a [2n+ 1, 0]
)
,

K̂C
a [2n+ 1,m] =

1

2j

{
KC

a [2n+ 1,m]−
(
KC

a [2n+ 1, Nf −m]
)∗}

,

1 ≤ m ≤ Nfh
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where Nfh = dNf/2e.
iii. Recover the negative lag values from the positive ones:

K̂C
a [2n+ 1,m] =

(
K̂C

a [2n+ 1, Nf −m]
)∗
, Nfh + 1 ≤ m ≤ Nf − 1.

iv. DFT to the time–frequency domain and multiply by constant h[k]

WC[2n+ 1, k] = DFT
m→k

(
K̂C

a [2n+ 1,m]
)
h[k].

v. Do for frequency sample k = 0:

WC[2n+ 1, 0] =

Nf−1∑
m=0

KC
a [2n+ 1,m]

The algorithm requires 2N FFT−N operations to compute the 2N × N DWVD-C.
Because these FFT operations results in a real-valued output, we can use one of the
methods from Section 5.2.1 to implement this FFT which results in a halving of the
computational load. Thus, this algorithm requires only N FFT−N operations. We shall
assume that all the following algorithms do the same: N FFT−N operations to compute
2N FFT−N that produce a real-valued output.

5.3.2 Kernel-Specific DTFD Algorithms

To minimise the computational load when computing the proposed DTFD, I present four
different algorithms for four different Doppler–lag kernel gC[l,m] types [79], namely

• the nonseparable kernel, gC[l,m] = gC[l,m];

• the separable kernel, gC[l,m] = G1[l]g2[m];

• the lag–independent (LI) kernel, gC[l,m] = G1[l];

• the Doppler–independent (DI) kernel, gC[l,m] = g2[m].

The nonseparable kernel type is the most general form of the kernel, as any kernel can
be represented in this form. The algorithm for the nonseparable-kernel DTFD, however,
requires a greater computational load than that for the other three kernel types. We can
thus reduce the computational load for the separable-, LI-, or DI-kernel DTFD compared
with the load for the nonseparable-kernel DTFD.

ALGORITHM-2: Nonseparable-kernel DTFD

We shall start with the nonseparable-kernel DTFD algorithm. This algorithm is based
on the GDTFD algorithm in Section 5.2.2; that is, the computational load is minimised
by forming the smoothed time–lag function RC for positive values of m only. Also, this
algorithm uses the same process as the DWVD-C algorithm in Section 5.3.1 to transform
the discrete time–lag function to the time–frequency domain. The algorithm, outlined in
Fig. 5.5, is as follows [51,52].
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Figure 5.5: Algorithm for the nonseparable-kernel DTFD.

• INPUT:

– 2N -point analytic signal z[n];

– and N × (N + 1) Doppler–lag kernel gC[l,m].

• OUTPUT: 2N ×N DTFD ρC[n, k].

1. Let Nh = dN/2e and form the time–lag function KC
d [n,m] from the signal z[n] for

positive lag values only:

KC
d [n, 2m] = z[n+m]z∗[n−m]

KC
d [n, 2m+ 1] = z[n+m+ 1]z∗[n−m]

for n = 0, 1, . . . , N−1 and m = 0, 1, . . . , Nh. The array KC
d [n,m] is the shifted-down

version of KC(nT/2,mT ), as illustrated in Fig. 5.3(b).

2. DFT KC
d [n,m] to the Doppler–lag domain to obtain the DAF AC[l,m]:

AC[l,m] = DFT
n→l

(
KC

d [n,m]
)

over 0 ≤ m ≤ N − 1.

3. Multiple the DAF with the kernel:

SC[l,m] = AC[l,m]gC[l,m].

4. Go back to the time–lag domain:

RC
d [n,m] = IDFT

l→n

(
SC[l,m]

)
over 0 ≤ m ≤ N − 1.
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Figure 5.6: Algorithm for DI-kernel DTFD.

5. Recover the negative lag values from the positive ones:

RC
d [n, 2N − 2m] =

(
RC

d [n, 2m]
)∗
, m = 1, 2, . . . , Nh − 1,

RC
d [n, 2N − 2m− 1] =

(
RC

d [n, 2m+ 1]
)∗
, m = 0, 1, . . . , Nh − 1.

6. Transform the time–lag function RC
d [n,m] to time–frequency domain to obtain

the DTFD ρC[n, k] using a slightly modified version of the method in Step 2 of
ALGORITHM-1. This segment of the algorithm is in Appendix F.1, with Nf in this
appendix set to Nf = N .

The algorithm requires (3N+1) FFT−N operations to compute the 2N×N proposed
DTFD.

ALGORITHM-3: DI-kernel DTFD

Next, I present the algorithm when the Doppler–lag kernel has the form gC[l,m] = g2[m],
known as the Doppler-independent kernel. The function g2[m] is length P , with P ≤ 2N .
To give the user more control, the algorithm provides an extra parameter, Nf , which sets
the frequency domain sampling to k/2NfT , with

Nf ≥
⌈

(P+1)
2

⌉
, when P < 2N ,

Nf = N, when P = 2N .

Hence the algorithm results in a 2N ×Nf DTFD. Note that no information is lost when
Nf < N because the P -point function g2[m] will zero part of the discrete time–lag function,
as P < 2N . Thus, Nf zero-pads the smoothed time–lag function in the lag direction to
obtain oversampling in the frequency domain, a common practice for spectral analysis
[23]. Even though the following algorithm is similar to the previous nonseparable-kernel
algorithm, we present it here as there are some subtle—but important—differences in
defining the discrete time–lag functions. Fig. 5.6 outlines this algorithm.

• INPUT:

– 2N -point analytic signal z[n];

– P -point window function g2[m], where P ≤ 2N ;
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– and parameter Nf where d(P + 1)/2e ≤ Nf ≤ N when P < 2N or Nf = N
when P = 2N .

• OUTPUT: 2N ×Nf DTFD matrix ρC[n, k].

1. Let Ph = bP/2c, Pq = dPh/2e, and Nfh = dNf/2e. Also, let i = o(Ph), where the
function o(·) is

o(N) =

{
−1, N is even,

0, N is odd.
(5.9)

2. Form the smoothed time–lag function KC
a [n,m] from the signal z[n] and function

g2[m]:

RC
a [2n,m] = z[n+m]z∗[n−m]g2[2m], 0 ≤ m ≤ Pq − 1− i

RC
a [2n+ 1,m] = z[n+m+ 1]z∗[n−m]g2[2m+ 1], 0 ≤ m ≤ Pq − 1

and if zero-padding, which occurs when Nf ≥ d(P + 1)/2e, then

RC
a [2n,m] = 0, (Pq − i) ≤ m ≤ (Nf −Nfh)

RC
a [2n+ 1,m] = 0, Pq ≤ m ≤ (Nf −Nfh − 1)

over all the time values 0 ≤ n ≤ N − 1.

3. Then, recover the negative lag values from the positive ones:

RC
a [2n,Nf −m] =

(
RC

a [2n,m]
)∗
, 1 ≤ m ≤ Nfh − 1

RC
a [2n+ 1, Nf −m− 1] =

(
RC

a [n,m+ 1]
)∗
, 0 ≤ m ≤ Nfh − 1.

4. Transform the time–lag function RC
a [n,m] to time–frequency domain to obtain the

DTFD ρC[n, k] using the method in Step 2 of ALGORITHM-1.

The algorithm requires N FFT−Nf operations to compute the 2N ×Nf DTFD, where
Nf ≤ N .

ALGORITHM-4: LI-kernel DTFD

The next algorithm is for the lag-independent kernel DTFD, where the Doppler–lag kernel
has the form gC[l,m] = G1[l]. Like the DI-kernel DTFD algorithm, we need only compute
the Nt × N DTFD, where Nt is a parameter, specified by the user, to change the time-
domain sample rate. Note that this time-decimation process is not linear in time—
Appendix F explains why. The parameter must satisfy the inequality Nt ≥ 2Q, where Q
is the length of the function G1[l]. Thus, oversampling occurs in the time-direction when
Nt > 2Q.

To form the LI-kernel DTFD, the algorithm simply forms the windowed SIAF in
Doppler–frequency domain and then maps this function to the time–frequency domain.
(The SIAF is the spectral instantaneous autocorrelation function, see Chapter 2 for more
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Figure 5.7: Algorithm for the LI-kernel DTFD.

details.) The general form of the SIAF for the proposed DTFD has, unlike the SIAF of
DWVD-B in Chapter 2, a uniform discrete grid,

KC[l, k] = Z[k + l]Z∗[k − l], 0 ≤ l ≤ N

and is conjugate symmetrical in the Doppler direction about the frequency axis:

KC[2N − l, k] =
(
KC[l, k]

)∗
, 1 ≤ l ≤ N − 1.

The LI kernel g1[n] is length Q, where Q ≤ N . Thus, to multiply the SIAF by the LI
kernel we need to periodically extend the kernel from Q to 2Q. For example, if Q = N ,
then

RC[l, k] = KC[l, k]G1[l], 0 ≤ l ≤ N − 1,

RC[l +N, k] = KC[l +N, k]G1[l], 0 ≤ l ≤ N − 1.

The LI kernel is periodically extended from Q to 2Q because, in the time–lag domain,
the kernel GC(nT/2,mT ) is zero at odd-value time samples GC((2n + 1)T/2,mT ), as
Fig. 4.3(b) shows, which results in a periodic Doppler–frequency function gC(l/NT, k/2NT ) =
gC((l +N)/NT, k/2NT ). Fig. 5.7 outlines the following algorithm.

• INPUT:

– 2N -point analytic signal z[n];

– Q-point window function G1[l], where Q ≤ N ;

– and parameter Nt where 2Q ≤ Nt ≤ 2N .

• OUTPUT: Nt ×N DTFD matrix ρC[n, k].

1. Let Qh = bQ/2c, Nth = bNt/2c, and

Z[k] = DFT
n→k

(
z[n]

)
.

Also, let f = o(Nt) and g = o(Q), where the function o(·) is defined in (5.9).

2. Form the windowed Doppler–frequency function RC[l, k] for the positive Doppler
values 0 ≤ l ≤ Nth and zero pad as necessary:

RC[l, k] = Z[k + l]Z∗[k − l]G1[l], 0 ≤ l ≤ Qh,

RC[l, k] = 0,

(Qh + 1) ≤ l ≤ (Nth −Qh − g − 1)

RC[Nth − l, k] = Z[k +N − l]Z∗[k −N + l]G1[Q− l], 1 ≤ l ≤ Qh + g

RC[l, k] = Z[k +N ]Z∗[k −N ]G1[0], l =Nth

over 0 ≤ k ≤ N − 1.
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3. Recover the negative Doppler values from the positive ones:

RC[Nt − l, k] =
(
RC[l, k]

)∗
, 1 ≤ l ≤ Nth + f

for 0 ≤ k ≤ N − 1.

4. Transform the Doppler–frequency function RC[l, k] to time–frequency domain to
obtain the DTFD ρC[n, k]:

ρC[n, k] = IDFT
l→n

(
RC[l, k]

)
The algorithm requires N/2 FFT−Nt operations to compute the Nt×N DTFD, where

Nt ≤ 2N .

ALGORITHM-5: Separable-kernel DTFD

The last algorithm combines the previous two algorithms for the separable Doppler–lag
kernel gC[l,m] = G1[l]g2[m]. For this algorithm the user can specify two parameters
Nt and Nf to compute the Nt × Nf DTFD. For the Q-point function G1[l] and P -point
function g2[m], when Nt > 2Q, the DTFD is oversampled in the time direction; and when
Nf > d(P + 1)/2e, the DTFD is oversampled in the frequency direction.

The outline of the algorithm is as follows:

1. Form the time–lag function KC
d [n,m]g2[m];

2. DFT to the Doppler–lag to get AC[l,m];

3. modulate for odd m values: AC[l, 2m+ 1] = AC[l, 2m+ 1] e jπl/N ;

4. window in the Doppler direction: SC[l,m] = AC[l,m]G1[l];

5. resize the array SC[l,m] from N × 2Nf to Nth × 2Nf ; we can do this because of the
windowing of the DAF by the Q-point G1[l] in the previous step, where Nth = Nt/2
and Nth ≥ Q;

6. modulate for odd m values: SC[l, 2m+ 1] = SC[l, 2m+ 1] e−jπl/Nth ;

7. DFT back to the time–lag domain to get RC
d [n,m];

8. finally, transform to the time–frequency domain.

The modulation terms in steps 3 and 6 correct for the nonuniform discrete grid of the
TIAF, as discussed in Chapter 2 and 4. WhenNt = 2N and thusNth = N , the modulation
terms in step 3 and 6 cancel and are therefore not needed, which is why they are not
present in the nonseparable-kernel DTFD algorithm. When Nth < N , we therefore need
these modulation terms. In the following nonseparable-kernel DTFD algorithm, I add
these modulation terms in the Doppler function G1[l] so we do not need to modulate and
demodulate for each odd m value, thus saving some computation. Fig. 5.8 outlines the
following algorithm.
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Figure 5.8: Algorithm for seperable-kernel DTFD.

• INPUT:

– 2N -point analytic signal z[n];

– P -point window function g2[m], where P ≤ 2N ;

– Q-point window function G1[l], where Q ≤ N ;

– parameter Nt, where Q ≤ Nt ≤ 2N and Nt is even;

– and parameter Nf , where d(P + 1)/2e ≤ Nf ≤ N when P < 2N or Nf = N
when P = 2N .

• OUTPUT: Nt ×Nf DTFD matrix ρC[n, k].

1. Let Qh = bQ/2c, Ph = bP/2c, Pq = dPh/2e Nth = bNt/2c, and Nfh = dNf/2e. Also,
let i = o(Ph) and g = o(Q), where the function o(·) is defined in (5.5).

2. Modulate G1[l] as follows:

Gm
1 [l] = G1[l] e−jπl/N e jπl/Nth , 0 ≤ l ≤ Qh,

Gm
1 [Q− l] = G1[Q− l] e−jπ(N−l)/N e jπ(Nth−l)/Nth , 1 ≤ l ≤ (Qh + g),

3. Form the windowed time–lag function RC
d [n,m] for the positive lag values:

RC
d [n, 2m] = z[n+m]z∗[n−m]g2[2m], 0 ≤ m ≤ Pq − 1− i,

RC
d [n, 2m+ 1] = z[n+m+ 1]z∗[n−m]g2[2m+ 1], 0 ≤ m ≤ Pq − 1,

over 0 ≤ n ≤ N − 1.
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4. Transform to the Doppler–lag domain:

AC[l,m] = DFT
n→l

(
RC

d [n,m]
)

for 0 ≤ m ≤ Ph.

5. Multiply by the function G1[l] in the Doppler direction and zero pad as necessary:

SC[l, 2m] = AC[l, 2m]G1[l], 0 ≤ l ≤ Qh,

SC[Nth − l, 2m] = AC[N − l, 2m]G1[Q− l], 1 ≤ l ≤ (Qh + g),

SC[l, 2m] = 0, (Qh + 1) ≤ l ≤ (Nth −Qh − g − 1)

for m values 0 ≤ m ≤ Pq − 1− i and then

SC[l, 2m+ 1] = AC[l, 2m+ 1]Gm
1 [l], 0 ≤ l ≤ Qh,

SC[Nth − l, 2m+ 1] = AC[N − l, 2m+ 1]Gm
1 [Q− l], 1 ≤ l ≤ (Qh + g),

SC[l, 2m+ 1] = 0,

(Qh + 1) ≤ l ≤ (Nth −Qh − g − 1)

for the m values 0 ≤ m ≤ Pq − 1.

6. Transform back to the time–lag domain:

RC
d [n,m] = IDFT

l→n

(
SC[l,m]

)
for 0 ≤ m ≤ Ph.

7. Zero-pad the time–lag function in the lag direction as necessary:

RC
d [n, 2m] = 0, (Pq − i) ≤ m ≤ (Nf −Nfh),

RC
d [n, 2m+ 1] = 0, Pq ≤ m ≤ (Nf −Nfh − 1)

over 0 ≤ n ≤ N − 1.

8. Recover the negative lag values from the positive ones:

RC
d [n, 2Nf − 2m] =

(
RC

d [n, 2m]
)∗
, m = 1, 2, . . . , Nfh − 1,

RC
d [n, 2Nf − 2m− 1] =

(
RC

d [n, 2m+ 1]
)∗
, m = 0, 1, . . . , Nfh − 1.

9. Transform the time–lag function RC
d [n,m] to time–frequency domain to obtain the

DTFD ρC[n, k] using the method in Appendix F.1.

The algorithm requires (Ph + 1) FFT−N plus (Ph + 1) FFT−Nth plus Nt/2 FFT−Nf

operations to compute the Nt×Nf DTFD. When all parameter are at their largest values–
that is, when P = 2N , Nf = N , and Nth = N—then the maximum computational
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load for this algorithm is (3N + 2) FFT−N operations, which approximately equals the
computational load for the nonseparable kernel.

The preceding algorithms computes the DTFD by moving through the following do-
mains: time–lag to Doppler–lag to time–lag to time–frequency. We could also compute the
DTFD for this algorithm by moving through the following domains: Doppler–frequency
to Doppler–lag to Doppler–frequency to time–frequency; the algorithm for this proce-
dure is in Appendix F.4. There may be an advantage to having both algorithms for the
separable-kernel DTFD as they both have different computational loads depending on the
values of the Q and P parameters—the next section details why.

5.3.3 Computational Load

Here I compare the computational load for the algorithms. I assess the computational
load as the number of DFT operations that the algorithm requires, as the DFT operations
account for most of computational complexity of the algorithm [34,45]. I assume that the
FFT implements the DFT operations and requires O(cN log2N) real multiplications and
real additions to compute a length-N DFT, where the constant c is a constant specific to
the FFT algorithm and the symbol O() represents the order of computational complexity
[38]. Also, I assume that the variables N,Nf and Nt are of the form 2a, where a is an
integer.

Table 5.1 shows the computational load for each algorithm; here I include the algorithm
for the DWVD-C from Section 5.3.1 to compare with the DTFD algorithms. The LI- and
DI-kernel DTFD algorithms require a smaller computational load compared with the
load for the nonseparable- and separable-kernel DTFD. This difference in load is because
we form the LI- and DI-kernel DTFD from convolving the DWVD with a function in
either time or frequency directions only, whereas for the nonseparable- and separable-
kernel DTFD algorithms we convolve the DWVD with a function in both the time and
frequency directions. Hence although the separable-kernel DTFD algorithm computes the
smallest array DTFD, the Nt ×Nf DTFD, its computational load is greater than the LI-
and DI-kernel DTFD algorithms because of the two dimensional convolution.

Note that the computational load for the proposed DTFD for the nonseparable-kernel
case is twice the load for GDTFD. This is expected as the proposed DTFD contains twice
as many samples points as the GDTFD. The advantage of the proposed kernel-specific
algorithms is that they may, depending on the values of Nt and Nf , have a computational
load and memory requirement less than the load for the general GDTFD algorithm.

Also, I present, in Appendix F.2, an efficient algorithm for the AF-GDTFD to provide
a comparison with the proposed DTFD algorithms. The AF-GDTFD algorithm improves
on the existing AF-GDTFD algorithm [74], see Appendix F.2 for more details. The
computational load for the AF-GDTFD is more than double the load for the proposed
DTFD.

For the separable kernel, the algorithm is this chapter requires the following compu-
tational load:

O(cPhN log2N + cPhNth log2Nth + cNthNf log2Nf)

which is dependant on the value of parameter P , but independent of the parameter Q.
The alternative algorithm for the separable-kernel DTFD in Appendix F.4 requires the
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Existing DTFD Computational DTFD array size
definitions: load

GDTFD O(c3N2/2 log2N) N ×N
AF-GDTFD O(c8N2 log2 2N) 2N × 2N

Proposed DTFD:

DWVD-C O(cN2 log2N) 2N ×N
Nonseparable-kernel DTFD O(c3N2 log2N) 2N ×N

LI-kernel DTFD O[c(N/2)Nt log2Nt] Nt ×N
DI-kernel DTFD O(cNNf log2Nf) 2N ×Nf

Separable-kernel DTFD O(cPhN log2N + cPhNth log2Nth Nt ×Nf

+cNthNf log2Nf)

Table 5.1: Computational load for the kernel-specific algorithms for the GDTFD, AF-
GDTFD, proposed DTFD, and the DWVD-C all using the 2N -point analytic signal. The
algorithms for the GDTFD and AF-GDTFD assume that the kernel is the general nonseparable
kernel. The user-selected parameter Nt ≤ 2N controls the oversampling in the time direction;
likewise Nf ≤ N controls the oversampling in the frequency direction.

following computational load:

O[cQN log2 2N + cQNf log2 2Nf + c(NtNf/2) log2Nt].

where I have assumed that 2Qh = Q. This computational load is dependent on the
parameter Q but independent of the value P . Thus, there may be a way to determine
which of these two algorithms is the most the computational efficient depending on the
values of P and Q; I leave this to future work.

5.4 Decimated Proposed DTFD Algorithms

The algorithms in the previous section minimise the computational load and, when pos-
sible, the memory required to compute the DTFD. These algorithms compute the DTFD
exactly. The emphasis on the next set of algorithms is to reduce the memory required
to compute and store the DTFD, while also minimising the computational load. Unlike
the previous set of algorithms, these new algorithms do not compute the DTFD exactly;
rather, they compute a time- and frequency-decimated version of the DTFD.

To compute a DTFD, using the nonseparable kernel for example, requires an array
containing 2N2 real-valued numbers. For most personal computers, this may present a
problem as N becomes large. The computer may not have the random-access memory
(RAM) required to store 2N2 real-valued points. When there is insufficient RAM, the
algorithms will simply not compute. This differs from an algorithm with a large compu-
tational load, which will always compute even if it takes days, months, or even years. The
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following algorithms present an alternative for large N values as the algorithms require
only 2N2/(ab) real-valued numbers, where a and b are integers selected by the user. I
achieve this memory reduction by computing decimated DTFDs.

The algorithms achieve the decimation in the time–frequency domain by folding in the
Doppler–lag domain. This also reduces the computational load. The following example
explains why. If we wish to compute the N -point spectral signal X[k], from the signal
x[n], at a intervals only—that is, compute the L-point signal X[ak], where L = N/a—we
can fold x[n] as follows:

xfold[n] =
a−1∑
p=0

x[pL+ n], 0 ≤ n ≤ L− 1

and then take the DFT of this L-point signal

X[ak] = DFT
n→k

(
xfold[n]

)
.

Thus, we use a FFT−L to compute the X[ak], rather than the FFT−N required to
compute X[k]. This is the decimation-in-frequency technique used by some FFT algo-
rithms [23]. I apply this basic technique to computing the decimated DTFDs. Thus,
the decimated DTFD will be of the form ρC[an, bk], where a, b are the positive integer
decimation factors, which produces the 2N/a×N/b DTFD array. When possible, the al-
gorithms will present a less restricted decimated grid than the [an, bk] form. For example,
the DWVD-C algorithm presents a decimated DWVD with a grid [an, ki], where a is the
decimation factor and {ki} = k1, k2, . . . , kJ is a user-select subset of discrete-frequency
samples points. The following algorithms explain in more details.

5.4.1 Decimated DWVD-C Algorithm

The following algorithm computes the DWVD WC[an, ki], where a is an integer and
{ki} = k1, k2, . . . , kJ is arbitrary subset of samples points from the set k = 0, 1, . . . , N−1.
Fig. 5.9(a) shows an example of this type of decimation grid. Thus, the user has completely
freedom to select the subset of frequency slices from the DWVD WC[n, k] but is somewhat
more restricted in selecting the time slices from the DWVD WC[n, k].

ALGORITHM-6: Decimated DWVD-C

• INPUT:

– 2N -point analytic signal z[n];

– time-decimation factor a, where a is an integer, a ≥ 1, and L = 2N/a is also
an integer;

– and set of J frequency sample points {ki} = k1, k2, . . . , kJ , where J ≤ N and
each frequency sample ki from the set satisfies the inequality 0 ≤ ki ≤ N − 1.

• OUTPUT: L× J DWVD WC[an, ki].
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Figure 5.9: Examples of the different decimation grids for the DWVD. The circles, both
grey and black, represent sample locations from the 2N ×N DTFD or DWVD, where N = 12;
the black-filled circles represent the sample locations of the decimated DTFD. (a) Decimation
grid [an, ki], where a = 4 and ki is from the set {2, 3, 5, 9}, (b) the decimation grid [ni, bk], where
b = 2 and ni is from the set {1, 2, 9, 10, 11, 18}, and (c) decimation grid [an, bk], where a = 4
and b = 2.
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1. Let Lh = dL/2e, and
Z[k] = DFT

n→k
(
z[n]

)
.

2. Form the Doppler–frequency function for frequency sample point ki

Ktmp[l] = Z[ki + l]Z∗[ki − l], 0 ≤ l ≤ N,

and then recover the negative Doppler values from the positive ones

Ktmp[2N − l] =
(Ktmp[l + 1]

)∗
, 1 ≤ l ≤ N − 1.

3. For the same frequency sample point ki fold the Ktmp

KC[l, ki] =
1

a

a−1∑
p=0

Ktmp[pL+ l], 0 ≤ l ≤ Lh

and then recover the negative Doppler values from the positive ones

KC[L− l, ki] =
(
KC[l + 1]

)∗
, 1 ≤ l ≤ Lh − 1.

4. Iterate the two previous steps over all values in the set {ki} to produce the L × J
Doppler–frequency function KC.

5. Transform the Doppler–frequency function to the time–frequency domain

WC[an, ki] = IDFT
l→n

(
KC[l, ki]

)
for all values in the set {ki}.

The algorithm requires an L × J array and J/2 FFT−L operations to compute the
DWVD. As L < 2N and J < N , the algorithm requires less memory and computational
load to compute compared with that for the 2N ×N DWVD.

ALGORITHM-7: Decimated DWVD-C Again

The next algorithm again computes the decimated DWVD, but this time with a different
decimation grid—the algorithm computes the DWVD WC[ni, bk], where b is an integer
and {ni} is the set n1, n2, . . . , nL where 0 ≤ ni ≤ 2N − 1. An example of this type of
grid is shown in Fig. 5.9(b). Thus, the user has completely freedom to select the subset
of time slices from the DWVD WC[n, k] but is somewhat more restricted in selecting the
frequency slices from the DWVD WC[n, k].

• INPUT:

– 2N -point analytic signal z[n];

– frequency-decimation factor b, where b is an integer, b ≥ 1, and J = N/b is
also an integer;
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– and set of L time sample points {ni} = n1, n2, . . . , nL, where L ≤ 2N and each
frequency sample ni from the set satisfies 0 ≤ ni ≤ 2N − 1.

• OUTPUT: L× J DWVD WC[ni, bk].

1. Let Nh = dN/2e, Jh = dJ/2e.
2. Separate the time sample points n1, n2, . . . , nL into two sets: one set for even values

of ni, {nei} for 0 ≤ i ≤ Le; and one set for odd values of ni, {noi} for 0 ≤ i ≤ Lo.
The value Le is the number of even-valued time sample points and Lo is the number
of odd-valued time sample points where Le + Lo = L.

3. Form the time–lag function for even–valued samples nei and odd-valued samples noi:

Ketmp[m] = z[nei/2 +m]z∗[nei/2−m]

Kotmp[m] = z[(noi − 1)/2 +m+ 1]z∗[(noi − 1)/2−m]

over m = 0, 1, . . . , Nh and then recover the negative lag values from the positive
ones

Ketmp[N −m] =
(
Ketmp[m]

)∗
, 1 ≤ m ≤ Nh − 1,

Kotmp[N −m− 1] =
(
Kotmp[m]

)∗
, 0 ≤ m ≤ Nh − 1.

4. For the same sample points nei and noi, fold the functions Ketmp and Kotmp:

KC
a [nei,m] =

b−1∑
p=0

Ketmp[pJ +m]

KC
a [noi,m] =

b−1∑
p=0

Kotmp[pJ +m]

over values m = 0, 1, . . . , Jh and then recover the negative lag values from the
positive ones

KC
a [nei, J −m] =

(
KC

a [nei,m]
)∗
, 1 ≤ m ≤ Jh − 1,

KC
a [noi, J − 1−m] =

(
KC

a [noi,m]
)∗
, 0 ≤ m ≤ Jh − 1.

5. Iterate the two previous steps over all values in the sets {nei} and {noi} to produce
the L× J time–lag function KC

a .

6. Transform the time–lag function to the time–frequency domain for even–odd values
of ni:

(a) for even ni values {nei} = ne1, ne2, . . . , neLe :

WC[nei, bk] = DFT
k→m

(
KC

a [nei,m]
)
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(b) and odd ni values {noi} = no1, no2, . . . , noLo :

i. Let

h[bk] =

{
sin(πbk/Nf) + cos2(πbk/Nf)/ sin(πbk/Nf), 1 ≤ k ≤ J − 1,

0, k = 0.

ii. Let

K̂C
a [noi, 0] = =

(
KC

a [noi, 0]
)

K̂C
a [noi,m] =

1

2j

{
KC

a [noi,m]−
(
KC

a [noi, J −m]
)∗}

, 1 ≤ m ≤ Jh.

iii. Recover the negative lag values from the positive ones:

K̂C
a [noi,m] =

(
K̂C

a [noi, J −m]
)∗
, Jh + 1 ≤ m ≤ J − 1.

iv. DFT to the time–frequency domain and multiply by constant h[bk]

WC[noi, bk] = DFT
m→k

(
K̂C

a [noi,m]
)
h[bk].

v. Finally, do for frequency sample k = 0:

WC[noi, 0] =
J−1∑
m=0

KC
a [noi,m].

The algorithm requires an L × J array and L/2 FFT−J operations to compute the
DWVD.

5.4.2 Decimated Kernel-Specific DTFD Algorithms

ALGORITHM-8: Decimated Nonseparable-kernel DTFD

The first algorithm is for the general nonseparable-kernel DTFD algorithm. The algorithm
produces a decimated DTFD using grid shown in Fig. 5.9(c); that is, a L × J DTFD
ρC[an, bk], where a and b are integers. To produce this decimated DTFD, the algorithm
folds the Doppler–lag function after the DAF is multiplied by the kernel. Even though
the algorithm folds the N × 2N smoothed DAF, it requires only a L× J array by folding
one lag slice of the smoothed DAF at a time and then iterating over all lag values.

Note that when a is odd, the time–lag function RC
d [n, 2m + 1] will have a time offset

of (a− 1)/2 because RC
d [n, 2m] comes, in time, before RC

d [n, 2m+ 1]. Thus, the temporal
order for the array RC

d [n,m] is RC
d [an, 2m] followed by RC

d [an + (a − 1)/2, 2m + 1]. To
enable the decimation with a nonzero offset for RC

d [an+ (a− 1)/2, 2m+ 1], the algorithm
requires a modulation of the folded function with a complex exponential, which is done
in step 3(d) of the algorithm; this is a more general form of the decimation-in-frequency
technique [38].

• INPUT:
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– 2N -point analytic signal z[n];

– N × 2N Doppler–lag kernel gC[l,m];

– time-decimation factor a; a ≥ 1 and both a and L = 2N/a are integers;

– and frequency-decimation factor b; b ≥ 1 and both b and J = N/b are integers.

• OUTPUT: L× J DTFD matrix ρC[an, bk].

1. Let Nh = dN/2e, Lh = dL/2e, and Jh = dJ/2e.
2. Separate the time sample points {0, a, 2a, . . . , (L − 1)a} into two sets: one set for

even values of ni, {nei} for 0 ≤ i ≤ Le − 1; and one set for odd values of ni, {noi}
for 0 ≤ i ≤ Lo − 1. The value Le is the number of even-valued time sample points
and Lo is the number of odd-valued time sample points where Le + Lo = L. Note
that if a is even, Lo = 0 as odd values do not exist in the set {0, a, 2a, . . . , (L− 1)a}
for a even.

3. Iterate the following over m0 = 0, 1, . . . , Jh:

(a) Fold the Doppler–lag function in the lag direction:

Setmp[l] =
b−1∑
p=0

Aetmp[l, pJ +m0]gC[l, 2(pJ +m0)], 0 ≤ l ≤ N − 1,

where Aetmp is

Aetmp[l,mo] = DFT
n→l

(
z[n+m0]z∗[n−m0]

)
for positive lag values m0 < Nh and

Aetmp[l,mo] = DFT
n→l

(
z∗[n+N −m0]z[n−N +m0]

)
for negative lag values m0 ≥ Nh. Splitting Aetmp up into positive and negative
lag values ensures that the Aetmp is conjugate symmetrical in the lag direction.

(b) If a is odd, then do similar to previous step:

Sotmp[l] =
b−1∑
p=0

Aotmp[l, pJ +m0]gC[l, 2(pJ +m0) + 1], 0 ≤ l ≤ N − 1,

where Aotmp is

Aotmp[l,mo] = DFT
n→l

(
z[n+m0 + 1]z∗[n−m0]

)
for positive lag values m0 < Nh and

Aotmp[l,mo] = DFT
n→l

(
z∗[n+N −m0]z[n−N +m0 + 1]

)
for negative lag values m0 ≥ Nh. These two steps fold the Doppler–lag function
in the lag direction.
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(c) Fold the Doppler–lag function in the Doppler direction:

Setmp[l] =
a′−1∑
q=0

Setmp[qLe + l], 0 ≤ l ≤ Le − 1.

where a′ = a/2 if a is even and a′ = a if a is odd.

(d) If a is odd, then do similar to previous step:

Sotmp[l] =
a−1∑
q=0

Sotmp[qLo + l] e j[2π(pLo+l)(a−1)/2]/N , 0 ≤ l ≤ Lo − 1.

The exponential is this equation is nonzero when a ≥ 3; this is the offset for
folding process—for example, if a = 5 then we need to decimate the time–lag
function starting at RC

d [n+ 2, 2m+ 1] for n = 0, 1, . . . , Lo − 1.

(e) Then, transform to the time–lag domain:

RC
a [nei,m0] = IDFT

l→n
(
Setmp[l]

)
and if a is odd

RC
a [noi,m0] = IDFT

l→n
(
Sotmp[l]

)
.

4. Recover the negative lag values from the positive lag values:

RC
a [nei, J −m] =

(
RC

a [nei,m]
)∗
, 1 ≤ m ≤ Jh − 1

and if a is odd

RC
a [noi, J −m− 1] =

(
RC

a [noi,m]
)∗
, 0 ≤ m ≤ Jh − 1.

5. Iterate the two previous steps over all values of {nei} = ne1, ne2, . . . , neLe and {noi} =
no1, no2, . . . , noLo to produce the L× J time–lag function RC

a .

6. Transform RC
a to the time–frequency domain for even–odd values of ni, using the

method in Step 6 of ALGORITHM-7 by replacing KC
a [n,m] with RC

a [n,m] and
WC[n, k] with ρC[n, k].

The algorithm requires N FFT−N plus Jh FFT−L plus J/2 FFT−J operations to
compute the L× J DTFD.

ALGORITHM-9 for the decimated DI-kernel DTFD and ALGORITHM-10 for the
decimated LI-kernel DTFD are in Appendix F.5. I relegate these algorithms to the
appendix because there is significant overlap with the decimated DWVD-C algorithms
ALGORITHM-6 and ALGORITHM-7, and the following separable-kernel DTFD algo-
rithm.
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ALGORITHM-11: Decimated separable-kernel DTFD

• INPUT:

– 2N -point analytic signal z[n];

– Q-point window function G1[l], with Q ≤ N ;

– parameter Nt, with 2Q ≤ Nt ≤ 2N and Nt is even;

– P -point window function g2[m], where P ≤ 2N ;

– parameter Nf , where d(P + 1)/2e ≤ Nf ≤ N when P < 2N or Nf = N when
P = 2N .

– time-decimation factor a; a ≥ 1 and both a and L = Nt/a are integers;

– and frequency-decimation factor b; b ≥ 1 and both b and J = Nf/b are integers.

• OUTPUT: L× J DTFD matrix ρC[an, bk].

1. Let Nh = dN/2e, Lh = dL/2e, Jh = dJ/2e, Qh = bQ/2c, Nth = bNt/2c, Ph = bP/2c,
Pq = dPh/2e, Nfh = dNf/2e, g = o(Q), and i = o(Ph).

2. Separate the time sample points {0, a, 2a, . . . , (L − 1)a} into two sets: one set for
even values of ni, {nei} for 0 ≤ i ≤ Le − 1; and one set for odd values of ni, {noi}
for 0 ≤ i ≤ Lo − 1. The value Le is the number of even-valued time sample points
and Lo is the number of odd-valued time sample points where Le + Lo = L. Note
that if a is even Lo = 0 as odd values do not exist in the set {0, a, 2a, . . . , (L− 1)a}
when a is even.

3. Modulate G1[l] as follows:

Gm
1 [l] = G1[l] e−jπl/N e jπl/Nth , 0 ≤ l ≤ Qh,

Gm
1 [Q− l] = G1[Q− l] e−jπ(N−l)/N e jπ(Nth−l)/Nth , 1 ≤ l ≤ (Qh + g).

4. Iterate the following over of m0 = 0, 1, . . . , Jh:

(a) Fold the Doppler–lag function in the lag direction:

Retmp[n] =
b−1∑
p=0

Ketmp[n, pJ +mo]g2[2(pJ +m0)]

for 0 ≤ n ≤ N − 1, where Ketmp[n] is defined as

Ketmp[n,m0] = z[n+m0 + 1]z∗[n−m0], if m0 < Nh,

Ketmp[n,m0] = z∗[n+N −m0]z[n−N +m0 + 1], if m0 ≥ Nh;

then DFT to the Doppler–lag domain:

Aetmp[l] = DFT
n→l

(
Retmp[n]

)
and finally multiply by the function G1[l]:

Setmp[l] = Aetmp[l]G1[l], 0 ≤ l ≤ Qh

Setmp[Nth − l] = Aetmp[N − l]G1[Q− l], 0 ≤ l ≤ Qh + g.



110 DTFD Algorithms

(b) If a is odd, then do similar to the previous step: fold the Doppler–lag function
in the lag direction:

Rotmp[n] =
b−1∑
p=0

Kotmp[n, pJ +m0]g2[2(pJ +m0) + 1]

where Ketmp[n] is defined as

Kotmp[n,m0] = z[n+m0 + 1]z∗[n−m0], if m0 < Nh,

Kotmp[n,m0] = z∗[n+N −m0]z[n−N +m0 + 1], if m0 ≥ Nh;

for 0 ≤ n ≤ N − 1; then DFT to the Doppler–lag domain:

Aotmp[l] = DFT
n→l

(
Rotmp[n]

)
.

Finally, multiply by the function Gm
1 [l]:

Sotmp[l] = Aotmp[l]Gm
1 [l], 0 ≤ l ≤ Qh

Sotmp[Nth − l] = Aotmp[N − l]Gm
1 [Q− l], 0 ≤ l ≤ Qh + g.

(c) Fold the Doppler–lag function in the Doppler direction:

Setmp[l] =
a′−1∑
q=0

Setmp[qLe + l], 0 ≤ l ≤ Le − 1,

where a′ = a/2 if a is even and a′ = a if a is odd; then IDFT back to the
time–lag domain:

RC
a [nei,m0] = IDFT

l→n
(
Setmp[l]

)
.

(d) If a is odd, then again do similar to the previous step: fold the Doppler–lag
function in the Doppler direction:

Sotmp[l] =
a−1∑
q=0

Sotmp[qLo + l] ej[2π(pLo+l)(a−1)/2]/N , 0 ≤ l ≤ Lo − 1,

then IDFT back to the time–lag domain:

RC
a [noi,m0] = IDFT

l→n
(
Sotmp[l]

)
.

5. Recover the negative lag values from the positive lag values:

RC[nei, J −m] =
(
RC[nei,m]

)∗
, 1 ≤ m ≤ Jh − 1

and if a is odd

RC[noi, J −m− 1] =
(
RC[noi,m]

)∗
, 0 ≤ m ≤ Jh − 1.
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6. Iterate the two previous steps over the sets {nei} and {noi} to produce the L × J
time–lag function RC

a .

7. Transform RC
a to the time–frequency domain for even–odd values of ni, using the

method in Step 6 of ALGORITHM-7 by replacing KC
a [n,m] with RC

a [n,m] and
WC[n, k] with ρC[n, k].

The algorithm requires 2Jh FFT−N plus 2Jh FFT−L plus (LJ/2) FFT−J operations
to compute the L× J DTFD.

5.4.3 Computational Load and Memory

As with the algorithms in Section 5.3, this part concludes with a summary of the compu-
tational load for the decimated DTFD algorithms. Table 5.2 contains the computational
load for each L×J DTFD. Because the dimensions L and J differ for each algorithm, the
table details the algorithm-specific definition of these parameters. Also, the table shows
the different decimation grids for the each algorithm.

All these algorithms, expect the nonseparable-kernel DTFD algorithm, compute the
decimated DTFD efficiently as the computational load is independent of the N2 log2N
term. The computational load for the nonseparable-kernel DTFD algorithm contains
this term because we must compute the entire DAF, which requires a computational
load of N2 log2N , before we begin the folding process. All is not lost however, as the
nonseparable-kernel DTFD, like the other algorithms in this section, computes a deci-
mated DTFD and therefore should not cause memory problems.

The LI-kernel DTFD computes a decimated version of the Nt × N DTFD; the DI-
kernel DTFD computes a decimated version of the N×Nf DTFD; and the separable-kernel
DTFD computes a decimated version of the Nt×Nf DTFD. In contrast, the algorithms for
the DWVD and nonseparable-kernel DTFD compute a decimated version of the 2N ×N
DTFD. Thus, the computational load and memory required to compute the LI-, DI-, and
separable-kernel DTFD decrease as Nt ≤ 2N and Nf ≤ N decrease.

5.5 Summary and Conclusions

This chapter addressed one of the major limitations of the DTFD as a signal analysis
tool: a large computational load and memory is required to compute the DTFD. I pre-
sented two approaches for efficiently computing the proposed DTFD from Chapter 4.
Both approaches included a set of kernel-specific DTFD algorithms for the DWVD, the
nonseparable-kernel DTFD, the separable-kernel DTFD, the LI-kernel DTFD, and the
DI-kernel DTFD.

The first approach computes the DTFD exactly. For this set of algorithms, the
nonseparable-kernel DTFD and DWVD algorithms require a fixed computational load, de-
pending only on signal length N . The three other algorithms—the LI-, DI- and separable-
kernel DTFD algorithms—may have a variable computational load as they are dependent
on the user-selected variables Nt and Nf , where Nt ≤ 2N and Nf ≤ N . The variable Nt

sets the amount of oversampling in the time direction of the DTFD. As Nt ≥ 2Q, where
Q is the length of the time smoothing kernel g1[n], no signal information or properties
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Computational Decimation Grid
complexity

DWVDa O(cLJh log2 J) WC[ni, bk]

DWVDb O(cLJh log2 L) WC[an, ki]

Nonsep.-kernel DTFDc O(c N2 log2N + cJhL log2 L+ cJhL log2 J) ρC[an, bk]

LI-kernel DTFDd O(cLJh log2 L) ρC[an, ki]

DI-kernel DTFDe O(cLJh log2 J) ρC[ni, bk]

Sep.-kernel DTFDf O(cJN log2N + cJhL log2 L+ cJhL log2 J) ρC[an, bk]

Table 5.2: Computational load to compute the decimated L× J DTFD and DWVD-C. The
different algorithms have different decimation grids for the DTFD. These results assume that
Jh = J/2.

a J = N/b, where a is the decimation integer; L is the number of elements in the set
{ni};

b L = 2N/a, where a is the decimation integer; J is the number of elements in the set
{ki};

c L = 2N/a and J = N/b, where a, b are the decimation integers;
d L = Nt/a, where a is the decimation integer; J is the number of elements in the set
{ki};

e J = Nf/b, where b is the decimation integer; L is the number of elements in the set
{ni};

f L = Nt/a and J = Nf/b, where a, b are the decimation integers.

of the DTFD is lost for the Nt × N DTFD. The same is true for Nf , where Nf sets the
amount of oversampling in the frequency direction of the DTFD. Thus, the memory for
computing and storing the DTFD for these three algorithms may be reduced from 2N2

sample points to either NtN , 2NNf , or NtNf sample points, depending on the kernel type.
The second set of algorithms compute the DTFD efficiently with a restricted memory

size. This set of algorithms computes, with a minimal computational load, a time- and
frequency-decimated version of the DTFD; thus, these methods do not compute the DTFD
exactly and signal information or properties of the DTFD may be lost. We can use these
algorithms to compute the DTFD when N is large, as the algorithms compute an L× J
DTFD, where L < 2N and J < N , thus requiring less memory than the 2N ×N DTFD.



Chapter 6

Neonatal EEG Seizure Detection

6.1 Introduction

This chapter gives an example of how we may use the DTFD methods from previous
chapters to solve a real-life problem. The problem is how to effectively detect seizure
events in newborn electroencephalographic data. Approximately one in every 200 newborn
babies have some form of seizure episodes [80]. Seizures are the most common indication
of neurological disease for the newborn. Rapid diagnosis is therefore important so that
the clinician may treat the neurological problem causing the seizure activity promptly
and properly [81].

Monitoring newborn brain activity through the electroencephalogram (EEG)—a mea-
surement of the electrical activity of the brain—is the most common approach for iden-
tifying seizure activity and is sometimes the only method of identification available to
the clinician [82, 83, 84, 85]. Detecting seizure activity in adult EEG involves identifying
spikes and repetitive sharp waveforms [86]. These seizure signals are prominently dis-
played against a background of low amplitude random activity, thus a distinct separation
exists between the seizure and nonseizure signal morphology.

Identifying seizure in the newborn is, however, more complicated than in adults due
to a number of factors. First, because the newborn’s immature brain continues to form,
healthy newborn EEG displays extra electrical activity, which can mimic seizure activity
[87,88]. Second, visual symptoms that clearly characterise seizure for the adult—such as
muscle spasms, rapid eye movement, and drooling—are much more subtle in newborns
due to the underdeveloped central nervous system. Also, some of these indicators are
natural behaviour traits common to all newborns [82]. And lastly, the physical activity
of newborns in the intensive care environment is often subdued by medication [89, 90].
Hence detecting seizure from either clinical or EEG indicators is a difficult task and may
lead to misdiagnosis, which can have acute physical repercussions for the patient.

The current practice of identifying electrical seizures in the neonatal EEG is based on
the electroencephalographer’s interpretation of the time-domain EEG signal. Clinicians
and researchers have described various types of EEG seizure morphologies [81, 91, 86, 87,
88,82,83,84,89,85]. The clinician visually searches the EEG for these seizure waveforms.
In an effort to eliminate this time consuming and subjective process [92], researchers
have proposed signal processing methods to automate the EEG seizure detection process
[93,94,95,96,97,98,55,99,56].

113
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Existing automated seizure detection methods, however, are not suitable for use in the
clinical environment because of their poor performance [100,101]. Thus, there is a need to
improve on the existing methods. Most methods assume that the EEG signal is stationary
or locally stationary [93,94,95,96,102] even though there is evidence that the EEG signal
is nonstationary [103,104]. Of the methods that account for the nonstationarity of EEG,
the time–frequency matched filter method [103] and the method by Navakatikyan [99]
showed the most promise. I present a new method based on these two existing methods.
The existing time–frequency matched filter detects seizure with a large probability of
error because the method requires a large predefined template set [56]; the Navakatikyan
method requires over 40 parameters. The proposed method, conversely, does not require
a predefined template set, nor does it require an excessive amount of parameters.

The chapter layout is as follows. Section 6.2 presents a literature review on automated
newborn EEG seizure detection methods. Section 6.3 presents a detailed review of the
existing time–frequency matched filter method and then presents the proposed method.
I test the proposed method using simulated and real EEG data. The initial results are
promising, although the method needs to be compared with other existing detection meth-
ods. The proposed method is an example of how DTFDs are used in real-world problems;
more specifically, the proposed method is an example of how the proposed analytic signal
in Chapter 3, the proposed DTFD in Chapter 4, and the proposed algorithms in Chapter 5
may be used to solve a real-world problem.

6.2 Review

Most of the work on automating the process of newborn EEG seizure detection has been
based on identifying some form of periodicity in the EEG that is distinguishable from
the background EEG [82,83]. (Background is any EEG event that is not seizure.) Other
methods assume that the seizure event is a deterministic signal whereas the background
is a stochastic one. These methods try to detect a deterministic signal from the random
signal.

The following is a summary of some automatic seizure detection techniques. I group
the methods into two groups—namely, stationary and nonstationary methods. Through-
out the chapter I use two values to assess the performance of the detection methods: the
true detection rate (TDR)—the number of true detections divided by the number of EEG
seizure epochs—and the false detection rate (FDR)—the number of incorrect detections
divided by the total number of EEG nonseizure epochs.

6.2.1 Stationary Methods

We can subdivide the stationary seizure detection methods into two categories: non-
parametric and parametric. Roessgen et al. [95] proposed a linear parametric model
of background and seizure EEG. This parametric method estimates eleven model pa-
rameters from the EEG and then produces a test statistic to classify the EEG epoch
as either a seizure or nonseizure event. The method is limited—parameter estimation
is computationally expense, there is no guarantee of convergence to a global minimum,
and results indicate poor performance [105]. The rest of the methods reviewed here are
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non-parametric methods.
Gotman [90] proposed a method that uses spectral analysis to detect seizure by detect-

ing periodicity in the EEG. The method compares the spectrum of a 10-second epoch of
EEG with a 20-second epoch that occurred at a lag of 60 seconds. The method measures
and compares the power in the band around the spectral peak for the two segments of
EEG and thus makes a decision about the periodicity of the EEG signal to classify seizure
or nonseizure events.

Liu et al. [94] proposed a time domain approach which measures the degree of peri-
odicity in the EEG by taking the autocorrelations of 5 segments in a 30-second duration
epoch. Each segment receives a periodicity score from the autocorrelation functions and
the scores are then combined for the epoch. The epoch score is then compared to a
threshold to declare seizure or nonseizure.

Celka et al. [96] proposed a method that uses a singular spectrum approach. The
method first preprocesses the data using a nonlinear whitening filter that spreads the
spectrum of the background activity while retaining the periodic features of the seizure.
The singular spectrum approach projects the EEG into signal subspaces which can deter-
mine whether seizure is present or not. Celka et al. acknowledged that the performance
of their method is limited by the degree of nonstationarity of the newborn EEG.

Faul et al. [100] assessed the three preceding methods—the Gotman, Liu, and Celka
methods—and concluded that all three methods perform poorly and should not be used
in a clinical setting.

Karayiannis et al. proposed an EEG seizure detection method [102] based on detect-
ing pseudo-sinusoidal EEG activity. The method uses the spectral rule based approach
proposed by Gotman et al. [90] in which the thresholds are decreased to increase the
TDR. This also has the unwanted side effect of increasing the FDR. The authors then
used neural networks for classification to reduce the FDR, although the published results
still have a high FDR [102].

6.2.2 Nonstationary Methods

Nonstationary detection methods use nonstationary signal processing techniques such as
time-scale and time-frequency techniques to detect seizure. Time-scale methods include
the model proposed by Nagasubramanin [106], which suffers from a very high FDR [106],
and the model proposed by Zarjam et al. [107], which uses a neural network classification
scheme to improve the FDR.

Time-frequency newborn seizure detection methods include the matching pursuit al-
gorithm proposed by Rankine et al. [108, 109], which was based on the adult EEG de-
tection model by Franaszczuk et al. [110]. The matching pursuit (MP) algorithm uses
an over-complete dictionary of basis functions, which are called atoms, to represent or
approximate a signal by a linear superposition of these atoms. The atomic dictionary in
Rankine’s method uses time-frequency atoms. The authors showed that the number of
atoms required to represent the EEG drops as the signal changes from a background to
seizure event. The method preforms poorly in the presence of artifacts [108].

Hassanpour et al. [111,112,113,98] proposed a method to detect seizure by detecting
spikes in the TFD of the EEG. The method [113] first preprocesses the TFD of EEG
data in an effort to isolate the spikes. Then two high frequency slices of the filtered TFD
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are obtained to which a nonlinear energy operator is applied to amplify the spike sig-
natures. The method assumes that the spikes in the time-domain EEG are represented
as high-frequency localised energy in the TFD. The method measures the interval be-
tween successive spikes and produces a histogram of these intervals. By comparing the
histograms to a predefined reference histogram, the method classifies the epoch as seizure
or nonseizure. Analysis of the methods shows a low TDR [114].

Boashash and Mesbah [103] proposed a method using a time-frequency matched de-
tector; Schiff et al. [115] also applied this method to adult EEG. The method extends
the existing theory for the time-domain matched filter to the time–frequency domain.
The method constructs a filter based on features of EEG seizure in the time–frequency
domain. Different types of EEG seizure require different filters; thus, the time–frequency
matched filter uses a set of filters, known as templates. Each template is correlated with
the EEG TFD to produce a test statistic. By comparing this test statistic to a threshold,
we may classify the epoch as a seizure or nonseizure event.

More recently, Navakatikyan et al. [99] proposed a method which uses a series of ad-
hoc techniques to manipulate, in the time domain, short-time segments from an epoch
of EEG. At its core, the method correlates these short-time segments with neighbouring
segments to determine whether seizure is present or not. Although the model estimates
over 40 parameters from the EEG, the results on the large database are promising.

6.2.3 New Method

The stationary detection methods, which assume that the EEG is stationary or at least
quasi-stationary, have poor performance because newborn EEG is a nonstationary signal
[104]. Of the nonstationary methods, the time–frequency matched filter detector and the
Navakatikyan method display the most promise; I base the new detection method in this
chapter on both these existing methods.

6.3 Time–Frequency Matched Filter

I start with a detailed review of the time–frequency matched filter, as this forms the basis
for the new method.

6.3.1 Theory

We may reduce the problem of detecting an EEG seizure event from the EEG background
to the classic detection problem of detecting a known signal in noise. For a signal x(t)
there are two possibilities:

H0 : x(t) = n(t), signal absent,

H1 : x(t) = s(t) + n(t), signal present.

where s(t), of duration T , represents the signal to detect and n(t) represents the noise.
The detection problem is how to select the correct hypothesis, H0 or H1. Thus, if we
assume H1 and s(t) is present, then this is a true detection; if we assume H1 and s(t) is
not present, then this is a false detection.
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The matched filter is a time-domain detection method that linearly filters x(t) [116].
The method maximises the signal to noise ratio (SNR) of s(t) and n(t). The method
requires that the signal s(t) is a known signal and n(t) is a Gaussian noise process,
assuming here that the noise is white Gaussian with a constant power spectral density.
To make the decision as to whether s(t) is present or not, we form a test statistic as
follows:

ηt =

∫
(T )

x(t)s∗(t) dt (6.1)

and then compare this test statistic with a predefined threshold value ζ to determine
hypothesis. Thus,

H0 : ηt < ζ,

H1 : ηt > ζ.

The matched filter is known as an optimum detector because it maximise the SNR and
therefore maximises the probability of a true detection [117].

We can extend the matched filter method, which uses time-domain signal in (6.1), to
use time–frequency representations. The inner-product of the WVDs for the signals x(t)
and s(t),

ηtf =

∫ ∫
(T )

Wx(t, f)Ws(t, f) dt df (6.2)

is simply related to the matched filter in (6.1) as [118,119]

ηtf = |ηt|2. (6.3)

The test statistic ηtf is also know as a locally optimal detector [118, 119] and because of
its direct relation with ηt provides no advantage over the conventional matched filter.

If we replace the WVD with the more general TFD representation,

ηtf =

∫ ∫
(T )

ρx(t, f)ρs(t, f) dt df (6.4)

then this test statistic ηtf is only related to the ηt in (6.3) if the Doppler–lag kernels for
ρx and ρs satisfies the condition |g(ν, τ)| = 1 [118]. This condition severely constrains
the type of TFDs as most useful TFDs have non-unity, real-valued kernels. The notably
exception is, of course, the WVD.

The time–frequency matched filter, using the test statistic in (6.4), is known as a
sub-optimum detector [118, 14] because the filter does not maximise the SNR ratio. The
method, however, may prove useful for an application when the constraints on the matched
filter do not hold. That is, if the signal s(t) is not exactly known, or if s(t) is randomly
perturbed in some way, or if the noise n(t) is not white Gaussian noise then the sub-
optimum method may prove useful [118,120,14,103,56].

Before applying the matched filter to newborn EEG seizure detection, I present an
analysis on selecting a suitable TFD for newborn EEG signals.
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6.4 Selecting a Time–Frequency Distribution

The TFD should represent the important characteristics of both seizure and nonseizure
events and represent the events in a discriminatory way. In this section, I discuss the im-
portant time–frequency characteristics of the seizure and nonseizure events and present
an analysis on selecting a TFD that best represents both seizure and nonseizure. The con-
clusion is that the separable-kernel TFD, with a medium-sized Doppler and lag smoothing
windows, is a suitable TFD for newborn EEG seizure detection.

6.4.1 Quadratic Time-Frequency Distributions

There are many different types of TFDs in the quadratic TFD class, as the type of TFD
depends on the structure of the kernel γ(t, f). Recall how the quadratic class is defined,

ρ(t, f) = W (t, f) ∗
t
∗
f
γ(t, f) (6.5)

where W (t, f) represents the WVD. As we saw in Chapter 2, the WVD is unique in
that it satisfies a certain set of mathematical properties [1] whereas all other TFDs only
satisfy a subset of these properties. These properties are useful for understanding the
theoretical characteristics of the particular TFD. They may not, however, be needed for
some practical problems.

In order to address this problem, Boashash and Sucic [1, pp. 72] [121] presented a
general framework of desirable features for TFDs more in accordance with practical rather
than theoretical requirements. The properties are

P1. Concentration of local energy: The TFD should be real and adhere to the notion
of local energy concentration. That is, the energy ER in a time–frequency region R
should equal the time and frequency integral of the TFD over this region:∫

∆f

∫
∆t

ρ(t, f) dt df = ER.

where R is the region within the time interval ∆t and frequency bandwidth ∆t.
(Assuming that ∆t and ∆f satisfy the uncertainty principal [1].)

P2. Instantaneous frequency (IF) visualisation: The peak of the TFD of a monocom-
ponent signal, with respect to frequency, should equal, or approximate, the IF fi(t)
law of the signal; that is,

max
f

ρ(t, f) = fi(t).

With multicomponent signals, the same property should apply to the individual
components.

P3. Reduced interference: The TFD should attenuate or suppress cross-terms.

These properties are different from the set of precise mathematical properties in Chap-
ter 2. Unlike mathematical properties, we can not easily quantify whether a TFD satisfies
these properties or not. But these properties can be taken as general features that a TFD
should, in most cases, adhere to. For example, an ideal TFD of multicomponent signal
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that satisfies these three properties, is a flat two-dimensional area consisting of delta-
like functions centred around the IF laws of the signal’s components. See [1] for a more
thorough discussion on these properties.

The properties P1-P3 are general desirable TFD properties regardless of the applica-
tion. Some applications, however, require further TFD properties. Hence I now present
a discussion on the specific requirements for the two important EEG events—seizure and
nonseizure.

TFD Performance for Seizure Events

The seizure event is a slowly-evolving periodic signal [87, 88], often described as a quasi-
linear frequency modulated signal [103,122]. I therefore propose that the TFD of a seizure
event should

• satisfy properties P1, P2 and P3;
• and be invariant to time, frequency, and scale shifts.

The class of quadratic TFDs are inherently time–frequency covariant, although not nec-
essarily scale covariant. The scale covariance property requires a product kernel [123],
which may prove to be too restrictive.

TFD Performance for Background Events

A background event has been described in the literature as a stochastic nonstationary
process [104, 122], distinguishable from the more deterministic seizure event. Because
background has a time-varying spectral power law [122] and is high-pass filtered at ap-
proximately 0.5Hz, the TFD of background may look like a short-time linear frequency
modulated (LFM) component. It is therefore crucial that these components are not con-
fused with seizure components. Thus the criteria for the ideal background TFD is to

• satisfy property P1;
• and highlight the stochastic nature of the event by not excessively smoothing in the

time–frequency domain.

An ideal TFD for background would be the WVD, as the smoothing introduced by the
time–frequency kernel will only smear energy over the time–frequency plane. For the
seizure event, however, we require some sort of smoothing to suppress the cross-terms.
Thus it would appear that there is a conflict between the needs of the two different events.

6.4.2 Design of Newborn EEG Quadratic TFD

The design of a TFD will now be examined for each separate event with the goal of
approximating, as closely as possible, the desirable properties discussed in the previous
section.
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Seizure Events

Based on time–frequency observations, seizure has been modelled as a summation of LFM
and piecewise-LFM signals [124, 104, 125, 122]. The model is consistent with the clinical
EEG literature which describes seizure as an evolving periodic pattern [88]. Boashash
et al. observed these LFM-type characteristics with and without additional harmonics
[104,125,103]. Schiff et al. also reported these LFM-type signals in adult EEG. I use this
LFM-type model in the following analysis.

Analysis of LFM-Type Signals

Lets define the LFM signal as

x(t) =
K+1∑
i=1

e j2π(if0t+
α
2
t2) (6.6)

with starting frequency f0, slope α, and K harmonic components. We assume the signal
is of infinite length. The WVD of x(t) is [126]

Wx(t, f) =
K+1∑
i=1

δ(f − (if0 + αt))) + 2
K−1∑
i=0

K∑
q=i+1

δ(f − (( i+q
2

+ 1)f0 + αt)) cos (2π(i− q)f0t)

(6.7)
where the first summation in the right hand side (RHS) of the equation represents the
auto-terms and the second set of summations in the RHS represents the cross-terms. The
ambiguity function (AF) of x(t) is

Ax(ν, τ) = δ(ν − ατ)
K+1∑
i=1

e j2πif0τ +
K∑
i=0

K∑
q=0
q 6=i

δ(ν − (i− q)f0 − ατ) e j2π(
i+q
2

+1)f0τ (6.8)

where, similar to (6.7), the first summation in the RHS of the equation represents the
auto-terms and the second set of summations in the RHS represents the cross-terms.

Because the EEG is not an infinite length signal, this previous assumption needs
refining. Lets define x(t) over a time period T as xT (t) = x(t)rectT

(
t− T/2), where the

rectangular window function is defined as

rectT (t) =

{
1, |t| < T

2
,

0, |t| > T
2
.

The WVD in (6.7) can be rewritten for finite signal xT (t) as

WxT (t, f) = rectT

(
t− T

2

)
Wx(t, f) ∗

f

sin (4π(T − |t− T
2
|)f)

πf

= rectT

(
t− T

2

)
4BT (t− T

2
)Wx(t, f) ∗

f
sinc(4π(T − |t− T

2
|)f) (6.9)

where the Bartlett function BT (t), which is a scaled triangular function, is defined as

BT (t) = 1− |t|
T
.
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Two important modifications to the WVD of x(t) take place due to the time-limiting
process in (6.9). First, the WVD of the infinite signal x(t) is spread or smeared in the
frequency direction due to the convolution with the time-dependent sinc function. Thus
the δ functions in (6.7) are replaced with a time dependent sinc function centred around
the trajectory of the δ functions in the time–frequency plane. As the dimension of T
decreases the spread or width of the main lobe of the sinc function will increase. Second,
the WVD of the infinite signal x(t) is multiplied with the Bartlett function centred around
t = T/2 which results in a linear tapering in the time direction of the energy away from
the centre of the WVD.

The effect of the finite windowing in the Doppler–lag domain in relation to the AF Ax
is

AxT (ν, τ) = rect2T (τ)Ax(ν, τ) ∗
ν

sin (πν(2T − |τ |))
πν

e−jπTν

= rect2T (τ)B2T (τ)Ax(ν, τ) ∗
ν

sinc(πν(2T − |τ |)) e−jπTν (6.10)

Similar to the time–frequency domain, the AF of x(t) is smeared in the Doppler direction
by the (modulated by an exponential term) lag-dependent sinc function. Also, the spread
of energy in the lag direction is scaled by a Bartlett function centred at τ = 0. Thus, the
energy in the AF decreases away from the origin in the lag direction. Combining (6.10)
with (6.8),

AxT (ν, τ) = rect2T (τ)B2T (τ)

sinc(π(ν − ατ)(2T − |τ |))
K+1∑
i=1

e j2πif0τ

+
K∑
i=0

K∑
q=0
q 6=i

sinc(π(ν − (i− q)f0 − ατ)(2T − |τ |)) e j2π(
i+q
2

+1)f0τ

 . (6.11)

Kernel Design

It is evident from (6.7) that many cross-term components are present in the WVD. Thus,
probably the biggest challenge here is to satisfy property P3, which is to reduce these
cross-terms. However, this should not be at the expense of sacrificing TFD’s ability to
resolve the components—and hence satisfy property P1.

The design of the TFD is aided by examining the kernel in both the time–frequency
domain and Doppler–lag domain. The kernel in the Doppler–lag domain can be thought
of as a two-dimensional filter which aims to suppress the cross-terms whilst preserving
the auto-terms.

The cross-terms in the time–frequency domain, as described in (6.7), not only exist in
between the auto-terms but also sit on top all components except the fundamental and
Kth harmonic component. The cross-terms in the Doppler–lag domain, as described in
(6.8), are placed ±f0 in the Doppler direction away from the auto-terms. The nearest
cross-terms to the auto-terms at δ(ν − ατ) are located along δ(ν ± f0 − ατ). Assuming a
finite duration of T for the signal then (6.8) is replaced by (6.11). The main difference here
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is that the aforementioned δ functions are now replaced with sinc functions, the width
of which is dependent on T and the lag value. Also, these components are multiplied by
the Bartlett function B2T (τ), which results in a tapering of the energy of the components
away from the origin in the lag direction. I assume that T is large enough that most of
the significant energy for the auto-terms is contained within the bandwidth ±Tα in the
Doppler direction of the AF, see Fig. 6.1a for an example.

If we assume that T is constant, then the ease at which the cross-terms can be elimi-
nated, whilst preserving the auto-terms, is dependent on the values of f0 and α. To design
the Doppler–lag filter, lets consider three different scenarios which depend on the value
of α, the rate of change of the IF.

• Scenario 1: slowly varying IF law

If we assume that α < f0/(2T ), then the goal of eliminating the cross-terms is
achievable by placing a window function, centred on ν = 0, along the τ axis. This
Doppler–lag domain kernel is known as the lag-independent (LI) kernel and is rep-
resented as g(ν, τ) = G1(ν), where G1(ν) for this case is an even window function
of width 2αT . This is illustrated in Fig. 6.1a for the Doppler–lag domain, where a
clear separation can be seen between auto and cross-terms. In the time–frequency
domain, the cross-terms will oscillate along the δ(f − (3/2)f0 − αt) trajectory with
frequency cos (2πf0t), as expressed in (6.7). Thus convolving in the time direction
with g1(t) should suppress this cross-term energy. For this particular case, there is
a clear separation, in frequency, between cross-terms and auto-terms, as highlighted
in Fig. 6.1b. Thus no cross-term energy will be displaced onto the auto-terms from
the convolution process.

• Scenario 2: moderately varying IF law

If we assume that f0/(2T ) < α < f0/T , as displayed in Fig. 6.1c and Fig. 6.1d, then
using the LI kernel here may not sufficiently suppress the cross terms. As G1(ν) is
a window-type function of width 2αT , then the extremities (in the lag direction) of
the cross-terms will be within the pass region of the G1(ν) function, which is best
illustrated in Fig. 6.1c. Not only will some of the cross-terms be present, but the
auto-terms will be altered by this kernel. This effect is best assessed in the time–
frequency domain, where the convolution of g1(t) in the time direction will result in
some of the cross-term energy being distributed to the auto-term. This can be seen
in Fig. 6.1d, where it is clear that there is an overlap, in the frequency direction,
between the auto- and cross-terms.

A solution to this problem involves a compromise. The cross-terms within the
−αT < ν < αT range can be filtered out by placing a windowing type function g2(τ)
along the ν axis, centred on τ = 0. Thus towards the extremities in the lag direction
this energy would be suppressed, which should encompass the cross-terms. This
would also suppress some of the auto-term energy as well, hence the compromise.
This windowing, of course, would be needed in conjunction with the LI kernel. This
resultant kernel would be a separable kernel, of the form g(ν, τ) = G1(ν)g2(τ). It is
worth noting that a nonseparable kernel, of the form g(ν, τ) = gn(ν, τ), could also
approximate this shape of kernel. In the time–frequency domain the convolution in
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Figure 6.1: Doppler–lag and time–frequency representations for an LFM-type signal of slope
α with one harmonic. The main component has a starting frequency f0 and the harmonic has a
starting frequency of 2f0. In the Doppler–lag domain, the main and harmonic components are
both located along the same trajectory δ(ν − ατ). The auto-terms are represented by the bold
lines and the cross-terms are represented by the dashed bold lines.
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the frequency direction with G2(f) will smooth or spread the auto-term components
about their centre.

• Scenario 3: quickly varying IF law

The third scenario, when α > f0/T as illustrated in Fig. 6.1e and Fig. 6.1f, is the
most difficult to deal with it. For this case, most of the cross-term energy is located
inside the bandwidth −αT < ν < αT . Without knowledge of α, the previously
suggested nonseparable or separable kernels types may not preform well in terms of
cross-term suppression.

Of course for the last two scenarios when −f0/T < α < f0/T and α > f0/T an im-
proved solution exists. This involves applying a windowing function g0(·) along the auto-
term location of δ(ν−ατ) in the Doppler–lag domain. This would result in a nonseparable
kernel, of the form g(ν, τ) = g0(ν − ατ). This kernel, however, requires knowledge of α
which can vary considerably for different EEG seizure events [104]. Although adaptive
kernels, such as [127] or [55], may be able to determine the value for α and thus yield
high resolution TFDs, they are not quadratic TFDs and will not be considered here.

Based on this analysis either a nonseparable- or separable-kernel TFD seems like a
suitable choice of TFD to analyse EEG seizure events. The separable-kernel has the
advantage over the nonseparable kernel because the amount of smoothing in the Doppler
and lag direction can be controlled independently by g1(ν) and g2(τ).

6.4.3 Background Events

As I defined the EEG background event as any type of event other than seizure, it is
a little more difficult to analyse. To start, the signal characteristics of these events are
highly dependent on the conceptional age of the newborn [87, 88]. Second, normal in-
fant behaviour—such as muscle movement and sucking—along with a range of external
sources—such as electrical noise and electrodes falling—introduce artefacts into the EEG.
Third, for the sick neonate there is yet another set of signal characteristics classified as
abnormal EEG which may be present [87,128]. These three different types of background
events leads to a nonseizure signal which is highly variable in nature—that is, varying in
amplitude, frequency, and morphology. Because of the variability in signal structure, the
characteristics of the background events can sometimes mimic the characteristics of the
seizure events.

The most significant difference between the two events is time duration. For example,
the power-law spectrum of the background may be stationary for a short period of time,
say Tb seconds, thus creating what appears like an LFM component in the TFD. Con-
versely, a seizure event is defined as a continuous, evolving periodic event for at least Ts
seconds. To date there is no agreed definition of what Ts should be, although it is com-
monly taken as Ts = 10 seconds [88, 104]. It is therefore implied that Ts > Tb, although
Tb may be close to Ts.

Herein lies the major challenge in designing a seizure detection method, one that is able
to precisely discern between background and seizure events. As discussed in Section 6.4.1,
the main time–frequency characteristic of seizure contains quasi-LFM components, with
or without harmonics. Thus it is desirable not to enhance any quasi-LFM like components
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for the background events, which is in direct conflict with the desired seizure event TFD.
A compromise has to be made, although where exactly to draw the line remains unclear.
With this in mind, I examine some of the issues involved in designing a suitable TFD for
background EEG.

Kernel Design

Unlike the kernel design for the seizure events, which are modelled as deterministic signals,
it is harder to assess the ability of the TFD to represent, what is in essence, a stochastic
event. The most applicable approach to analyse this nonstationary stochastic process [104]
is the Wigner-Ville spectrum [1, pp. 37]. As only one realisation of the stochastic process
is available, this Wigner-Ville spectrum reduces to the WVD. But the kernel is required
for the seizure events and thus we cannot use the WVD.

In terms of the properties discussed in Section 6.4.1, only property P1 is relevant for a
stochastic signal. In order to maximise the separation between TFDs for the two events,
however, I now examine some undesirable features for the background event with the view
to minimising them.

• Time Support:

First, we assume that the kernel designed for the seizure events, discussed in Sec-
tion 6.4.2, contains some significant smoothing in the time direction in the time–
frequency domain. The danger here, however, is that as this low pass filter decreases
in bandwidth to create more resolved distributions, the smearing in the time di-
rection will increase. This may not pose a problem for the seizure event as the
LFM-type component may appear well resolved through the TFD. For the back-
ground events this time-directional smearing may extend the LFM-like component
of length Tb to be of length ≥ Ts, and thus may appear similar to a seizure event.
To improve the distinction between TFDs of the two events, we could add the time-
support property to the distributions [129]. This involves restricting the kernel in
the time–lag domain G(t, τ) to

G(t, τ) = 0, if |τ | < 2|t|. (6.12)

I present an example to help clarify the issue. Boashash and Sucic [121] proposed
that a TFD using a particular LI kernel, called the modified-B (MB) [130] distri-
bution, produces highly resolved TFDs for LFM-type signals. The LI kernel can be
described as

g(ν, τ) = g1(ν) =
|Γ(β + jπν)|

Γ2(β)

where β is a real positive number that controls the spread of the LI filter in the
Doppler–lag domain. The authors in [121] proposed an optimal parameter value of
β = 0.002 for a multicomponent LFM signal. Also, the closely related B-distribution
[131] with a parameter value of β = 0.01 was used as a suitable TFD for newborn
EEG seizure events in [104] and [103]. A low value for β was also reported in the
original articles [130] and [131] to produce high resolution TFDs. The effects of this
will be examined in the time–frequency domain.
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If the bandwidth of the LI filter is small in the Doppler–lag domain, which is the
case when β = 0.01 for a typical signal length of N = 128, then the bandwidth of
the kernel in the time–frequency domain will be large. Thus convolving the WVD
with G1(t) will result in a large spread or smearing of the signal energy about the
components in the time direction. To illustrate this effect, I use a test signal

za(nT ) = rectN/2

(
n− N

4

)
e j2π0.2nT + rectN/2

(
n− 3N

4

)
e j2π0.3nT .

This test signal consists of two sinusoidal components, as shown in Fig. 6.2a. The
MB distribution for β = 0.01 in Fig. 6.2b, spreads the energy for both components
beyond the bounds of the signal. The MB distribution’s kernel can be changed
to accommodate the time-support property by applying the constraint specified in
(6.12). This modified MB distribution, now having a nonseparable kernel rather
than a LI kernel, restricts the smearing of the component energy in the time di-
rection, as illustrated in Fig. 6.2c. The disadvantage of enforcing the time-support
property is an increase in the sidelobe magnitude, as highlighted for a time slice in
Fig. 6.3. This effect was also observed in [129]. A compromise to these scenarios
would be to enforce a lower limit on the bandwidth of the Doppler filter g1(ν), thus
reducing the spread in the time–frequency domain. The effect of this is shown in
Fig. 6.2d where the MB distribution without the time support property is used with
β = 0.1. As shown in Fig. 6.3 shows, the magnitude of the sidelobe, compared with
the MB distribution with the time-support property enforced, is reduced. The same
process applies to any kernel that has a significant low pass filtering operation in
the Doppler direction.

• Smoothing in the Frequency Direction:

More than one short-time LFM-like “component” previously discussed will produce
cross-terms between these components in the TFD. This may not pose a problem
when the components exist at the same time and are separated in frequency, but may
pose a problem when they are separated in time, particular if they approximately
have the same frequency. For these signals types, cross-terms will appear in between,
in time, two components separated in time and may appear as one longer component.
Although the cross-terms will oscillate in the frequency direction with a frequency
related to the separation distance and thus have a different structure to the LFM-like
components, they may cause confusion for the detection method and will certainly
undermine property P1.

We can eliminated these cross-terms by smoothing in the frequency direction, which
is equivalent to low-pass filtering along the Doppler axis in the Doppler–lag domain.
Again, lets use a test signal to illustrate the point. The signal,

zb(nT ) = rectN/4

(
n− N

8

)
e j2π0.15nT + rect3N/4

(
n− 7N

8

)
e j2π0.15nT

plotted in Fig. 6.4a shows this effect. When an LI kernel is employed, no smoothing
takes place in the frequency direction. Thus the cross-terms are not suppressed
for the MB distribution, as Fig. 6.4b shows. An example of a nonseparable kernel,
the Choi–Williams distribution [132], contains limited smoothing in the frequency
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(d) MB distribution of za(nT ) with β = 0.1

Figure 6.2: Effects of convolving, in the time direction, with an LI kernel. The test signal
used is za(nT ), with sampling period T = 1.
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Figure 6.3: Time slice at n = 30 for the three distributions, MB with β = 0.01, MB with
enforced time-support and with β = 0.01, and MB with β = 0.1.

direction, as the kernel’s shape in the Doppler–lag domain is like a two-dimensional
Gaussian centred at the origin. Fig. 6.4c illustrates this limited suppression of cross-
terms. The non-separable kernel provides more flexibility in terms of frequency
direction smoothing, as this is controlled by the lag part of kernel g2(τ). Thus high
attenuation of these cross-terms is achieved by decreasing the bandwidth of g2(τ),
as shown in Fig. 6.4d.

For the EEG background, if using the separable-kernel TFD then care should be taken
on setting the parameters for g1(ν) and g2(τ). The Doppler window g1(ν) should be large
enough to ensure that excessive smoothing does not take place in the time direction in
the time–frequency domain. Also, the lag window g2(τ) should be small enough to ensure
that some smoothing does take place in the frequency direction in the time–frequency
domain.

In conclusion, both seizure and background events are best represented by different
TFDs. A separable-kernel TFD with a small Doppler window and a large lag window to
smooth cross-terms whilst preserving the resolution of the auto-terms would suit seizure
events. Conversely, a Wigner–Ville spectrum to emphasis the stochastic nature of the
background would suit background events. As a comprise, I propose using a separable-
kernel TFD with medium sized Doppler and lag windows. The separable-kernel TFD
is more flexible than the nonseparable-kernel as it can smooth in both the time and
frequency directions independently. The following seizure detection method uses the
separable-kernel TFD.

6.5 Newborn EEG Time–Frequency Matched Filter

Method

Boashash and Mesbah [103] proposed using the time–frequency matched filter method
to detect seizure in newborn EEG. The method correlates a template set, a collection of
seizure-like events, with the EEG signal in time–frequency as follows:
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Figure 6.4: Comparison of three distributions and their cross-terms. The test signal used is
zb(nT ), with sampling period T = 1.
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1. form the TFD ρeeg for EEG signal eeg(t) for an epoch of length T ;

2. form the TFD ρr for reference signal r(t) from the template set;

3. produce the time–frequency matched filter test statistic, shifting over time and
frequency:

ηtf(t, f) =

∫ ∫
(T )

ρeeg(t′, f ′)ρr(t′ − t, f ′ − f) dt′ df ′

4. threshold ηtf(t, f) to a predefined constant c; that is, if ηtf(t0, f0) < c at the point
(t0, f0) then let ηtf(t0, f0) = 0;

5. extract the instantaneous frequency (IF) from ηtf(t, f);

6. if the IF is continuous for more than 20 seconds then declare seizure for the epoch.

7. iterate over all the reference signals in the template set;

8. iterate over all epochs for the EEG signal.

The authors in [103] use the piecewise LFM signal model to characterise EEG seizure.
Hence the template set is a collection of piecewise linear frequency modulated (LFM)
signals with different LFM slope parameters.

The method produced excellent results for simulated EEG data [103] but poor results,
with high false detection rates, for real EEG data [133, 55]. Defining the template set is
a major problem for the method. Although the piecewise LFM model, or piecewise LFM
model with harmonic components [122], can accurately model seizure events [122], the
parameters in these models vary from newborn to newborn, or even from EEG channel
to channel in the same patient [133]. Thus the method requires a large template set to
represent patient or channel specific seizures. The size of the template set is, however,
proportional to the probability of error—as the template set size increases so does the
false alarm rate [14,55].

6.5.1 Modified Method

To try and address this problem, I proposed a modified time–frequency matched filter
method to reduce the template set size by one-half [55]. This method reduces the false
detection rate of the Boashash–Mesbah method without reducing the true detection rate.
The size of the template set is reduced by defining the templates as a real-valued functions
in the Doppler–lag domain. For the Boashash–Mesbah method, the piecewise LFM signal
has 2L parameters, where L is the number of pieces. For example, a 2-piece LFM signal
requires [T1, T2, α1, α2], where Ti is the time duration and αi is the slope of the i-th piece,
to uniquely define the signal. The modified method in [55] requires only the slope αi
parameter; thus for our 2-piece LFM example this modified method requires only the
parameters [α1, α2].

To explain how this modified method works, lets start with the test statistic ηtf(t, f),
which equates to

ηtf(t, f) = F−1

ν→t

{
F
τ→f

{
Aeeg(ν, τ)Âr(ν, τ)

}}
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where F represents the Fourier transform and Âr is two-dimensional Fourier transform of
the time- and frequency-reversed reference TFD:

Âr(ν, τ) = F−1

t→ν

{
F
f→τ

{
ρr(−t,−f)

}}
.

Because the reference signal is a piecewise LFM signal it will contain both auto- and
cross-terms. Thus, for the Boashash–Mesbah method the reference TFD contains both
the auto- and cross-terms. With the modified method, the AF Âr of the reference signal
models the auto-terms only. The AF Âr is a sum of window functions h(t) located along
the (ν − αiτ) axis, as this is where the auto-terms reside [126]. The AF Âr is therefore
given as

Âr(ν, τ) =
L−1∑
i=0

h(ν − αiτ).

Thus, the AF of the reference signal is independent of Ti, the length of the pieces in
piecewise LFM model.

There are three advantages, comparative to the Boashash–Mesbah method, of this
modified method: 1) the template set may be reduced by one-half which reduces the
probability of error in the method [14]; 2) by defining the AF as a sum of smoothing
functions located on the auto-terms of the piecewise LFM model, the modified method
is more robust to differences between the template and EEG seizure epoch because the
method needs only match the auto-terms and not the cross-terms; and 3) the computa-
tional load is reduced by one-half because of the smaller template set size. These first two
advantages are reflected by the results in [55] which show how the modified method out-
performs the Boashash–Mesbah method. Although these results reflect an improvement,
the main problem still exists—how best to predefine the template set?

6.5.2 Proposed Method

I present a new EEG seizure detection method [56] which does not require a predefined
template set. The method uses the time–frequency matched filter and, as described
in Section 6.3.1, produces the hypothesis by comparing the test statistic to a predefined
threshold. This approach differs to the Boashash–Mesbah and modified Boashash–Mesbah
methods, which use the test statistic as a time–frequency representation to extract an IF
law.

The proposed method uses the principal that, because the seizure event is repetitive
in nature, a short-time segment of the seizure should correlate well with an adjacent
short-time segment. That is the principal that Navakatikyan [99] bases his method on.
The proposed method uses additional prior information however. We know, from time–
frequency analysis, that a seizure signal is best represented by a piecewise LFM with or
without additional harmonics [125, 122]. The proposed method correlates time-adjacent,
short-time segments in the time–frequency domain to match a slowly varying IF law with
or without harmonic components. This method correlates two TFDs, not WVDs, in the
time–frequency domain and therefore differs from the time-domain matched filter.

The outline of the method is as follows. First, define an epoch of length Te seconds.
Then, spilt this epoch up into 4 segments each of length Ts = Te/4. The method assumes
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Figure 6.5: The epoch TFD split into 4 segments of length Ts. The bold line represents the
IF law of the signal.

that the IF laws in each segment is linear, although these IF segments can have different
slope values. Next, correlate segment one with segment two, rotating segment one to
allow for a difference in slopes between the two segments. Continue this procedure for all
the segments; that is, segment 2 correlated with segment 3, and segment 3 correlated with
segment 4. Finally, find the minimum test statistic from these correlations and compare
this with a threshold to produce the hypothesis.

The advantage of this method over the previous two methods is that the method does
not require a predefined template set. I now present the details of the method.

The detection process is as follows.

1. Split the EEG data up into epochs eegj(t) of length Te.

2. Form the TFD for eegj(t) as ρeeg(t, f).

3. Divide this TFD, in time, into four segments of length Ts = Te/4, known as ρi(t, f)
for i = 0, 1, 2, 3. This segmentation process is illustrated in Fig. 6.5.

4. iterate the following over i = 1, 2, 3:

(a) Define the template TFD ρ̂ for the i-th segment as a time inverted TFD (i−1)
segment; that is, let

ρ̂(i−1)(t, f) = ρ(i−1)(iTs − t, f).

Thus, the time inverting process for ρ(i−1)(t, f) is equivalent to turning the
TFD segment upside down in time.

(b) Rotate the template TFD ρ̂(i−1) over a set of discrete angles Θ = {θ1, θ2, . . . , θK};
let

ρT
i (t, f ; θk) = ρ̂(i−1)(t, f) ∗

f
Wmk(t, f), (6.13)
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Figure 6.6: The i-th TFD segment (a) ρi(t, f) and (b) template TFD ρT
i (t, f ; θk). Note that

the template TFD is a time-reversed version of the (i− 1) TFD segment. The template TFD is
rotated about a set of angles to attempt a match with the i-th TFD segment. This example is
taken from Fig. 6.5 for i = 2.

where mk(t) = e j2π(θk/2)t2 and θk is from the set Θ. This results in a set of
rotated TFD templates.

(c) Correlate the template set with the i-th segment TFD,

η(θk) =

∫ ∫
(Ts)

ρi(t, f)ρT
i (t, f ; θk) dt df

and then take the maximum test statistic,

ηi = max
θk∈Θ

ηi(θk).

Fig. 6.6 illustrates this process.

Why is this rotation process necessary? Recall that we have assumed a piece-
wise LFM-type signal is present in ρeeg(t, f) and that the turning points of the
IF in the TFD segments are located at t = ts + iTs. Because the IF law for the
continuous component passes through the time–frequency point (ts + iTs, fi),
then ρ̄(i−1)(t, f) and ρi(t, f) will be equal around t = 0, as Fig. 6.5 illustrates.
If the slope of the LFM in the (i−1) segment, α(i−1), does not equal the slope,
αi, in LFM of the i-th segment, then the correlation between the (i− 1) and i
segments will be small. Thus, if we rotate the template TFD ρ̄(i−1)(t, f) about
the point (0, fi) to the angle αk = α(i−1) + αi, then the two TFD segments
would match and produce a large correlation. Fig. 6.6 illustrates this process.

5. The test statistic for the epoch is

η = min
i∈{1,2,3}

ηi

The rationale for this is that if the LFM component is continuous and present
throughout the four segments, then each ηi will remain relatively large; likewise, if
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the LFM component is not present over all segments then η will be reduced. Thus,
the size of the epoch Te should reflect some lower limit on the duration of the EEG
seizure.

6. Although the seizure LFM-type components can have slope values as large as±0.1Hz
per second, the rate of slope change is rather small over an epoch of less than 20
seconds [103, 122]. Therefore, the method has a penalisation measure to prevent
false detections of components that do not conform to this signal type. This is
achieved by first specifying the rotation angles selected from ηi(θk),

θ̃i = arg max
θk∈Θ

ηi(θk).

and then defining the penalisation function as

c(σ) =

(
1− σ

w

)
(6.14)

where σ is the variance of θ̃i over i = 1, 2, 3. The value w in (6.14) is a predefined
weighting parameter in the range σ < w <∞. Limiting w ensures that 0 < c(σ) < 1.
Within the range σ < w < ∞, as w → ∞ then c(σ) → 0 and as w → σ then
c(σ)→ 1.

We then use the function c(σ) to weight the epoch’s test statistic η; that is, let

η ← c(σ)η.

If the variance of the slope values σ is large, then c(σ) will be small and thus reduce
the value of η. Simply put, a large value for σ will penalise the test statistic. This
is desirable as a large σ value indicates a signal type that is not slowly varying, and
therefore not a seizure signal [103, 122]. Conversely, when σ is small then c(σ) will
be small and the test statistic η will not be heavily penalised. A small σ value is
indicative of a signal with a slowly varying IF, such as a seizure signal.

7. Is seizure present?

η < ζ, no seizure,

η > ζ, seizure present,

where ζ is the predefined detection threshold.

8. Iterate this whole process over the different EEG epochs with an overlap window.

Limitations and Assumptions for Method

The method assumes that the EEG signal is a piecewise LFM signal where the end time
points of the pieces, known as turning points, are located at the end of the TFD segments
t = iTs. The turning points for the EEG will not be an abrupt or sudden change in the IF
law because, as others have observed [103,109], EEG seizure typically has a continuous IF
law that varies slowly and smoothly over time [103] and because the TFD provides some
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time–frequency smoothing of the components. Hence the method should be able to cope
with the situation when the turning points are not located at values of iTs. The results
in the next section support this statement.

EEG background may have discontinuous LFM-like components, which could results
in a false detection for the method. Two scenarios could cause this: if the discontinu-
ous components are centred in time around iTs, or if the discontinuous components are
equidistant in time from iTs, for i = 1, 2, 3. To ensure that these scenarios do not produce
a large η value, the method uses a sliding window on the data with a significant overlap,
larger than 75% of Te. Thus, by shifting the EEG by a fraction of Ts, the LFM-like
components will no longer be centred around the turning points or equidistant from the
turning points and therefore the method should not produce a large ζ value. Again, the
results in the next section support this statement.

The description of the method shows, in Fig. 6.5 and Fig. 6.6, a piecewise LFM signal
model without harmonic components. Whether the piecewise LFM model has harmonic
components or not, the method will produce a large test statistic for both these signal
types. This is because the harmonic components have IF laws that are parallel to the
main component’s IF law. Therefore, when the main component’s IF laws are matched
in the correlation process the harmonic components will also match and the method will
produce a large ζ value. Note that most of EEG seizure signals from the next section are
signals with harmonic components.

Results

The method uses a quadratic TFD, but which type of TFD to use and why? Appendix 6.4
presents a discussion on the merits of using different TFDs for newborn EEG seizure
detection. Based on this analysis, the method uses the separable-kernel TFD. The time–
frequency kernel is represented as γ(t, f) = g1(t)G2(f), where g1(t) is a Hamming window
of length Te/12 and g2(τ), the Fourier transform of G2(f), is a Hanning window of length
Te/3.

The TFD epoch length was set at Te = 11.4 seconds with an epoch overlap over of
10 seconds. A vector of slopes of length K = 8 was used, ranging linearly from −1 to 1
Hz/sec. The penalisation function c(σ), defined in (6.14), used a weight value of w = 0.08.

To implement the method on a computer, we must first define a discrete version of
the method. Thus, the TFD requires a discrete definition. For this, I used the DTFD
definition proposed in Chapter 4 with the discrete analytic signal proposed in Chapter 3.
The method used the separable-kernel DTFD algorithm proposed in Chapter 5 to compute
the DTFD.

I tested the method on real and simulated data, which was segmented into 12.8 second
epochs. The simulated data, using the method proposed by Rankine et al. [122], contained
400 epochs of background and 400 epochs of seizure. This data models seizure events
as piecewise LFM signals with harmonic components and models background events as
nonlinear, nonstationary stochastic signals. For the real data, I used a set of 100 epochs
taken from 6 different babies. I filtered the data in the range from 0.5 to 10Hz and down
sampled to 20Hz. To assess the performance of the method, I used receiver operator
characteristic (ROC) plots to show true detection and false detection rates over a range
of different threshold values ζ. Also, to compare different results, I used the area under
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curve (AUC) measure as a single measure of overall performance.

Test 1: Simulated Data The purpose of the first test is to show why using the
time–frequency matched filter outperforms using the time-domain matched filter in this
application. To do so, the method uses the DWVD, because of the relation in (6.3), to
represent the time-domain matched filter approach.

The simulated EEG data consists of two data sets: one set of seizure epochs and
background epochs and another set of seizure epochs combined with background epochs,
at signal to background ratio (SBR) of 5dB, and background epochs. As real EEG seizure
events evolve over time from the background, combining the seizure epochs with the
background epochs may give a more accurate representation of EEG seizure [134].

• Test 1a. DWVD-A versus DWVD-C

The test also shows how the performance of different DWVD definitions com-
pare. For the test, which uses simulated data, I compare the difference between
two DWVD definitions: DWVD-A and DWVD-C. The DWVD-A does not satisfy
Moyal’s formula, a requirement for the optimum time–frequency matched filter as
mentioned previously. The DWVD-C does satisfy this property, and this is reflected
in the results: the AUC for the DWVD-A is less than the AUC for the DWVD-C as
Fig. 6.7 shows. Richard [14] and Yasotharan and Thayaparan [135] reported sim-
ilar results—they showed that the DWVD-B, which also satisfies Moyal’s formula,
outperforms the DWVD-A in the detection problem.

• Test 1b: GDTFD versus Proposed DTFD

Next, I compare two DTFD definitions for the separable-kernel DTFD. The results
in Fig. 6.8 produces another interesting results: although Moyal’s formula is not
satisfied by the separable-kernel DTFD, the proposed DTFD, from Chapter 4, out-
performs the GDTFD for the data set with the 5dB SBR. For the other data set,
both DTFD definitions perform well with an AUC value close to one.

Comparing the results from test 1a, in Fig. 6.7, and test 1b, in Fig. 6.8, we see that the
method gives better performance when the DTFD, rather than the DWVD, is used in the
method. This result justifies using the time–frequency matched filter in (6.4) rather the
using the conventional time-domain matched filter method in (6.1). Although the time-
domain matched filter is an optimum detector, the conditions which the optimum detector
requires are violated in this data: the simulated data consists of nonlinear, nonstationary
components for seizure and background data [122]. Richard noted similar results when
comparing the DWVD-B with a DTFD for a sub-optimum detection problem [14].

Test 2: Real EEG Data For the real EEG data, I again use the GDTFD and proposed
DTFD to compare performance. Similar to the simulated data results, the method using
the proposed DTFD outperforms the method using the GDTFD, as Fig. 6.9 shows. The
method performs well for this data set with an AUC value of 0.94. By selecting a point
from the ROC plots, the method produces a 90% true detection rate with a false detection
rate of 10%.
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Figure 6.7: EEG seizure detection method using simulated data, 400 epochs background
and 400 epochs of seizure. The method uses both the DWVD-A and the DWVD-C. (a) Seizure
epochs with no noise, and (b) seizure epochs with 5dB of background added to it. Area under
the curve (AUC) is in the label tag.
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Figure 6.8: EEG seizure detection method using simulated data, 400 epochs background
and 400 epochs of seizure. The method uses both the GDTFD and the proposed DTFD. (a)
Seizure epochs with no noise, and (b) seizure epochs with 5dB of background added to it. Area
under the curve (AUC) is in the label tag.
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Figure 6.9: EEG seizure detection method using real EEG data, 50 epochs of background
and 50 epochs of seizure. The method compares using the GDTFD and the proposed DTFD.

The method, however, needs further testing. The proposed method needs to be tested
on a continuous recording of EEG, rather than the short epoch segments used in the
previous results section. Also, the proposed method could benefit from optimising some
model parameters, in particular the set of slopes Θ and the weighting parameter w for
the penalisation function c(σ). Finally, this method should be compared with other
existing methods, such as existing time–frequency matched filter methods [55] and the
Navakatikyan method [99], using a common data set to assess its relative performance.

6.6 Summary and Conclusions

The chapter presented a newborn EEG seizure detection method. The purpose of this
chapter was to provide an application for the previous work: the detection method uses
the discrete analytic signal from Chapter 3, the proposed DTFD from Chapter 4, and
the proposed algorithms from Chapter 5. The proposed detection method is based on the
existing Bosashash–Mesbah time–frequency matched filter method and the Navakatikyan
method. The method—which correlates time-adjacent, short-time EEG segments in the
time–frequency domain—assumes that the seizure is represented in the time–frequency
domain by a series of slowly evolving LFM signals. This assumption is consistent with the
clinician’s definition of a slowly evolving periodic signal [88] and engineer’s description of
the nonlinear, nonstationary signal [122].

The results for the method are promising, although further testing is needed. The
method needs testing on a large EEG database and compared with other existing meth-
ods. The results also show the usefulness of the proposed DTFD—the method with the
proposed DTFD outperforms the method with GDTFD.
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Chapter 7

Conclusion

7.1 Introduction

The purpose of signal processing is to extract useful information from signals. There can
be two parts to this process: the analysis of signals, which describes or characterises the
signal; and the processing of signals, which modifies or transforms the signal. Both the
analysis and processing of signals can be done in a joint time–frequency domain. This
two-dimensional domain is particularly useful for analysing or processing nonstationary
signals, as these signals have frequency content that changes over time.

There are many different ways to represent the time–frequency domain. In this disser-
tation, I considered only the most commonly-used type of time–frequency representation—
the quadratic time–frequency distribution class. The broad goal of this work was to make
the quadratic class of time–frequency distributions a more effective signal processing tool.

My contribution to this goal was to improve the implementation of time–frequency
distributions (TFDs) on a digital device, such as a computer. To compute a TFD, we
need a discrete version of the TFD. The work, which focused on discrete TFDs (DTFDs),
had three broad themes:

1. theory: improved, comparative to existing methods, the definition of DTFDs;
2. computation: designed algorithms to efficiently compute the DTFD;
3. application: showed how DTFDs can be used to solve practical signal processing

problems.

I now present some conclusions from this work.

7.2 Conclusions

• Chapter 2 presented a new discrete WVD definition, the DWVD-C, which, similar
to the existing DWVD-B definition, satisfies all important mathematical properties
inherent to the continuous WVD.

– The proposed DWVD-C and DWVD-B are closely related—DWVD-C is a
frequency-decimated version of DWVD-B.

141
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– Because of this decimation relation, DWVD-C, comparative to DWVD-B, re-
quires only one-half of the computational load and memory required to compute
and store the DWVD.

• Chapter 3 presents a new discrete analytic signal. By using this proposed signal,
compared with using the conventional signal, we can reduce aliasing in the DWVD
by approximately 50%. The amount of aliasing in the discrete WVD is dependent
on two things:

– signal length N : as N increases, aliasing decreases. This is because as N
goes to infinity, we move away from the finite-time, finite-frequency bandwidth
constraint.

– signal type: I found, experimently, that signals with more energy near the
DC and Nyquist frequencies produced more aliasing in the DWVD. This is
probably because the energy leaks into the nearby negative-frequency region.
(Because the discrete signal is periodic, the region near the Nyquist frequency
is nearby the negative frequency region.)

In addition, the proposed discrete analytic signal retains the two useful attributes
of the conventional discrete analytic signal: the signal recovery and orthogonality
properties and an efficient, simple implementation.

• Chapter 4 presents a new DTFD definition. The proposed DTFD definition im-
proves on the two popular DTFD definitions—it is pseudo-alias free and satisfies all
important TFD properties. In contrast, the GDTFD definition does not satisfy all
these properties and the AF-GDTFD is not always pseudo-alias free.

– I defined the term pseudo-alias free to refer to a DTFD that contains minimal
aliasing—aliasing only from the discrete analytic signal’s approximation of the
finite-time, finite-frequency bandwidth constraint. Otherwise, a distribution
using the discrete real-valued signal will contain aliasing caused by the periodic
overlap of the signal’s components in time and frequency. The type of aliasing
caused by the real-valued signal is significantly greater than the aliasing caused
by the discrete analytic signal.

– The proposed DTFD definition is based on the smoothed DWVD form; that is,
I define the DTFD as a DWVD (circularly) convolved with a discrete kernel.
This differs from the AF-GDTFD definition, which is based on sampling the
TFD. Consequentially, some types of distributions, which do not fit well into
the smoothed DWVD form, may not be contained in the proposed DTFD.
For example, the proposed DTFD does not contain a spectrogram, although it
does contain a positive distribution that closely approximates a spectrogram.
I designed the proposed DTFD as a smoothed DWVD as this is the most
common quadratic TFD form.

• Chapter 5 presents algorithms to minimise the computational load and memory
needed to compute the proposed DTFD. These algorithms can be categorised into
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two groups: one group computes the DTFD exactly; the other group, in an effort
to save memory, computes a decimated version of the DTFD. Both groups consist
of four kernel-specific algorithms.

The two groups of algorithms are designed to minimise computational load—this
makes the algorithms execute faster. Yet probably the most limiting factor for the
DTFD algorithms is the signal’s length, N , as the algorithm requires an array of
2N2 points. Thus, the computer must be able to store 2N2 real-valued numbers.
This memory limit is different to the computational load: the computer must have
this memory to compute the DTFD, whereas computational load is proportional
to processing time and does not have a similar hard limit. For example, an algo-
rithm requiring a large computational load may require hours, days, or even months
to compute; an algorithm requiring more memory than available will simply not
compute.

– The first group of DTFD algorithms address this limitation to a certain de-
gree. Depending on the kernel type and the region of nonzero support for the
kernel, these algorithms produce DTFDs with a reduced number of sample
points—thus reducing the memory required. Note that this is not the same as
decimating the DTFD as no signal information is lost in the DTFD; rather the
time or frequency resolution is adjusted in accordance with the kernel’s time–
frequency bandwidth. This process is common in discrete spectral analysis.

– The second group of DTFD algorithms, however, produce decimated DTFDs—
that is, DTFDs requiring 2N2/(ab) real-valued numbers, where a, b are integers.

Of course, because this group of algorithms do not compute the full DTFD
array, its not a proper representation of the DTFD, rather an approximation
which does not provide all the sample points of the DTFD. Yet these algorithms
allow the user to adjust this memory hard-limit by choosing suitable values for
a and b.

• Chapter 6 presents a newborn EEG seizure detection method. Of note:

– The detection of newborn EEG seizures require nonstationary signal processing
techniques.

– The time–frequency matched filter, using TFDs, gives better performance com-
pared with the performance of the time-domain matched filter.

– The proposed time–frequency matched filter, which does not require a pre-
defined template set, outperforms the existing time–frequency matched filter,
which does require a predefined template set, because of the newborn’s vari-
ability of EEG seizure characteristics.

– The proposed time–frequency matched filter using the proposed DTFD pro-
duces better detection results comparative to same method using the GDTFD.
This is expected as the GDTFD is a frequency-decimated version of the pro-
posed DTFD and does not satisfies Moyal’s formula—a important property for
the time–frequency matched filter [118,14].
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7.3 Future work

There is no end-point to exploratory science. Methods in science should be constantly
challenged, questioned, and then, if possible, updated. With this in mind, I point to a
few areas where the methods in this dissertation may be extended. Undoubtedly, there is
much work to be done.

1. Does the proposed discrete analytic signal have applications in other areas of signal
processing? Will this signal improve the instantaneous frequency estimate of the
analytic signal [61]? Would it be useful in reducing aliasing in the discrete wavelet
transform [69]?

2. The proposed discrete analytic signal satisfies the frequency constraint but not the
time constraint. The time constraint is satisfied by appling a rectangular window
to the signal. It may be possible to achieve better performance by applying a
smooth tapered window rather than the rectangular window. Even though the re-
sultant signal would satisfy neither the frequency nor time constraint, this approach
may reduce the total energy in the ideally-zero regions comparative to that for the
proposed analytic signal. Additionally, an optimisation process applied to the pa-
rameters of the tapered windows may further minimise the energy in the ideally-zero
regions for both domains.

3. The discrete analytic signal produces aliasing in the DWVD because it does not
satisfy both the time and frequency constraints. To form the DTFD we convolve
the DWVD with a kernel—does the convolution with this kernel effect aliasing?
And if so, why? If we could answer these questions then we might be able to design
a kernel to eliminate or better suppress the aliasing.

4. The algorithms in chapter 5 compute the DTFD using circular convolution between
the DWVD and the kernel. This circular convolution operation may produce unde-
sirable wrap-around effects [23]. To eliminate these wrap around effects, we could
use linear convolution instead. These algorithms could be easily extended to use
linear convolution as well as circular convolution.

5. The EEG seizure detection method needs to be compared with other detection
methods using a full EEG database.
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Discrete Fourier Transform

A.1 Sampling Time-Domain Signals

To sample the time-domain x(t) we take discrete points at intervals of T . This discrete
signal x(nT ) is illustrated in Fig. A.1a. Another sampling approach is to multiply x(t)
by an infinite sequence of delta functions, known as an impulse train [23], as follows:

xi(t) = x(t)
∑
n

δ(t− nT )

=
∑
n

x(nT )δ(t− nT ).

This operation results in the continuous time-domain signal xi(t), illustrated in Fig. A.1b.
The signal xi(t) is zero everywhere except at t = nT , where n is an integer. For t = nT ,
this signal is not defined, although the area under this impulse is equal to x(nT ). This
signal xi(t) is used to develop discrete signal processing theory.

x(t)
x(nT )

t

T 2T 3T 4T 5T 6T 7T 8T 9T

(a)

x(t) xi(t)

t

T 2T 3T 4T 5T 6T 7T 8T 9T

(b)

Figure A.1: Two types of sampled signals: (a) the discrete-time signal x(nT ) represented
by the black dots and (b) continuous sampled signal xi(t), represented by the vertical arrows.

145



146 Discrete Fourier Transform

A.2 Discrete-Time Fourier Transform

The discrete-time Fourier transform [136],

X̃(f) =
∑
n

x(nT ) e−j2πnTf

maps the discrete-time signal to the frequency domain and the inverse discrete-time
Fourier transform,

x(nT ) =

∫ 1
2T

− 1
2T

X̃(f) e j2πfnT df (A.1)

maps the continuous-frequency signal X̃(f) to the discrete-time domain. These two trans-
forms are the discrete-time version of the continuous Fourier transform pair in (2.8) and
(2.9).

The following relates X̃(f) to X(f). The Fourier transform of the sampled signal xi(t)
is also equal to X̃(f):

F [xi(t)
]

=

∫ ∑
n

x(nT )δ(t− nT ) e−j2πtf dt

=
∑
n

x(nT ) e−j2πnTf = X̃(f)

where F [·] denotes the Fourier transform. Again take the Fourier transform of xi(t) but
this time write the expression as

X̃(f) =

∫
x(t)

∑
n

δ(t− nT ) e−j2πtf dt

=

∫
x(t) e−j2πtf dt ∗

f

∫ ∑
n

δ(t− nT ) e−j2πtf dt

= X(f) ∗
f

1

T

∑
n

δ(f − n
T

)

=
1

T

∑
n

X(f − n
T

) (A.2)

where ∗f denotes the convolution operation in the frequency direction. Thus, X̃(f) is equal
to an infinite sum of shifted and scaled copies of X(f); the period for these frequency
shifted copies is 1/T . Fig. 2.1 in Chapter 2 illustrates this relation between X(f) and
X̃(f).

A.3 Discrete-Frequency Fourier Transform

Sampling the frequency-domain signal with sample frequency 1/Λ results in the discrete-
frequency signal X(kΛ). To transform this signal to the continuous time-domain, we use
the inverse discrete-frequency Fourier transform, defined as

x̃(t) =
∑
k

X(kΛ) e j2πkΛt.
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Figure A.2: Discrete, periodic frequency-domain signal X̃(kΛ). Each dot represents a k
separated by Λ in frequency.

and the discrete-frequency Fourier transform, defined as

X(kΛ) =

∫ 1
2Λ

− 1
2Λ

x̃(t) e−j2πtkΛ dt, (A.3)

to map the continuous-time signal to the discrete-frequency signal.
The relation between continuous signal x̃(t) and discrete signal X(kΛ) is

x̃(t) =
1

Λ

∑
k

x(t− k
Λ

).

This relation is derived using a method similar to that for the discrete-time Fourier trans-
form from the previous section. The continuous signal x̃(t) consists of periodically shifted
copies of the scaled signal x(t), with a period of 1/Λ.

A.4 Discrete-Time, Discrete-Frequency Fourier Trans-

form

To create a signal that is both discrete in the time and frequency domains, we need to
sample both periodic continuous signals x̃(t) and X̃(f). We can start with either signal;
lets start with X̃(f),

X̃i(f) = X̃(f)
∑
k

δ(f − kΛ)

=
∑
k

X̃(kΛ)δ(f − kΛ).

The signal X̃(kΛ) is both discrete and periodic, as Fig. A.2 shows.
The following relates x̃(nT ) to x(t). Taking the inverse discrete-time Fourier trans-

form, in (A.1), of X̃i(f) results in the following:∫ 1
2T

− 1
2T

X̃i(f) e j2πfnT df =

∫ 1
2T

− 1
2T

∑
k

X̃(kΛ)δ(f − kΛ) e j2πfnT df

=
∑
k

X̃(kΛ) e j2πkΛnT = Nx̃(nT )
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and therefore

x̃(nT ) =
1

N

∫ 1
2T

− 1
2T

X̃(f)
∑
k

δ(f − kΛ) e j2πfnT df

=
1

N

∫ 1
2T

− 1
2T

X̃(f) e j2πtnT df ∗
n

∫ 1
2T

− 1
2T

∑
k

δ(f − kΛ) e j2πfnT df

=
1

N

∫ 1
2T

− 1
2T

X̃(f) e j2πtnT df ∗
n

1

Λ

∑
k

∫ 1
2T

− 1
2T

e j2πf(nT− k
Λ

) df

= x(nT ) ∗
n

1

TΛ

∑
k

δ(n− k
TΛ

)

=
1

TΛ

∑
k

x(nT − k
Λ

) (A.4)

assuming 1/(TΛ) is an integer. That is, the discrete-time signal is now periodic with
period 1/Λ.

Next, we sample the periodic, continuous signal x̃(nT ):

x̃i(t) = x̃(nT )
∑
n

δ(t− nT )

=
∑
n

x̃(nT )δ(t− nT )

and then take the discrete-frequency FT, in (A.3), of x̃i(t),∫ 1
2Λ

− 1
2Λ

x̃i(t) e−j2πtkΛ dt =

∫ 1
2Λ

− 1
2Λ

∑
n

x̃(nT )δ(t− nT ) e−j2πtkΛ dt

=
∑
n

x̃(nT ) e−j2πnTkΛ = X̃(kΛ)

which we can also express as

X̃(kΛ) =

∫ 1
2Λ

− 1
2Λ

x̃(t)
∑
n

δ(t− nT ) e−j2πtkΛ dt

=

∫ 1
2Λ

− 1
2Λ

x̃(t) e−j2πtkΛ dt ∗
k

∫ 1
2Λ

− 1
2Λ

∑
n

δ(t− nT ) e−j2πtkΛ df

= X(kΛ) ∗
k

1

ΛT

∑
n

δ(k − n
TΛ

)

=
1

ΛT

∑
n

X(kΛ− n
T

) (A.5)

assuming 1/(TΛ) is an integer.
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Sampling in both the time-domain and the frequency-domain results in a discrete
and periodic time-domain signal and a discrete and periodic frequency-domain signal. If
x(t) and X(f) are not appropriately band limited, then periodic overlap will distort the
discrete signals. This periodic distortion is known as aliasing.

The discrete-time, discrete-frequency Fourier transform, known as the discrete Fourier
transform, is defined as:

X̃( k
NT

) =
N−1∑
n=0

x̃(nT ) e−j2πnk/N

x̃(nT ) =
N−1∑
k=0

X̃( k
NT

) e j2πkn/N .

A.4.1 Avoiding Aliasing

Lets assume that x(t) has a bandwidth, or time duration, of Bt; that is, x(t) = 0 for
t < 0 and t > Bt. Also, lets assume that X(f) has a bandwidth, or frequency extent,
of Bf ; that is, X(f) = 0 for |f | > Bf/2. For the discrete-time domain signal x(nT ), let
NT = Bt, and for the discrete-frequency signal let MΛ = Bf .

Thus, from (A.4) and (A.5), we avoid aliasing if T and Λ satisfy the two following
constraints:

1

T
≥ Bf

1

Λ
≥ Bt.

If we assume that both sampling frequencies 1/Λ and 1/T satisfy these conditions, then
taking the lower limit—that is, T = 1/(MΛ) and T = 1/(NΛ)—gives the equality N =
M . Thus , when 1/T ≥ Bf and NT ≥ Bt, the discrete signals x̃(nT ) and X̃(k/NT ), as
Λ = 1/NT , are alias free.

For these alias free signals the discrete periodic signals equal samples of the continuous
signals, as the relation (2.11) shows. As I mentioned in Chapter 2, the assumption that
both the time- and frequency-domain signals are band limited is not valid. Hence the
discrete-time or discrete-frequency signal can only approximate samples of the continuous
signals.

Note that although we may never completely eliminate aliasing from the discrete
signals we can minimise it by increasing the sampling frequency 1/T . In most applications
this aliasing is negligible and is ignored. Thus, we call the discrete signal x̃(nT ) alias free,
assuming that the condition 1/T ≥ Bf is meet.



150 Discrete Fourier Transform



Appendix B

Derivations for Discrete
Wigner–Ville Distributions

The following chapter contains derivations, used in Chapter 2, to define the DWVD. I start
with the discrete-time WVD, followed by the discrete-frequency WVD, before presenting
the discrete-time, discrete-frequency WVD, known as the DWVD.

B.1 Discrete-Time WVD

Here I use two different approaches to sample the continuous TIAF K(t, τ) and then form
the discrete-time WVD by using the discrete-time Fourier transform of the discrete TIAF.

B.1.1 TIAF Sampling Approach A

Applying sampling approach A, illustrated in Fig. 2.3b, to the TIAF K(t, τ) results in
the sampled continuous TIAF KA

i (t, τ); that is

KA
i (t, τ) = K(t, τ)

∑
n

δ(t− nT )
∑
m

δ( τ
2
−mT ). (B.1)

The discrete TIAF KA(nT, 2mT ) in terms of the discrete-time signal is

KA(nT, 2mT ) = x((n+m)T )x∗((n−m)T ).

The following derivation, based on the derivation for the discrete-time Fourier trans-
form in Appendix A.2, relates the discrete-time WVD to the continuous WVD. First, take
the discrete-time Fourier transform of the TIAF KA

i (t, τ),

WA
i (t, f) =

∫
K(t, τ)

∑
n

δ(t− nT )
∑
m

δ( τ
2
−mT ) e−j2πfτ dτ

=
∑
n

∑
m

KA(nT, 2mT ) e−j4πmTfδ(t− nT )

=
1

2T

∑
n

W̃A(nT, f)δ(t− nT ). (B.2)
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Lets take the discrete-time Fourier transform of the TIAF KA
i (t, τ) once more, but this

time we obtain a different result:

WA
i (t, f) =

∫
K(t, τ)

∑
n

δ(t− nT )
∑
m

δ( τ
2
−mT ) e−j2πfτ dτ

=
∑
n

δ(t− nT )

W (t, f) ∗
f

1

2T

∑
m

δ(f − m
2T

)


=

1

2T

∑
m

∑
n

W (t, f − m
2T

)δ(t− nT ).

Comparing (B.2) with the preceding expression results in the relation

W̃A(nT, f) =
∑
m

W (nT, f − m
2T

).

Thus, W̃A(nT, f) is periodic in f with period 1/(2T ).

B.1.2 TIAF Sampling Approach B

The method uses a nonuniform sampling grid, illustrated in Fig. 2.3c. The resultant
continuous sampled TIAF KB

i (nT/2,mT ), for n and n+ 1/2 values of n, is

KB
i (t, τ) =K(t, τ)

∑
n

δ(t− nT )
∑
m

δ(τ − 2mT )

+
∑
n

δ(t− (n+ 1
2
)T )

∑
m

δ(τ − (2m+ 1)T )


=K(t, τ)

∑
n

∑
m

n+m even

δ(t− nT
2

)δ(τ −mT ). (B.3)

Thus, the discrete TIAF, as a function of x(nT ), is

KB(nT, 2mT ) = x((n+m)T )x∗((n−m)T )

KB((n+ 1
2
)T, 2(m+ 1

2
)T ) = x((n+m+ 1)T )x∗((n−m)T ).

The discrete-time WVD is the discrete-time Fourier transform of KB(nT,mT ), as defined
in (2.17).

To relate the discrete-time WVD to the continuous WVD, we do as follows. The WVD
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of the sampled TIAF KB
i results in

WB
i (t, f) =

∫
K(t, τ)

∑
n

∑
m

n+m even

δ(t− nT
2

)δ(τ −mT ) e−j2πfτ dτ

=

∫
K(t, τ)

∑
n

δ(t− nT )
∑
m

δ(τ − 2mT ) e−j2πfτ dτ

+

∫
K(t, τ)

∑
n

δ(t− (n+ 1
2
)T )

∑
m

δ(τ − 2(m+ 1
2
)T ) e−j2πfτ dτ

=
∑
n

∑
m

KB(nT, 2mT ) e−j4πmTfδ(t− nT )

+
∑
n

∑
m

KB((n+ 1
2
)T, 2(m+ 1

2
)T ) e−j4πmTf e−j2πTfδ(t− (n+ 1

2
)T )

=
1

2T

∑
n

W̃B(nT, f)δ(t− nT ) +
1

2T

∑
n

W̃B((n+ 1
2
)T, f)δ(t− (n+ 1

2
)T )

=
1

2T

∑
n

W̃B(nT
2
, f)δ(t− nT

2
). (B.4)

using the substitution of the W̃B as defined in (2.17). Also, WB
i can be related to periodic

copies in f of W as

WB
i (t, f) =

∫
K(t, τ)

∑
n

∑
m

n+m even

δ(t− nT
2

)δ(τ −mT ) e−j2πfτ dτ

= W (t, f) ∗
f

∫ ∑
n

δ(t− nT )
∑
m

δ(τ − 2mT ) e−j2πfτ dτ

+

∫ ∑
n

δ(t− (n+ 1
2
)T )

∑
m

δ(τ − 2(m+ 1
2
)T ) e−j2πfτ dτ


= W (t, f) ∗

f

 1

2T

∑
n

δ(t− nT )
∑
m

δ(f − m
2T

)

+
1

2T

∑
n

δ(t− (n+ 1
2
)T ) e−j2πfT

∑
m

δ(f − m
2T

)


=

1

2T

∑
n

∑
m

W (nT, f − m
2T

)δ(t− nT )

+
1

2T

∑
n

∑
m

(−1)mW ((n+ 1
2
)T, f − m

2T
)δ(t− (n+ 1

2
)T ).
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For n and n+ 1/2 values of n/2, this equates to

1

2T

∑
n

∑
m

W (nT, f − m
2T

)δ(t− nT ),

1

2T

∑
n

∑
m

(−1)mW ((n+ 1
2
)T, f − m

2T
)δ(t− (n+ 1

2
)T ),

or combined to represent

1

2T

∑
n

∑
m

(−1)nmW (nT
2
, f − m

2T
)δ(t− nT

2
).

Combining this expression with (B.4) gives the relation between discrete-time and con-
tinuous WVD as

W̃B(nT
2
, f) =

∑
m

(−1)nmW (nT
2
, f − m

2T
).

B.2 Periodic Doppler–Frequency Domains

Sampling the TIAF results in a periodic SIAF. Here I look at this Doppler–frequency
periodicity for the two TIAF sampling approaches.

B.2.1 Periodic SIAF for TIAF Sampling Approach A

The periodic SIAF as a function of KA can be written as

K̃A(ν, f) =
∑
n

W̃A(nT, f) e−j2πνnT

= 2T
∑
n

∑
m

KA(nT, 2mT ) e−j4πmTf e−j2πνnT .

Next, I define the function K1(ν, τ) as the Fourier transform of the WVD of KA
i , denoted

as WA
i (t, f); that is,

K1(ν, f) =

∫
WA

i (t, f) e−j2πtν dt.

which can be rewritten as

K1(ν, f) =

∫ ∫
K(t, τ)

∑
n

δ(t− nT )
∑
m

δ( τ
2
−mT ) e−j2πfτ e−j2πtν dτ dt

=
∑
n

∑
m

KA(nT, 2mT ) e−j4πmTf e−j2πνnT

=
1

2T
K̃A(ν, f).
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I then use this result to relate K̃A(ν, f) to K(ν, f) as

K̃A(ν, f) = 2T

∫ ∫
K(t, τ)

∑
n

δ(t− nT )
∑
m

δ( τ
2
−mT ) e−j2π(fτ+tν) dτ dt

= 2TK(ν, f) ∗
ν
∗
f

 1

2T 2

∑
m

δ(f − m
2T

)
∑
n

δ(ν − n
T

)


=

1

T

∑
n

∑
m

K(ν − n
T
, f − m

2T
).

B.2.2 Periodic SIAF for TIAF Sampling Approach B

The periodic SIAF as a function of KB can be written as

K̃B(ν, f) =
∑
n

W̃B(nT
2
, f) e−jπνnT

= 2T
∑
n

∑
m

n+m even

KB(nT
2
,mT ) e−j2πmTf e−jπνnT .

Next, I define the function K2(ν, τ) as the Fourier transform of the WVD of KB
i , denoted

as WB
i (t, f); that is,

K2(ν, f) =

∫
WB

i (t, f) e−j2πtν dt

=

∫ ∫
K(t, τ)

∑
n

∑
m

n+m even

δ(t− nT
2

)δ(τ −mT ) e−j2π(fτ+tν) dτ dt

=
∑
n

∑
m

n+m even

KB(nT
2
,mT ) e−j2πmTf e−jπνnT

=
1

2T
K̃B(ν, f).
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and then obtain the SIAF periodicity as follows:

K̃B(ν, f) = 2T

∫ ∫
K(t, τ)

∑
n

δ(t− nT )
∑
m

δ(τ − 2mT )

+
∑
n

δ(t− (n+ 1
2
)T )

∑
m

δ(τ − 2(m+ 1
2
)T )

 e−j2π(fτ+tν) dτ dt

= 2TK(ν, f) ∗
ν
∗
f

 1

2T 2

∑
m

δ(f − m
2T

)
∑
n

δ(ν − n
T

)

+
1

2T 2

∑
m

(−1)mδ(f − m
2T

)
∑
n

(−1)nδ(ν − n
T

)



= 2TK(ν, f) ∗
ν
∗
f

 1

T 2

∑
n

∑
m

n+m even

δ(f − m
2T

)δ(ν − n
T

)


=

2

T

∑
n

∑
m

n+m even

K(ν − n
T
, f − m

2T
).

B.3 Discrete-Frequency WVD

Sampling the SIAF and then using the inverse discrete-frequency Fourier transform on
this discrete SIAF results in the discrete-frequency WVD. Here, I use two SIAF sampling
approaches to define two discrete-frequency WVDs.

B.3.1 SIAF Sampling Approach A

Sampling the SIAF in f and ν/2 with sampling frequency 1/Λ results in the sampled
continuous SIAF KA

i

KA
i (ν, f) = K(ν, f)

∑
k

δ(f − kΛ)
∑
l

δ(ν
2
− lΛ).

The discrete SIAF KA, in terms of X(kΛ), is

KA(2lΛ, kΛ) = X((k + l)Λ)X∗((k − l)Λ).

The discrete-frequency WVD is the inverse discrete-frequency Fourier transform of KA,
as defined in (2.21).

The following relates the discrete-frequency WVD to the continuous WVD. Using the
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definition in (2.21), the WVD of KA
i is

WA
i (t, f) =

∫
K(ν, f)

∑
k

δ(f − kΛ)
∑
l

δ(ν
2
− lΛ) e j2πνt dν

=
∑
k

∑
l

KA(2lΛ, kΛ) e j4πlΛtδ(f − kΛ)

=
1

2Λ

∑
k

W̃A(t, kΛ)δ(f − kΛ) (B.5)

which can also be expressed as

WA
i (t, f) =

∫
K(ν, f)

∑
k

δ(f − kΛ)
∑
l

δ(ν
2
− lΛ) e j2πνt dν

=
∑
k

δ(f − kΛ)

W(t, f) ∗
t

1

2Λ

∑
m

δ(t− l
2Λ

)


=

1

2Λ

∑
k

∑
l

W(t− l
2Λ
, kΛ)δ(f − kΛ).

Substituting (B.5) into the above expression yields the periodic nature of the DFWDWA

as

W̃A(t, kΛ) =
∑
l

W(t− l
2Λ
, kΛ).

B.3.2 SIAF Sampling Approach B

The sampled continuous SIAF KB
i , using sampling approach B, is

KB
i (ν, f) = K(ν, f)

∑
k

δ(f − kΛ)
∑
l

δ(ν − 2lΛ)

+
∑
k

δ(f − (k + 1
2
)Λ)

∑
l

δ(ν − (2l + 1)Λ)


= K(ν, f)

∑
k

∑
l

k+l even

δ(f − kΛ
2

)δ(ν − lΛ).

(B.6)

The discrete SIAF KB(2lΛ, kΛ), in terms of X(kΛ), is

KB(2lΛ, kΛ) = X((k + l)Λ)X∗((k − l)Λ)

KB((2l + 1)Λ, (k + 1
2
)Λ) = X((k + l + 1)Λ)X∗((k − l)Λ)

The inverse discrete-frequency Fourier transform of this discrete SIAF KB is the discrete-
frequency WVD in (2.23).
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Here I derive the relation between the discrete-frequency WVD and the continuous
WVD. The WVD, using the definition in (2.23), of KB

i is

WB
i (t, f) =

∫
K(ν, f)

∑
k

∑
l

k+l even

δ(f − kΛ
2

)δ(ν − lΛ) e j2πνt dν

=

∫
K(ν, f)

∑
k

δ(f − kΛ)
∑
l

δ(ν − 2lΛ) e j2πνt dν

+

∫
K(ν, f)

∑
k

δ(f − (k + 1
2
)Λ)

∑
l

δ(ν − (2l + 1)Λ) e j2πνt dν

=
∑
k

∑
l

KB(2lΛ, kΛ) e j4πlΛtδ(f − kΛ)

+
∑
k

∑
l

KB(2(m+ 1
2
)Λ, (k + 1

2
)Λ) e j4πlΛt e j2πΛtδ(f − (k + 1

2
)Λ)

=
1

2Λ

∑
k

W̃B(t, kΛ)δ(f − kΛ) +
1

2Λ

∑
k

W̃B(t, (k + 1
2
)Λ)δ(f − (k + 1

2
)Λ)

=
1

2Λ

∑
n

W̃B(t, kΛ
2

)δ(f − kΛ
2

). (B.7)

using the definition of W̃B in (2.23). Also, WB
i , the WVD of KB

i , is related to W , the
WVD of K(ν, f), as follows:

WB
i (t, f) =

∫
K(ν, f)

∑
k

∑
l

k+l even

δ(f − kΛ
2

)δ(ν − lΛ) e j2πνt dν

=W(t, f) ∗
t

∫ ∑
k

δ(f − kΛ)
∑
l

δ(ν − 2lΛ) e j2πνt dν

+

∫ ∑
k

δ(f − (k + 1
2
)Λ)

∑
l

δ(ν − (2l + 1)Λ) e j2πνt dν


=W(t, f) ∗

t

 1

2Λ

∑
k

δ(f − kΛ)
∑
l

δ(t− l
2Λ

)

+
1

2Λ

∑
k

δ(f − (k + 1
2
)Λ) e j2πΛt

∑
l

δ(t− l
2Λ

)


=

1

2Λ

∑
k

∑
l

W(t− l
2Λ
, kΛ)δ(f − kΛ)

+
1

2Λ

∑
k

∑
l

(−1)lW(t− l
2Λ
, (k + 1

2
)Λ)δ(f − (k + 1

2
)Λ)

=
1

2Λ

∑
k

∑
l

(−1)klW(t− l
2Λ
, kΛ

2
)δ(f − kΛ

2
).
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This result, combined with (B.7), gives the periodic relation

W̃B(t, kΛ
2

) =
∑
l

(−1)klW(t− l
2Λ
, kΛ

2
).

B.4 Periodic Time–Lag Domain

Here I look at the time–lag periodicity, a result of sampling the SIAF, for the two SIAF
sampling approaches.

B.4.1 Periodic TIAF for SIAF Sampling Approach A

To start, the periodic TIAF is related to the discrete SIAF as follows:

K̃A(t, τ) =
∑
k

WA(t, kΛ) e j2πkΛτ

= 2Λ
∑
k

∑
l

KA(2lΛ, kΛ) e j2π(kΛτ+2lΛt).

Next, define the TIAF K1(t, τ) as the inverse Fourier transform of WA
i as

K1(t, τ) =

∫
WA

i (t, f) e j2πfτ df

=

∫ ∫
K(ν, f)

∑
k

δ(f − kΛ)
∑
l

δ(ν − 2lΛ) e j2π(νt+fτ) df dν

=
∑
k

∑
l

KA(2lΛ, kΛ) e j2π(kΛτ+2lΛt)

=
1

2Λ
K̃A(t, τ).

Using this result, the periodicity in K̃A(t, τ) is

K̃A(t, τ) = 2Λ

∫ ∫
K(ν, f)

∑
k

δ(f − kΛ)
∑
l

δ(ν − 2lΛ) e j2π(νt+fτ) df dν

= 2ΛK(t, τ) ∗
t
∗
τ

∫ ∫ ∑
k

δ(f − kΛ)
∑
l

δ(ν − 2lΛ) e j2π(νt+fτ) df dν


= 2ΛK(t, τ) ∗

t
∗
τ

 1

2Λ2

∑
k

δ(τ − k
Λ

)
∑
l

δ(t− l
2Λ

)


=

1

Λ

∑
k

∑
l

K(t− l
2Λ
, τ − k

Λ
).
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B.4.2 Periodic TIAF for SIAF Sampling Approach B

First, define the periodic TIAF as

K̃B(t, τ) =
∑
k

WB(t, kΛ
2

) e jπkΛτ

= 2Λ
∑
k

∑
l

k+l even

KB(lΛ, kΛ
2

) e jπ(kΛτ+2lΛt).

Second, define the TIAF K2(t, τ) as the inverse Fourier transform of WB
i to give the

following:

K2(t, τ) =

∫
WB

i (t, f) e j2πfτ df

=

∫ ∫
K(ν, f)

∑
k

∑
l

k+l even

δ(f − kΛ
2

)δ(ν − lΛ) e j2π(νt+fτ) df dν

=
∑
k

∑
l

k+l even

KB(lΛ, kΛ
2

) e jπ(kΛτ+2lΛt)

=
1

2Λ
K̃B(t, τ).

Third, use this result to obtain the periodicity of K̃B(t, τ) as

K̃B(t, τ) = 2Λ

∫ ∫
K(ν, f)

∑
k

δ(f − kΛ)
∑
l

δ(ν − 2lΛ)

+
∑
k

δ(f − (k + 1
2
)Λ)

∑
l

δ(ν − (2l + 1)Λ)

 e j2π(fτ+νt) df dν

= 2ΛK(t, τ) ∗
t
∗
τ

 1

2Λ2

∑
k

δ(τ − m
2T

)
∑
l

δ(t− l
2Λ

)

+
1

2Λ2

∑
k

(−1)kδ(τ − k
Λ

)
∑
l

(−1)lδ(t− l
2Λ

)



= 2ΛK(t, τ) ∗
t
∗
τ

 1

Λ2

∑
k

∑
l

k+l even

δ(τ − k
2Λ

)δ(t− l
Λ

)


=

2

Λ

∑
k

∑
l

k+l even

K(t− l
2Λ
, τ − k

Λ
).
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B.5 Discrete-Time, Discrete-Frequency WVD

To form the DWVD—a discrete-time, discrete-frequency WVD—we sample either the pe-
riodic TIAF or the periodic SIAF. Here I start with the TIAF, applying the two sampling
approaches from the Appendix B.1.

B.5.1 TIAF Sampling Approach A

Sample the periodic TIAF, from (2.25), with sample approach A to obtain the following:

K̃A
i (t, τ) = K̃A(t, τ)

∑
n

∑
m

δ(t− nT )δ( τ
2
−mT ).

Using (2.25) and the relation Λ = 1/NT from Section 2.4.5, the discrete TIAF K̃A(nT, 2mT )
is related to the continuous TIAF as follows:

K̃A(nT, 2mT ) = NT
∑
k

∑
l

K((n− lN
2

)T, (2m− kN)T ). (B.8)

Thus, one period in the TIAF is bounded by the region |n| < N/4 and |2m| < N/2 and
therefore (B.8) for one period is

K̃A(nT, 2mT ) =
1∑

k=−1

1∑
l=−1

KA((n− lN
2

)T, (2m− kN)T ), for |n| < N
4
, |m| < N

4
.

The discrete, periodic TIAF in terms of the discrete, periodic signal x̃(nT ) is

K̃A(nT, 2mT ) = x̃((n+m)T )x̃((n−m)T ) + x̃((n+m+ N
2

)T )x̃((n−m− N
2

)T )

and the DWVD is the DFT of K̃A(nT, 2mT ), as defined in (2.27).

The following relates the DWVD WA to the continuous WVD. First, taking the inverse
discrete-frequency Fourier transform of K̃A

i results in

WA
i (t, k

NT
) =

∫
(NT )

K̃A
i (t, τ) e−j2πτk/(NT ) dτ

=

∫
(NT )

K̃A(t, τ)
∑
|n|<N/4

∑
|m|<N/4

δ(t− nT )δ(τ − 2mT ) e−j2πτk/(NT ) dτ

=
∑
|n|<N/4

∑
|m|<N/4

K̃A(nT, 2mT ) e−j(4π/N)mkδ(t− nT )

=
N

2

∑
|n|<N/4

WA(nT, k
NT

)δ(t− nT ) (B.9)



162 Derivations for Discrete Wigner–Ville Distributions

which can also be expressed as

WA
i (t, k

NT
) =

∫
(NT )

K̃A(t, τ)
∑
|n|<N/4

∑
|m|<N/4

δ(t− nT )δ(τ − 2mT ) e−j2πτk/(NT ) dτ

=

∫
(NT )

K̃A(t, τ) e−j2πτk/(NT ) dτ

∗
k

 ∑
|n|<N/4

δ(t− nT )

∫
(NT )

∑
|m|<N/4

δ(τ − 2mT ) e−j2πτk/(NT ) dτ


= W̃KA(t, k

NT
) ∗
k

 ∑
|n|<N/4

δ(t− nT )
N

2

∑
m

δ(k − mN
2

)


=
N

2

∑
|n|<N/4

∑
m

W̃A(t, (k − mN
2

) 1
NT

)δ(t− nT ).

Comparing (B.9) with the above expression yields

WA(nT, k
NT

) =
∑
m

W̃A(nT, (k − mN
2

) 1
NT

).

Substituting (2.22) into this expression relates the DWVD WA to the WVD, namely

WA(nT, k
NT

) =
∑
l

∑
k

W((n− lN
2

)T, (k − mN
2

) 1
NT

).

B.5.2 TIAF Sampling Approach B

Sample the periodic TIAF K̃B(t, τ), from (2.26), with sampling approach B to obtain the
following:

K̃B
i (t, τ) = K̃B(t, τ)

∑
|n|<N

∑
|m|<N

n+m even

δ(t− nT
2

)δ(τ −mT ).

Substituting Λ = 1/NT into (2.26) gives the relation between the discrete TIAF K̃B(nT/2,mT )
and the continuous TIAF K(t, τ), as

K̃B(nT
2
,mT ) = 2NT

∑
k

∑
l

k+l even

K((n− lN)T
2
, (m− kN)T ).

Thus, one period in this discrete TIAF is bounded by the rectangular region |n| < N ,
|m| < N , and therefore (B.5.2) over one period is

K̃B(nT
2
,mT ) =KB(nT

2
,mT ) +KB((n−N)T

2
, (m−N)T ) +KB((n+N)T

2
, (m−N)T )

+KB((n−N)T
2
, (m+N)T ) +KB((n+N)T

2
, (m+N)T ),

for |n| < N |m| < N . In terms of x̃(nT ),

K̃B(nT, 2mT ) = x̃((n+m)T )x̃((n−m)T )

K̃B((n+ 1
2
)T, 2(m+ 1

2
)T ) = x̃((n+m+ 1)T )x̃((n−m)T )
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The DWVD is the DFT transform of the discrete TIAF K̃B(nT/2,mT ), as defined in
(2.30).

The following relates the DWVD to the WVD. The inverse discrete-frequency Fourier
transform of K̃B

i results in

WB
i (t, k

2NT
) =

∫
(2NT )

K̃B
i (t, τ) e−jπτk/(NT ) dτ

=

∫
(2NT )

K̃B(t, τ)
∑
|n|<N/2

∑
|m|<N/2

δ(t− nT )δ(τ − 2mT ) e−jπτk/(NT ) dτ

+

∫
(2NT )

K̃B(t, τ)
∑
|n|<N/2

∑
|m|<N/2

δ(t− (n+ 1
2
)T )δ(τ − 2(m+ 1

2
)T )

. e−jπτk/(NT ) dτ

=
∑
|n|<N/2

∑
|m|<N/2

K̃B(nT, 2mT ) e−j(2π/N)mkδ(t− nT )

+
∑
|n|<N/2

∑
|m|<N/2

K̃B((n+ 1
2
)T, 2(m+ 1

2
)T ) e−j(π/N)(2m+1)kδ(t− (n+ 1

2
)T )

= N
∑
|n|<N/2

WB(nT, k
2NT

)δ(t− nT )

+ N
∑
|n|<N/2

WB((n+ 1
2
)T, k

2NT
)δ(t− (n+ 1

2
)T )

= N
∑
|n|<N

WB(nT
2
, k

2NT
)δ(t− nT

2
) (B.10)

This can also be expressed as

WB
i (t, k

2NT
) =

∫
(2NT )

K̃B(t, τ)
∑
|n|<N

∑
|m|<N

n+m even

δ(t− nT
2

)δ(τ −mT ) e−jπτk/(NT ) dτ

=

∫
(2NT )

K̃B(t, τ) e−jπτk/(NT ) dτ

∗
k

∫
(2NT )

∑
|n|<N/2

∑
|m|<N/2

δ(t− nT )δ(τ − 2mT ) e−jπτk/(NT ) dτ

+

∫
(2NT )

∑
|n|<N/2

∑
|m|<N/2

δ(t− (n+ 1
2
)T )δ(τ − 2(m+ 1

2
)T ) e−jπτk/(NT ) dτ


= W̃B(t, k

2NT
) ∗
k

 ∑
|n|<N/2

δ(t− nT )N
∑
m

δ(k −mN)

+
∑
|n|<N/2

δ(t− (n+ 1
2
)T )N

∑
m

δ(k −mN)(−1)m
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= N
∑
m

∑
|n|<N/2

W̃B(nT, (k −mN) 1
2NT

)δ(t− nT )

+N
∑
m

∑
|n|<N/2

W̃B((n+ 1
2
)T, (k −mN) 1

2NT
)δ(t− (n+ 1

2
)T )(−1)m

= N
∑
m

∑
|n|<N

(−1)mnW̃B(nT
2
, (k −mN) 1

2NT
)δ(t− nT

2
)

Comparing (B.10) with the above expression yields

WB(nT
2
, k

2NT
) =

∑
m

(−1)mnW̃B(nT
2
, (k −mN) 1

2NT
)

Substituting (2.24) into this expressions relates the DWVD and WVD, as

WB(nT
2
, k

2NT
) =

∑
l

∑
m

(−1)nm+lk−lmNW((n− lN)T
2
, (k −mN) 1

2NT
).

Next, I present an alternative method for defining the DWVD by sampling the periodic
SIAF. This method is similar to the previous method of sampling the TIAF.

B.5.3 SIAF Sampling Approach A

Sampling the periodic SIAF K̃A(ν, f), from (2.19), with sampling approach A, where
Λ = 1/NT , results in

K̃A
i (ν, f) = K̃A(ν, f)

N/2−1∑
k=0

∑
|l|<N/4

δ(ν − 2l
NT

)δ(f − k
NT

).

From (2.19),

K̃A( 2l
NT
, k
NT

) =
1

T

∑
n

∑
m

K((2l − nN) 1
NT
, (k − mN

2
) 1
NT

).

For one period in the SIAF, within the rectangular region 0 ≤ k < N/2, |l| < N/4, this
discrete SIAF is

K̃A( 2l
NT
, k
NT

) =
1∑

n=−1

1∑
m=−1

KA((2l − nN) 1
NT
, (k − mN

2
) 1
NT

).

In terms of the periodic discrete-frequency signal X̃(k/NT ), the discrete SIAF equals

K̃A( 2l
NT
, k
NT

) = X̃((k+ l) 1
NT

)X̃∗((k− l) 1
NT

)+X̃((k+ l+ N
2

) 1
NT

)X̃∗((k− l− N
2

) 1
NT

) (B.11)

within the range 0 ≤ k < N/2, |l| < N/4. The DWVD is the inverse DFT, scaled by

2/N , of the discrete and periodic K̃A,

WA(nT, k
NT

) =
2

N

∑
|l|<N/4

K̃A( 2l
NT
, k
NT

) e j4πln/N . (B.12)
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The DWVD WA is related to the continuous WVD as follows:

WA(nT, k
NT

) =
∑
m

∑
l

W ((n− lN
2

)T, (k − mN
2

) 1
NT

). (B.13)

(The derivation follows a similar approach to that in Appendix B.5.1.) Comparing this
with (2.28) shows that the DWVD WA is equal to WA,

WA(nT, k
NT

) = WA(nT, k
NT

).

B.5.4 SIAF Sampling Approach B

Sampling the periodic SIAF K̃B(ν, f), from (2.20), with sampling approach B, results in

K̃B
i (ν, f) = K̃B(ν, f)

N−1∑
k=0

∑
|l|<N

l+k even

δ(ν − l
NT

)δ(f − k
2NT

).

The periodicity of the discrete SIAF K̃B( l
NT
, k

2NT
) is

K̃B( l
NT
, k

2NT
) =

2

T

∑
n

∑
m

n+m even

K((l − nN) 1
NT
, (k −mN) 1

2NT
).

For one period in the SIAF, within the rectangular region |n| < N , 0 ≤ k < N ,

K̃B( 2l
NT
, k
NT

) = X̃((k + l) 1
NT

)X̃∗((k − l) 1
NT

)

K̃B((2l + 1) 1
NT
, (k + 1

2
) 1
NT

) = X̃((k + l + 1) 1
NT

)X̃∗((k − l) 1
NT

).

The DWVD is the inverse DFT, scaled by 1/N , of the discrete and periodic K̃A,

WB(nT
2
, k

2NT
) =

1

N

∑
|l|<N
K̃B( l

NT
, k

2NT
) e jπln/N . (B.14)

Using an approach similar to that in Appendix B.5.2, we can show that the DWVD
is related to the WVD as follows:

WB(nT
2
, k

2NT
) =

∑
l

∑
m

(−1)nm+lk−lmNW ((n− lN)T
2
, (k −mN) 1

2NT
). (B.15)

From (2.31),

WB(nT
2
, k

2NT
) = WB(nT

2
, k

2NT
).
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B.5.5 Relation Between DWVD-A and DWVD-B

We can write the DWVD-B, which uses a 2N -point signal, for even values of n and even
values of k as

WB(2nT
2
, 2k

4NT
) =

1

2N

∑
|m|<N

K̃B(nT, 2mT ) e−j(2π/N)mk

=
1

2N

N−1∑
m=0

K̃B(nT, 2mT ) e−j(2π/N)mk +
2N−1∑
m=N

K̃B(nT, 2mT ) e−j(2π/N)mk


=

1

2N

N−1∑
m=0

K̃B(nT, 2mT ) e−j(2π/N)mk

+
N−1∑
m=0

K̃B(nT, (2m+N)T ) e−j(2π/N)(m+N)k


=

1

2N

N−1∑
m=0

[
K̃B(nT, 2mT ) + K̃B(nT, (2m+N)T )

]
e−j(2π/N)mk.

Comparing the definition of K̃B in (2.29) with the definition of K̃A in (2.4.5), and sub-
stituting N for 2N in these equations, results in

WB(2nT
2
, 2k

4NT
) =

1

2N

N−1∑
m=0

K̃A(nT, 2mT ) e−j(2π/N)mk

=
1

2
WA(nT, k

2NT
)

An expected result from the frequency decimation is a folding of the TIAF in the lag
direction, that is,

K̃A(nT, 2mT ) = K̃B(nT, 2mT ) + K̃B(nT, (2m+ 2N)T ) (B.16)

which is equal to definition of K̃A in (2.4.5).



Appendix C

Derivations for Discrete Ambiguity
Functions

The appendix presents two methods for deriving a discrete-lag, discrete-Doppler ambiguity
function (AF), or discrete AF (DAF) for short. The methods are taken from the DWVD
definition, explained in more detail in Section 2.4.

C.1 Discrete-Lag Ambiguity Function

The discrete TIAFs KA and KB are used to form a discrete-lag AF, each yielding a
different discrete-lag AF. We examine both here.

C.1.1 TIAF Sampling Approach A

We define the first discrete-lag AF by applying the discrete-time FT on the discrete TIAF
KA(nT, 2mT ), with respect to time nT , to get

ÃA(ν, 2mT ) = T
∑
n

KA(nT, 2mT ) e−j2πnTν . (C.1)

Relation to Continuous AF As with the discrete-time WVD, the AF of the sampled
TIAF in (B.1) can be used to relate the discrete-lag AF to the continuous AF. Therefore

AA
i (ν, τ) =

∫
K(t, τ)

∑
n

δ(t− nT )
∑
m

δ( τ
2
−mT ) e j2πtν dt

=
∑
m

∑
n

KA(nT, 2mT ) e−j2πnTνδ(τ − 2mT )

=
1

T

∑
m

AA(ν, 2mT )δ(τ − 2mT ) (C.2)

167
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where the definition of AB in (C.1) was substituted in the last line. AA
i can also be

expressed in terms of A(ν, τ) as

AA
i (ν, τ) =

∫
K(t, τ)

∑
n

δ(t− nT )
∑
m

δ( τ
2
−mT ) e j2πtν dt

=
∑
m

δ(τ − 2mT )

A(ν, τ) ∗
ν

1

T

∑
n

δ(ν − n
T

)


=

1

T

∑
m

∑
n

A(ν − n
T
, 2mT )δ(τ − 2mT )

which combined with (C.2) results in

ÃB(ν, 2mT ) =
∑
n

A(ν − n
T
, 2mT ).

C.1.2 TIAF Sampling Approach B

We define the second discrete-lag AF, using KB, as

ÃB(ν,mT ) = T
∑
n

KB(nT
2
,mT ) e−jπnTν

which, for even–odd values of m, is

ÃB(ν, 2mT ) = T
∑
n

KB(nT, 2mT ) e−j2πnTν

ÃB(ν, (2m+ 1)T ) = T
∑
n

KB((n+ 1
2
)T, (2m+ 1)T ) e−j2π(n+1/2)Tν .

(C.3)

Relation to Continuous AF The AF of KB
i , defined in (B.3), is

AB
i (ν, τ) =

∫
K(t, τ)

∑
n

δ(t− nT )
∑
m

δ(τ − 2mT ) e−j2πtν dt

+

∫
K(t, τ)

∑
n

δ(t− (n+ 1
2
)T )

∑
m

δ(τ − (2m+ 1)T ) e−j2πtν dt

=
∑
m

∑
n

KB(nT, 2mT ) e−j2πnTνδ(τ − 2mT )

+
∑
m

∑
n

KB((n+ 1
2
)T, (2m+ 1)T ) e−j2π(n+

1
2

)Tνδ(τ − (2m+ 1)T )

=
1

T

∑
m

AB(ν,mT )δ(τ −mT ) (C.4)
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Figure C.1: Discrete-lag AF of analytic LFM signal. (a) Real part of discrete-lag AF
produced using sampling approach A, and (b) real part of discrete-lag AF produced using
sampling approach B.

using the definition of the discrete-lag AF in (C.3). This also equals

AB
i (ν, τ) = A(ν, τ) ∗

ν

∫ ∑
n

δ(t− nT )
∑
m

δ(τ − 2mT ) e−j2πtν dt

+

∫ ∑
n

δ(t− (n+ 1
2
)T )

∑
m

δ(τ − (2m+ 1)T ) e−j2πtν dt


= A(ν, τ) ∗

ν

 1

T

∑
m

δ(τ − 2mT )
∑
n

δ(ν − n
T

)

+
1

T

∑
m

δ(τ − (2m+ 1)T )
∑
n

(−1)nδ(ν − n
T

)


=

1

T

∑
m

∑
n

(−1)nmA(ν − n
T
,mT )δ(τ −mT )

which when combined with (C.4) results in

ÃB(ν,mT ) =
∑
n

(−1)nmA(ν − n
T
,mT ).

Fig. C.1 shows the two discrete-lag AFs ÃA and ÃB using the same LFM analytic
signal used in Section 2.4.3. We see that both discrete-lag AFs contain periodic copies
outside the region |ν| < 1/2T . Like the discrete-time WVD W̃B, the discrete-lag AF ÃB

has periodic copies that oscillate between positive and negative values, depending in the
parity of m. This oscillation is caused by the (−1)nm term in (6.4).
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C.2 Discrete-Doppler Ambiguity Function

We use the two discrete SIAFs KA and KB, from Section 2.4.3, to form two discrete-
Doppler AFs.

C.2.1 SIAF Sampling Approach A

Apply the inverse discrete-frequency FT to the SIAF KA(2lΛ, kΛ) to obtain

ÃA(2lΛ, τ) = Λ
∑
k

KA(2lΛ, kΛ) e j2πkΛτ . (C.5)

Relation to Continuous AF As with the discrete-time WVD, we can use the AF of
the sampled SIAF defined in (B.1) to relate the discrete-lag AF to the continuous AF:

AA
i (ν, τ) =

∫
K(ν, f)

∑
l

δ(ν − 2lΛ)
∑
k

δ(f − kΛ) e j2πfτ df

=
∑
l

∑
k

KA(2lΛ, kΛ) e j2πkΛτδ(ν − 2lΛ)

=
1

Λ

∑
l

AA(2lΛ, τ)δ(ν − 2lΛ) (C.6)

where the definition of AA in (C.5) was substituted in the last line. We can rewrite the
previous expression in terms of A as

AA
i (ν, τ) =

∫
K(ν, f)

∑
l

δ(ν − 2lΛ)
∑
k

δ(f − kΛ) e j2πfτ df

=
∑
k

δ(ν − 2lΛ)

A(ν, τ) ∗
τ

1

Λ

∑
k

δ(τ − k
Λ

)


=

1

Λ

∑
l

∑
k

A(2lΛ, τ − k
Λ

)δ(ν − 2lΛ)

which when combined with (C.6) results in

ÃA(2lΛ, τ) =
∑
l

A(2lΛ, τ − k
Λ

).

C.2.2 SIAF Sampling Approach B

Apply the inverse discrete-frequency FT to the SIAF KB(lΛ, kΛ/2) to obtain

ÃB(lΛ, τ) = Λ
∑
k

KB(lΛ, kΛ
2

) e jπkΛτ .

For even–odd values of m the preceding expression is

ÃB(2lΛ, τ) = Λ
∑
k

KB(2lΛ, kΛ) e j2πkΛτ

ÃB((2l + 1)Λ, τ) = Λ
∑
k

KB((2l + 1)Λ, (k + 1
2
)Λ) e j2π(k+1/2)Λτ .

(C.7)
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Relation to Continuous AF The following derives the relation between the continu-
ous and discrete-Doppler AF:

AB
i (ν, τ) =

∫
K(ν, f)

∑
k

δ(f − kΛ)
∑
l

δ(ν − 2lΛ) e j2πfτ df

+

∫
K(ν, f)

∑
k

δ(f − (k + 1
2
)Λ)

∑
l

δ(ν − (2l + 1)Λ) e j2πfτ df

=
∑
k

∑
l

KB(2lΛ, kΛ) e j2πkΛτδ(ν − 2lΛ)

+
∑
k

∑
l

KB((2l + 1)Λ, (k + 1
2
)Λ) e j2π(k+

1
2

)Λτδ(ν − (2l + 1)Λ)

=
1

Λ

∑
m

AB(lΛ, τ)δ(ν − lΛ) (C.8)

using the definition of the discrete-Doppler AF in (C.7). We can rewrite the previous
expression as

AB
i (ν, τ) = A(ν, τ) ∗

τ

∫ ∑
k

δ(f − kΛ)
∑
l

δ(ν − 2lΛ) e j2πfτ df

+

∫ ∑
k

δ(f − (k + 1
2
)Λ)

∑
l

δ(ν − (2l + 1)Λ) e j2πfτ df


= A(ν, τ) ∗

τ

 1

Λ

∑
k

δ(τ − k
Λ

)
∑
l

δ(ν − 2lΛ)

+
1

Λ

∑
k

(−1)kδ(τ − k
Λ

)
∑
l

δ(ν − (2l + 1)Λ)


=

1

Λ

∑
k

∑
l

(−1)klA(lΛ, τ − k
Λ

)δ(ν − lΛ)

which when combined with (C.8) results in

ÃB(lΛ, τ) =
∑
k

(−1)klA(lΛ, τ − k
Λ

).

We show an example of the two discrete-Doppler AFs ÃA and ÃB in Fig. C.2, using the
LFM analytic signal. These plots show the periodic components, caused by the sampling
in the frequency-direction, for the two discrete-Doppler AFs.

C.3 Discrete-Doppler, Discrete-Lag Ambiguity Func-

tion

We use the two discrete periodic TIAFs K̃A and K̃B, from Section B.5.1 and Section B.5.2,
to form two discrete-Doppler, discrete-lag AFs, or the discrete AF (DAF) for short.
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Figure C.2: Discrete-Doppler AF of analytic LFM signal. (a) Real part of discrete-Doppler
AF produced using sampling approach A, and (b) real part of discrete-Doppler AF produced
using sampling approach B.

For the first DAF definition, we use K̃A:

AA( 2l
NT
, 2mT ) =

2

N

∑
|n|<N/4

K̃A(nT, 2mT ) e−j(4π/N)nl. (C.9)

Applying the same approach as for the DWVD in Section 2.4.5 the relation between the
DAF and AF is

AA( 2l
NT
, 2mT ) =

∑
n

∑
k

A((2l − nN) 1
NT
, (2m− kN)T ). (C.10)

For the second DAF definition, we use K̃B:

AB( l
NT
,mT ) =

1

N

∑
|n|<N

K̃B(nT
2
,mT ) e−j(π/N)nl (C.11)

which is related to the continuous AF as follows:

AB( l
NT
,mT ) =

∑
n

∑
k

(−1)nm+lk−knNA((l − nN) 1
NT
, (m− kN)T ). (C.12)

We could have also derived the same two DAF definitions by using the discrete periodic
SIAFs rather than the discrete periodic TIAFs.

C.3.1 Aliasing and Periodicity in the Doppler–Lag Domain

The DAF is periodic in both Doppler and lag, as shown in (C.10) and (C.12). We
now look at why the DAF is aliased using both the real and analytic signal for the two
sampling approaches. First, if x(t) is the real-valued signal, band limited as detailed by
Section 2.4.6, then the continuous AF is

A(ν, τ) ≈ 0 for |ν| > 1

T
or |τ | > NT .
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Figure C.3: The DAF (a) AA and (b) AB represented as a sum of Doppler and lag shifted
AF copies using a real signal. For clarity, I show only a subset of the terms in the summations
in (C.13) and (C.14). The terms (−1)l, (−1)m and (−1)l+m+N in (b) is a multiplicative factor
for the shifted AF copies.

(See Section 2.4.6 for a discussion on why the AF is not exactly zero for this region.)

Within the signal’s Doppler–lag region—that is, within the region |ν| ≤ 1/T and
|τ | ≤ NT—the two DAFs are thus related to the continuous AF

AA( 2l
NT
, 2mT ) ≈

1∑
n=−1

1∑
k=−1

A((2l − nN) 1
NT
, (2m− kN)T ) (C.13)

AB( l
NT
,mT ) ≈

1∑
n=−1

1∑
k=−1

(−1)nm+lk−knNA((l − nN) 1
NT
, (m− kN)T ) (C.14)

Therefore, both DAFs are aliased—Fig. C.3 illustrates. Both DAFs are aliased to the
same extent, the only difference is the addition of the multiplicative factor (−1)nm+lk−knN

for the DAF AB, as shown in (C.14).

Second, if we use the band-limited analytic signal z(t), defined in Section 2.4.6, the
continuous AF of this signal is

A(ν, τ) ≈ 0 for |ν| > 1

2T
or |τ | > NT

which has half the Doppler–lag bandwidth of the AF of real signal x(t).

The two DAFs definitions within the signal’s Doppler–lag region—that is, within the
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Figure C.4: The DAF (a) AA and (b) AB represented as a sum of Doppler and lag shifted AF
copies using an analytic signal. For clarity I show only a subset of the terms in the summations
in (C.15) and (C.16). The terms (−1)l, (−1)m and (−1)l+m+N in (b) is a multiplicative factor
for the shifted AF copies.

region |ν| ≤ 1/(2T ) and |τ | ≤ NT—are thus related to the continuous AF

AA( 2l
NT
, 2mT ) =

1∑
k=−1

A( 2l
NT
, (2m− kN)T ) (C.15)

AB( l
NT
,mT ) =

1∑
k=−1

(−1)nm+lk−knNA( l
NT
, (m− kN)T ) (C.16)

Fig. C.4 illustrates these relations. Even though the Doppler–lag region of extent for the
DAF of the analytic signal is smaller than that for the DAF of real-valued signal, the
DAF of the analytic signal is still aliased.

To conclude I present an example for the DAFs AA and AB in Fig. C.5.
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Figure C.5: DAF of analytic LFM signal. (a) Real part of DAF produced using sampling
approach A, and (b) real part of DAF produced using sampling approach B.

C.3.2 Relation Between DAF-A and DAF-B

We can write DAF-B, of a 2N -point signal, for even values of l and m as

AB( 2l
2NT

, 2mT ) =
1

2N

∑
|k|<N

K̃B( 2l
2NT

, 2k
4NT

) e j(2π/N)km

=
1

2N

N−1∑
k=0

K̃B( 2l
2NT

, 2k
4NT

) e j(2π/N)km +
2N−1∑
k=N

K̃B( 2l
2NT

, 2k
4NT

) e j(2π/N)km


=

1

2N

N−1∑
k=0

K̃B( 2l
2NT

, 2k
4NT

) e j(2π/N)km

+
N−1∑
k=0

K̃B( 2l
2NT

, (2k + 2N) 1
4NT

) e j(2π/N)km


and substituting in the definition of K̃A from (B.11), now with 2N rather than N , results
in

AB( 2l
2NT

, 2mT ) =
1

2N

N−1∑
k=0

K̃A( 2l
2NT

, 2k
4NT

) e−j(2π/N)nl

=
1

2
AA( 2l

2NT
, 2mT ).

An expected result from the lag decimation is a folding of the SIAF in the frequency
direction, that is,

K̃A( l
NT
, k
NT

) = K̃B( 2l
2NT

, 2k
4NT

) + K̃B( 2l
2NT

, (2k+2N)
4NT

) (C.17)

which is consistent with the definition of K̃A in (B.11).
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Appendix D

Proof of Spectral Energy Relation
for the Discrete Analytic Signals

I derive the relation, for the negative spectral energy, between the proposed and conven-
tional analytic signals. To do so, I decompose the energy of Zp(k/2NT ) for N ≤ k ≤
2N − 1 as follows:

2N−1∑
k=N

∣∣∣Zp( k
2NT

)
∣∣∣2 =

∣∣∣Zp( N
2NT

)
∣∣∣2 +

N−1∑
k=bN2 c+1

∣∣∣Zp( 2k
2NT

)
∣∣∣2 +

N−1∑
k=dN2 e

∣∣∣Zp(2k+1
2NT

)
∣∣∣2

where the function bxc returns an integer smaller than or equal to x, and the function
dxe returns an integer larger than or equal to x. We examine each part of the preceding
decomposition separately.

D.1 Case for k odd

First, write Ut(k/2NT ), which is the DFT of ut(nT ), as

Ut(
k

2NT
) =

{
Nδ[k], k even,

1− j cot ( πk
2N

), k odd.
(D.1)

Next, consider the energy at negative frequencies for Zc(k/2NT ). From (3.11) and
(3.13), we express Zc(k/2NT ) as

Zc(
k

2NT
) =

1

N

N−1∑
l=0

Sa( 2l
2NT

)Ha( 2l
2NT

)Ut(
k−2l
2NT

).

If we use (D.1) in the preceding equation, then we can write Zc(k/2NT ) for even–odd k
values as

Zc(
2k

2NT
) = Sa( 2k

2NT
)Ha( 2k

2NT
) (D.2)

Zc(
2k+1
2NT

) =
1

N

N−1∑
l=0

Sa( 2l
2NT

)Ha( 2l
2NT

)Ut(
2k+1−2l

2NT
). (D.3)
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The even k terms for Zc(k/2NT ) do not contribute to the negative spectral energy be-
cause, from (3.6), Ha(2k/2NT ) = 0 for 2k > N . Thus, the energy in the negative spectral
region is solely caused by the odd k terms in Zc(k/2NT ),

2N−1∑
k=N+1

∣∣∣Zc(
k

2NT
)
∣∣∣2 =

N−1∑
k=dN2 e

∣∣∣Zc(
2k+1
2NT

)
∣∣∣2 . (D.4)

Lastly, consider the energy at negative frequencies for Zp(k/2NT ). By combining
(3.12) and (D.1), Zp(k/2NT ) for odd k values is

Zp(2k+1
2NT

) =
1

2
Sa(2k+1

2NT
)Ha(2k+1

2NT
) +

1

2N

N−1∑
l=0

Sa( 2l
2NT

)Ha( 2l
2NT

)Ut(
2k+1−2l

2NT
). (D.5)

Thus, relating (D.5) with (D.3) and (3.5), gives us

Zp(2k+1
2NT

) =
1

2

[
Za(2k+1

2NT
) + Zc(

2k+1
2NT

)
]
. (D.6)

From (3.6), we know that Za(k/2NT ) = 0 for k > N ; therefore, (D.6) reduces to Zp((2k+
1)/2NT ) = Zc((2k+1)/2NT )/2 for (2k+1) > N . If we combine this relation with (D.4),
then we get the negative spectral energy relation,

N−1∑
k=dN2 e

∣∣∣Zp(2k+1
2NT

)
∣∣∣2 =

1

4

2N−1∑
k=N+1

∣∣∣Zc(
k

2NT
)
∣∣∣2 . (D.7)

D.2 Case for k even

We start by introducing a new signal ẑ(nT ), defined as

ẑ(nT ) =

{
0, 0 ≤ n ≤ N − 1,

za(nT ), N ≤ n ≤ 2N − 1.
(D.8)

The signal ẑ(nT ) is purely imaginary because the real part of za(nT ) is zero for N ≤ n ≤
2N − 1. We can also express ẑ(nT ) as ẑ(nT ) = za(nT ) − zp(nT ) for all values of n. In
the frequency domain, this equates to

Ẑ( k
2NT

) = Za( k
2NT

)− Zp( k
2NT

) (D.9)

where Ẑ(k/2NT ) represents the DFT of ẑ(nT ). We now introduce some properties of

Ẑ(k/2NT ).
We can show easily, because of the form of ẑ(nT ) in (D.8), that

N−1∑
k=0

∣∣∣Ẑ( 2k
2NT

)
∣∣∣2 =

N−1∑
k=0

∣∣∣Ẑ(2k+1
2NT

)
∣∣∣2 . (D.10)
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Also, because ẑ(nT ) is purely imaginary then following symmetry holds:

Ẑ(2N−k
2NT

) = −
[
Ẑ( k

2NT
)
]∗
. (D.11)

We express the spectral energy for Ẑ(2k/2NT ), using the symmetrical relation in
(D.11), as

N−1∑
k=0

∣∣∣Ẑ( 2k
2NT

)
∣∣∣2 =

∣∣∣Ẑ( 0
2NT

)
∣∣∣2 + 2

N−1∑
k=bN2 c+1

∣∣∣Ẑ( 2k
2NT

)
∣∣∣2 + A. (D.12)

with

A =

{
|Ẑ( N

2NT
)|2, N even,

0, N odd.

Similarly, the spectral energy at k odd values of Ẑ(k/2NT ) is

N−1∑
k=0

∣∣∣Ẑ(2k+1
2NT

)
∣∣∣2 = 2

N−1∑
k=dN2 e

∣∣∣Ẑ(2k+1
2NT

)
∣∣∣2 +B. (D.13)

with

B =

{
0, N even,

|Ẑ( N
2NT

)|2, N odd.

This concludes the segment on the properties of Ẑ(k/2NT ).
If we substitute (D.13) and (D.12) into (D.10), then we obtain:

N−1∑
k=bN2 c+1

∣∣∣Ẑ( 2k
2NT

)
∣∣∣2 =

N−1∑
k=dN2 e

∣∣∣Ẑ(2k+1
2NT

)
∣∣∣2 − 1

2

[∣∣∣Ẑ( 0
2NT

)
∣∣∣2 + A−B

]
.

Then we substitute (D.7), and the relation Ẑ(k/2NT ) = −Zp(k/2NT ) for k > N , into
the preceding equation to obtain:

N−1∑
k=bN2 c+1

∣∣∣Zp( 2k
2NT

)
∣∣∣2 =

1

4

2N−1∑
k=N+1

∣∣∣Zc(
k

2NT
)
∣∣∣2 − 1

2

[∣∣∣Ẑ( 0
2NT

)
∣∣∣2 + A−B

]
. (D.14)

D.3 Nyquist Frequency Terms

The Nyquist term Za(N/2NT ) is a real number, because of the definition of Za(k/2NT )

in (3.5); the Nyquist term Ẑ(N/2NT ) is an imaginary number, because ẑ(nT ) is purely
imaginary. Thus, we rewrite (D.9) as∣∣∣Zp( N

2NT
)
∣∣∣2 =

∣∣∣Za( N
2NT

)
∣∣∣2 +

∣∣∣Ẑ( N
2NT

)
∣∣∣2 . (D.15)

The remaining relations depend on the parity of N .
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D.3.1 Case for N even

We know, from (D.2) and (3.5), that when N is even, Zc(N/2NT ) = Za(N/2NT ). When
we combine this with (D.15) we get∣∣∣Zp( N

2NT
)
∣∣∣2 =

∣∣∣Zc(
N

2NT
)
∣∣∣2 +

∣∣∣Ẑ( N
2NT

)
∣∣∣2 . (D.16)

D.3.2 Case for N odd

We know, from (D.6), that when N is odd,

Zc(
N

2NT
) = 2Zp( N

2NT
)− Za( N

2NT
).

When we combine this with (D.9) we get∣∣∣Zc(
N

2NT
)
∣∣∣2 =

∣∣∣Za( N
2NT

)
∣∣∣2 + 4

∣∣∣Ẑ( N
2NT

)
∣∣∣2 .

If we substitute this equation into (D.15), then we get the relation∣∣Zp[N ]
∣∣2 =

∣∣Zc[N ]
∣∣2 − 3

∣∣∣Ẑ[N ]
∣∣∣2 . (D.17)

Finally, we are able to assemble the three parts of the decomposition in (D.1). If we
combine the relation for k even in (D.14) with the relation for k odd in (D.7), and add
the Nyquist frequency relations in (D.16) and (D.17), then we get the following:

2N−1∑
k=N

∣∣∣Zp( k
2NT

)
∣∣∣2 =

1

2

2N−1∑
k=N

∣∣∣Zc(
k

2NT
)
∣∣∣2 +

1

2

(∣∣Zp[N ]
∣∣2 − ∣∣∣Ẑ[0]

∣∣∣2 − C)
with

C =

{
0, N even,

2|Ẑ( N
2NT

)|2, N odd.

This concludes the proof.



Appendix E

Aliasing and the AF-GDTFD

The AF-GDTFD is aliased, but, as this section describes, the quantity of aliasing depends
on the structure of the kernel. To begin, lets define an alternative DTFD definition, which
we shall call the DTFD-R, as follows:

ρR(nT
2
, k

4NT
) = WB(nT

2
, k

4NT
) ~

n
~
k
γR(nT

2
, k

4NT
). (E.1)

for n, k = 0, 1, . . . , 4N − 1. The DWVD-B in the preceding equation, which uses the
2N -point analytic signal z(nT ), is a full-plane distribution and extends over the time–
frequency region 0 ≤ t ≤ 2NT and |f | ≤ 1/(2T ). Thus the DTFD-R uses the same
DWVD definition as the AF-GDTFD uses in (4.4).

The DTFD-R’s kernel, like the AF-GDTFD, extends over the Doppler–lag region |ν| ≤
1/T and |τ | ≤ 2NT ; the kernel γR, however, has a denser time–lag sample grid compared
with that for the AF-GDTFD, as we can see by comparing Fig. E.1 and Fig. 4.2(b).

The AF-GDTFD is a time- and frequency-decimated version of the DTFD-R:

ρAF(nT, k
2NT

) = ρR(2nT
2
, 2k

4NT
). (E.2)

[This relation follows simply from (4.4) and (E.1).] Hence, if the DTFD-R is aliased then
the AF-GDTFD will be aliased too, and likewise if the DTFD-R contains only minimal
aliasing then the AF-GDTFD will contain also only minimal aliasing.

To understand why the DTFD-R, and therefore the AF-GDTFD, is aliased, we exam-
ine the distribution in the Doppler–lag domain. The DTFD in the Doppler–lag domain is

6

7

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

−9

19

n (= 2t/T )

m (= τ/T )

Figure E.1: Time–lag (t–τ) sample grid of GR(nT/2,mT ) for length 2N = 10 signal.
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Figure E.2: Discrete ambiguity function (DAF) AB of 2N -point analytic signal. The thick
black line denotes the region of extent for AB(l/2NT,mT ). The grey shaded regions represent
the periodic shifted copies of the DAF. The terms (−1)n, (−1)k and (−1)n+k+N are multiplicative
factors for the shifted DAF copies.

called the smoothed discrete ambiguity function SR, which is the product of the discrete
ambiguity function (DAF) and the Doppler–lag kernel:

SR( l
2NT

,mT ) = AB( l
2NT

,mT )gR( l
2NT

,mT ) (E.3)

for l,m = 0, 1, . . . , 4N − 1. We know, from (2.41), that the DAF AB is periodic in 2N ;
thus, within the region in (E.3), the DAF contains periodic copies, which Fig. E.2 shows.
The quantity of aliasing suppressed depends on the structure of Doppler–lag kernel gR.
That is, if gR is zero outside the region |ν| ≤ 1/(2T ) and |τ | ≤ NT , then, from (E.3),
the smoothed DAF SR will not contain any periodic copies of the DAF. Conversely, if gR

is nonzero outside the region |ν| ≤ 1/(2T ) and |τ | ≤ NT , then some, or all, of the DAF
periodic copies will appear in SR.

To formalise this process, lets define a two-dimensional rectangular function H in the
Doppler–lag domain as

H( l
2NT

,mT ) =

{
1, if |l| ≤ N or |m| ≤ N ,

0, otherwise.
(E.4)

Fig. E.3 illustrates the function H.
If the Doppler–lag kernel gR satisfies the condition that

gR( l
2NT

,mT ) = gR( l
2NT

,mT )H( l
2NT

,mT ) (E.5)

then the DTFD-R, and thus the AF-GDTFD, will be a pseudo-alias–free distribution
because, from (E.3) and (E.4), the kernel gR will suppress the periodic copies of the DAF
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Figure E.3: The two-dimensional rectangle-window function H. Black represents one and
white represents zero.

in AB. The condition in (E.5) may be true for some kernel types, although certainly not
all. For example, Doppler- or lag-independent kernels will not satisfy (E.3), or even most
two-dimensional smoothing kernel types, which may tend to—although never reach—zero
as they extend out from the Doppler–lag origin [8].

Fig. E.4 shows an example using a LFM signal and a Doppler–independent (DI) kernel
of the three functions in (E.3). The DI kernel does not satisfy the relation in (E.5) because
it is nonzero for |τ | > NT as Fig. E.4(b) shows. Fig. E.5 shows a similar example but
with a separable, rather than DI, kernel. From Fig. E.5(b) it appears that this kernel
satisfies—or at least better approximates—the relation in (E.5). Note, from Fig. E.4(c)
and Fig. E.5(c), that the smoothed DAF that uses the separable kernel has less aliasing
energy compared with that for the smoothed DAF that uses the DI kernel. This aliasing
energy is transformed to the time–frequency domain; Fig. E.6 shows the DTFD-R using
the examples in Fig. E.4 and Fig. E.5.

We could, of course, force the DTFD-R to a pseudo-alias–free definition by redefining
the DTFD-R as

ρR(nT
2
, k

4NT
) = WB(nT

2
, k

4NT
) ~

n
~
k
γR(nT

2
, k

4NT
) ~

n
~
k
h(nT

2
, k

4NT
) (E.6)

where h is the time–frequency representation for Doppler–lag kernel H. (The multi-
plication in the Doppler–lag domain equates to a time–frequency convolution in the
time–frequency domain.) The consequences of including h in the preceding definition
is the modified DTFD-R from (E.6) will not satisfy certain properties, such the time- or
frequency-marginal. Thus, forcing the DTFD-R, and therefore the AF-GDTFD, to be a
pseudo-alias–free definition, may results in a loss of mathematical properties.

The proposed DTFD definition, from Chapter 4, however, does not require the extra
limitation in (E.5) on its kernel—the proposed definition is a pseudo-alias–free definition,
regardless of kernel structure and requires only 2N2 sample points, unlike the AF-GDTFD
which requires 4N2 sample points.
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Figure E.4: Forming the smoothed DAF, for the DTFD-R, of an LFM signal: multiply DAF
in (a) by a Doppler–independent kernel in (b) to produce smoothed DAF in (c).
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Figure E.5: Forming the smoothed DAF, for the DTFD-R, of a LFM signal: multiply DAF
in (a) by a separable kernel in (b) to produce smoothed DAF in (c).
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Figure E.6: DTFD-R of LFM signal using the (a) Doppler–independent kernel and (b)
separable kernel. The AF-GDTFD is a time- and frequency-decimated version of the DTFD-R.
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Appendix F

Additional DTFD Algorithms

This chapter provides algorithms and explanations, additional to those in Chapter 5, for
efficiently computing the proposed DTFD from Chapter 4.

F.1 Time–Lag to Time–Frequency Algorithm

Transform the time–lag array RC
d [n,m] to the time–frequency domain to obtain the

DTFD.

• INPUT: N × 2Nf time–lag function RC
d [n,m];

• OUTPUT: 2N ×Nf DTFD ρC[n, k].

1. For n even:
ρC[2n, k] = DFT

m→k

(
RC

d [n, 2m]
)
.

2. For n odd:

(a) let

h[k] =
cos2(πk/Nf)

sin(πk/Nf)
+ sin(πk/Nf), k = 1, 2, . . . , Nf − 1,

h[k] = 0, k = 0.

(b) and

R̂C
d [n, 0] = =

(
RC

d [n, 0]
)
,

R̂C
d [n,m] =

1

2j

{
RC

d [n, 2m+ 1]−
(
RC

d [n, 2Nf − 2m− 1]
)∗}

, 1 ≤ m ≤ Nfh.

(c) Recover the negative lag values:

R̂C
d [n,m] =

(
R̂C

d [n, 2Nf − 2m− 1]
)∗
, Nfh + 1 ≤ m ≤ Nf − 1.

187
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(d) DFT to the time–frequency domain and multiply by constant h[k]:

ρC[2n+ 1, k] = DFT
m→k

(
R̂C

d [n,m]
)
h[k].

(e) Do for frequency sample k = 0,

ρC[2n+ 1, 0] =

Nf−1∑
m=0

RC
d [n, 2m+ 1]

F.2 AF-GDTFD Algorithm

Here I present an efficient algorithm to compute the AF-GDTFD for a 2N -point signal.
O’ Hair and Suter proposed an algorithm for the AF-GDTFD which does not exploit the
conjugate symmetry, in the lag direction, of the time–lag functions [74]. The O’ Hair–Suter
algorithm requires a O(c12N2 log2 2N) load to compute the AF-GDTFD. The algorithm
I propose here requires a smaller O(c8N2 log2 2N) load to compute the AF-GDTFD.

Other AF-GDTFD algorithms include the sum-of-spectrogram approach [53,75] which
computes the AF-GDTFD using a weighted sum of spectrograms. The method decom-
poses the time–lag kernel into a set of 2N eigenvalues and eigenvectors and then can
approximate the AF-GDTFD with a computational load of O(cr2N2 log2 2N), where r
controls the approximation. When r = 2N , then the method computes the AF-GDTFD
exactly. O’ Hair and Suter suggested that a value of r = 31 provided a useful approxima-
tion to the AF-GDTFD .

The AF-GDTFD, from Chapter 4, is defined as the time–frequency convolution of the
DWVD-B with a kernel:

ρAF(nT, k
2NT

) =

[
WB(n

′T
2
, k′

4NT
) ~
n′

~
k′
γAF(n

′T
2
, k′

4NT
)

]∣∣∣∣∣
n′=n/2,k′=k/2

which is then decimated in time and frequency. To minimise the computational load,
the algorithm implements this decimation process by folding the smoothed DAF in the
Doppler and lag direction.

• INPUT:

– 2N -point analytic signal z[n];

– 4N × (2N + 1) Doppler–lag kernel gAF[l,m].

• OUTPUT: 2N × 2N DTFD matrix ρAF[n, k].

1. Form the shift-down 2N × (2N + 1) matrix KB
d [n,m] for positive lag values only:

KB
d [n, 2m] = z[n+m]z∗[n−m], 0 ≤ m ≤ N

KB
d [n, 2m+ 1] = z[n+m+ 1]z∗[n−m], 0 ≤ m ≤ N − 1

for 0 ≤ n ≤ 2N − 1.
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2. DFT to the Doppler–lag domain :

AB[l,m] = DFT
n→l

(
KB

d [n,m]
)

to get the 2N × (2N + 1) DAF AAF.

3. Modulate odd m values to compensate for the nonuniform discrete grid in KB
d :

AB[l, 2m+ 1] = AB[l, 2m+ 1] e−jπl/(2N), 0 ≤ m ≤ N,

for 0 ≤ l ≤ 2N − 1.

4. Periodically extend in the Doppler direction from 2N to 4N :

AB[l + 2N, 2m] = AB[l, 2m], 0 ≤ m ≤ N

AB[l + 2N, 2m+ 1] = −AB[l, 2m+ 1], 0 ≤ m ≤ N − 1

for 0 ≤ l ≤ 2N − 1. Thus, the DAF is now 4N × (2N + 1).

5. Multiply by the kernel:

SAF[l,m] = AB[l,m]gAF[l,m]

for 0 ≤ m ≤ 2N and 0 ≤ l ≤ 4N − 1.

6. Then, fold the smoothed DAF SAF in the Doppler and lag directions:

SAF
fold[l,m] = SAF[l,m] + SAF[l −N2,m]

+ SAF[l,m−N2] + SAF[l −N2,m−N2]

for 0 ≤ m ≤ N and 0 ≤ l ≤ 2N − 1. Thus, the folded DAF SAF
fold is 2N × (N + 1).

7. IDFT to time–lag domain:

RAF[n,m] = IDFT
l→n

(
SAF

fold[l,m]
)

8. Recover negative lag values from positive ones:

RAF[n, 2N −m] =
(
RAF[n,m]

)∗
, 1 ≤ m ≤ N − 1

where RAF is now 2N × 2N .

9. DFT to get the AF-GDTFD:

ρAF[n, k] = DFT
m→k

(
RAF[n,m]

)
.

Thus the method requires (2N+1) FFT−2N plus (N+1) FFT−2N plus N FFT−2N
operations.
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F.3 Decimation for LI-kernel DTFD Algorithm

The algorithm for the LI-kernel DTFD reduces the size of the DTFD from a 2N×N array
to a Nt × N array, when (Nth = Nt/2) < N . For this section we shall call this Nt × N
DTFD the reduced-size DTFD which we shall denote by ρ̄C. This reduced-size DTFD is
not simply related to the time-decimated DTFD ρC as

ρ̄C[2n, k] = ρC[a2n, k]

ρ̄C[2n+ 1, k] ≈ ρC[a(2n+ 1) + (1− a), k]
(F.1)

where a = N/Nth and Nth ≥ Q for a > 1. (Note, from Chapter 5, that Nt is even.)
This sections explains the relation in preceding equation—the reason why the reduced-
size DTFD is not decimated linearly in time and why the odd n values of the reduced-size
DTFD is not exactly equal to the decimated DTFD.

To help with the interpretation of (F.1), lets examine how to form the LI-kernel DTFD
by starting in the time–lag domain:

1. form the shifted-down, N × 2N , time–lag array KC
d [n,m] from z[n];

2. DFT to the Doppler–lag domain to get AC[l,m];

3. modulate for odd m values: AC[l, 2m+ 1] = AC[l, 2m+ 1] e jπl/N ;

4. window in the Doppler direction: SC[l,m] = AC[l,m]G1[l];

5. resize the array SC[l,m] from N × 2N to Nth × 2N ; we can do this because of the
windowing of the DAF by Q-point G1[l] in the previous step, where Q ≤ Nth ≤ N ;

6. modulate for odd m values: SC[l, 2m+ 1] = SC[l, 2m+ 1] e−jπl/Nth ;

7. DFT back to the time–lag domain to get RC
d [n,m];

8. transform the Nth × 2N shifted-down array RC
d [n,m] to the Nt × N shifted-across

array RC
a [n,m]; this process is merely a reordering process;

9. DFT RC
a [n,m] to obtain the DTFD ρC[n, k];

10. modulate for odd values of k: ρ̄C[n, 2k + 1] = ρ̄C[n, 2k + 1] e−jπk/N .

This procedure yields the reduced-size DTFD and is an alternative implementation to
the LI-kernel algorithm in Section 5.3.2. The modulation terms in step 3 shifts the
sample points in the TIAF at K((n + 1/2)T/2, (2m + 1)T ) down to K(nT, (2m + 1)T )
and then the modulation term in step 6 shifts this back to the now smoothed TIAF
R((n+ 1/2)T/2, (2m+ 1)T ). This shifting process was presented in (2.45). If Nth = N ,
then shifting up and down by 1/2 a sample point cancels, as the two product of the two
modulation terms is one. But when Nth < N , then the product of these terms does not
reduce to one.

There are two aspects to forming this reduced-size Nt ×N DTFD ρ̄C[n, k]. First, the
array does not have uniform time sampling. The resizing of SC[l,m] is equal to folding
the SC[l,m] in the Doppler direction which equates to decimating the shifted-down TIAF
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Figure F.1: Examples of the decimation process in time–lag arrays. (a) Shifted-down array
KC

d [n,m] and (b) shifted-across array KC
a [n,m]. The shifted-down array is decimated in time

at KC
d [an,m], where a = 3, as shown by the black box around these time slices. Decimating KC

d

results in the decimated shifted-across array KC
a [an+ y(1− a),m], where y = n (mod 2).

RC
d [n,m]. Fig. F.1(a) shows an example of decimating RC

d [n,m] when a = N/Nth = 3.
But decimating RC

d [n,m] to RC
d [an,m] does not equal the decimated shifted-across array

RC
a [an,m]; rather RC

d [an,m] equals RC
a [2an,m] for even n values and RC

a [(2n + 1)a +
(1 − a),m] for odd n values; combining the even–odd terms, the decimated function is
RC

a [an+ y(1− a),m], where y = n (mod 2). Thus,

RC
d [an, 2m] = RC

a [a2n,m]

RC
d [an, 2m+ 1] = RC

a [a(2n+ 1) + (1− a),m].

Fig. F.1(b) shows the example of the decimated RC
a [an+y(1−a),m] for a = 3. Thus, the

decimation in RC
a [an + y(1 − a),m] is not linear in time and, because the DTFD equals

the DFT of RC
a , the decimation in the DTFD ρC[an + y(1 − a),m] is likewise not linear

in time.
Second, the reduced-size DTFD ρ̄C[2n + 1, k] is not equal to the corresponding deci-

mated DTFD ρC[a(2n+1)+(1−a), k], as indicated in (F.1) with the approximation sign.
The odd-valued n sample points in the shifted-across array RC

a [2n + 1,m] correspond to
the odd-valued m sample points in the shifted-down array RC

d [n, 2m+ 1]. As I discussed
previously, the modulation terms in the DAF and smoothed DAF shift the corresponding
n samples points in RC

d [n, 2m + 1] up and down by 1/2 a sample. If we decimate the
DTFD as ρC[a(2n + 1) + (1 − a), k] for a > 1, then we fold the smoothed SC[l, 2m + 1]
in the Doppler direction without this modulation process. But when a > 1, Nth < N
and therefore the modulation terms do not cancel. Hence decimating the DTFD in a to
produce ρC[a(2n+1)+(1−a), k] does not equal the procedure in the preceding algorithm
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for the reduced-size DTFD ρ̄C[2n+ 1, k] which removes the zeros from SC[l,m] and then
applies the correct modulation term.

Although the reduced-size DTFD ρ̄C[2n + 1, k] does not equal the decimated DTFD
ρC[a(2n + 1) + (1 − a), k], they may be approximately equal. We can incorporate the
modulation terms in steps 3 and 6 of the previous algorithm into the function G1[l] by
defining the function Gm

1 [l] as

Gm
1 [l] = G1[l] e−jπl/N e jπl/Nth , 0 ≤ l ≤ Qh,

Gm
1 [Q− l] = G1[Q− l] e−jπ(N−l)/N e jπ(Nth−l)/Nth , 1 ≤ l ≤ (Qh + g),

where g = −1 when Q is even and g = 0 when Q is odd. Thus, when Gm
1 [l] ≈ G1[l] then

the reduced-size DTFD ρ̄C[2n + 1, k] will approximate the decimated DTFD ρC[a(2n +
1) + (1 − a), k]. The assumption that Gm

1 [l] ≈ G1[l] depends on the shape of G1[l] and
the values of Nth and Q. I found, experimentally, that for most smoothing-type functions
of G1[l]—that is, when G1[l] tends to zero as l > 0 in the 0 < l ≤ Qh range—the
approximation Gm

1 [l] ≈ G1[l] is a good one and therefore

ρ̄C[2n+ 1, k] ≈ ρC[a(2n+ 1) + (1− a), k].

F.4 Separable-kernel DTFD Algorithm

Here I present another algorithm for the separable-kernel DTFD to the one in Sec-
tion 5.3.2. The algorithm here forms the DTFD by moving through the following domains:
Doppler–frequency to Doppler–lag to Doppler–frequency to, finally, time–frequency.

• INPUT:

– 2N -point analytic signal z[n];

– P -point window function g2[m], where P ≤ 2N ;

– Q-point window function G1[l], where Q ≤ N ;

– parameter Nt, where Q ≤ Nt ≤ 2N and Nt is even;

– parameter Nf , where d(P + 1)/2e ≤ Nf ≤ N when P < 2N or Nf = N when
P = 2N .

• OUTPUT: Nt ×Nf DTFD matrix ρC[n, k].

1. Let Qh = bQ/2c, Ph = bP/2c, Nth = bNt/2c, and

Z[k] = DFT
n→k

(
z[n]

)
.

Also, let f = o(Nt), h = o(P ), and g = o(Q); the function o(·) is defined in (5.5).

2. Form the windowed Doppler–frequency function RC[l, k] for the positive Doppler
values:

RC[l, k] = Z[k + l]Z∗[k − l]G1[l], 0 ≤ l ≤ Qh,

over the positive and negative frequencies, 0 ≤ k ≤ 2N − 1.
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3. Transform to the Doppler–lag domain:

AC[l,m] = IDFT
k→m

(
RC[l, k]

)
This Doppler–lag function includes both positive and negative lag values, |τ | ≤ NT ,
and only positive Doppler values. The DAF array contains Qh× 2N sample points.

4. Window the DAF in the lag direction with g2[m], to create the Qh× 2Nf smoothed
array SC:

SC[l,m] = AC[l,m]g2[m], 0 ≤ m ≤ Ph

SC[l, 2Nf −m] = AC[l, 2N −m]g2[P −m], 1 ≤ m ≤ Ph + h.

5. Transform back to the Doppler–frequency domain:

RC[l, k] = DFT
m→k

(
SC[l,m]

)
.

6. Taking advantage of the symmetry in the Doppler–frequency, rearrange the Qh ×
2Nf array RC[l, k] to the Nth + 1 × Nf array R̂C[l, k]. In the continuous Doppler–
frequency (ν, f) domain, RC extends from 0 ≤ ν ≤ N/(TQ) and |f | ≤ 1/2T ; R̂C

extends from 0 ≤ l ≤ N/(TNth + 1) and 0 ≤ f ≤ 1/2T .

R̂C[l, k] = RC[l, k], 0 ≤ l ≤ Qh,

R̂C[Nth − l, k] =
(
RC[l, Nf + k]

)∗
, 0 ≤ l ≤ Qh + g

for 0 ≤ k ≤ Nf − 1.

7. Recover the negative Doppler values from the positive ones:

R̂C[Nt − l, k] =
(
R̂C[l, k]

)∗
, 1 ≤ l ≤ Nth + f

for 0 ≤ k ≤ Nf − 1.

8. Transform the Doppler–frequency function R̂C[l, k] to time–frequency domain to
obtain the DTFD ρC[n, k]:

ρC[n, k] = IDFT
l→n

(
R̂C[l, k]

)
.

The algorithm requires (Qh + 1) × length-2N FFTs plus (Qh + 1) × length-2Nf FFTs
plusNf/2 × length-Nt FFT operations to compute theNt×Nf DTFD. When all parameter
are at their largest values–that is, when P = 2N , Q = N , Nf = N and Nt = 2N—then the
maximum computational load for this algorithm is 3N/2 × length-2N FFT operations,
which approximately equals the computational load for the nonseparable kernel.
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F.5 Decimated LI- and DI-Kernel DTFD Algorithms

These kernel-specific algorithms compute the decimated DTFD, similar to the decimated
DWVD-C algorithms in Section 5.4.1. See Chapter 5 for details about the decimated
DTFD algorithms.

ALGORITHM-9: Decimated DI-kernel DTFD

• INPUT:

– 2N -point analytic signal z[n];

– P -point window function g2[m], where P ≤ 2N ;

– parameter Nf , where d(P + 1)/2e ≤ Nf ≤ N when P < 2N or Nf = N when
P = 2N .

– set of L time sample points {ni} = n1, n2, . . . , nL, where L ≤ 2N and each
time sample ni from the set satisfies the inequality 0 ≤ ni ≤ 2N − 1.

– frequency-decimation factor b; b is an integer, b ≥ 1, and J = Nf/b is also an
integer.

• OUTPUT: L× J DTFD matrix ρC[ni, bk].

1. Let Jh = dJ/2e, Ph = bP/2c, Pq = dPh/2e, Nfh = dNf/2e, and i = o(Ph).

2. Separate the time sample points {0, a, 2a, . . . , (L − 1)a} into two sets: one set for
even values of ni, {nei} for 0 ≤ i ≤ Le − 1; and one set for odd values of ni, {noi}
for 0 ≤ i ≤ Lo − 1. The value Le is the number of even-valued time sample points
and Lo is the number of odd-valued time sample points where Le + Lo = L. Note
that if a is even, Lo = 0 as odd values do not exist in the set {0, a, 2a, . . . , (L− 1)a}
for a even.

3. Form the smoothed time–lag function for even–valued samples nei and odd-valued
samples noi:

Retmp[m] = z[nei/2 +m]z∗[nei/2−m]g2[2m], 0 ≤ m ≤ (Pq − 1− i),
Rotmp[m] = z[(noi − 1)/2 +m+ 1]z∗[(noi − 1)/2−m]g2[2m+ 1],

0 ≤ m ≤ Pq − 1

and

Retmp[m] = 0, (Pq − i) ≤ m ≤ (Nf −Nfh)

Retmp[m] = 0, Pq ≤ m ≤ (Nf −Nfh − 1).

Next, recover the negative lag values from the positive ones

Retmp[Nf −m] =
(
Retmp[m]

)∗
, 1 ≤ m ≤ Nfh − 1,

Rotmp[Nf −m− 1] =
(
Rotmp[m]

)∗
, 0 ≤ m ≤ Nfh − 1.
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4. For the same sample points nei and noi, fold the functions Ketmp and Kotmp:

RC
a [nei,m] =

b−1∑
p=0

Retmp[pJ +m]

RC
a [noi,m] =

b−1∑
p=0

Rotmp[pJ +m]

over values m = 0, 1, . . . , Jh and then recover the negative lag values from the
positive ones

RC
a [nei, J −m] =

(
RC

a [nei,m]
)∗
, 1 ≤ m ≤ Jh − 1,

RC
a [noi, J − 1−m] =

(
RC

a [noi,m]
)∗
, 0 ≤ m ≤ Jh − 1.

5. Iterate the two previous steps over all values of nei in the set {ne1, ne2, . . . , neLe} and
all the value of noi from the set {no1, no2, . . . , noLo} to produce the L× J time–lag
function RC

a .

6. Transform RC
a to the time–frequency domain for even–odd values of ni, using the

method in Step 6 of ALGORITHM-7 from Section 5.3.2 by replacing KC
a [n,m] with

RC
a [n,m] and WC[n, k] with ρC[n, k].

The algorithm requires L/2 FFT−J length-J FFT operations.

ALGORITHM-10: Decimated LI-kernel DTFD

• INPUT:

– 2N -point analytic signal z[n];

– parameter Nt, with 2Q ≤ Nt ≤ 2N ;

– Q-point window function G1[l], with Q ≤ N ;

– time-decimation factor a, with a is an integer, a ≥ 1, and L = Nt/a is also an
integer;

– set of J frequency sample points {ki} = k1, k2, . . . , kJ , where J ≤ N and each
frequency sample ki from the set satisfies the inequality 0 ≤ ki ≤ N − 1.

• OUTPUT: L× J DWVD ρC[an, ki].

1. Let Qh = bQ/2c, Nth = bNt/2c, and

Z[k] = DFT
n→k

(
z[n]

)
.

Also, let f = o(Nt) and g = o(Q), where the function o(·) is defined in (5.9).



196 Additional DTFD Algorithms

2. Form the Doppler–frequency function for frequency sample point ki

Ktmp[l] = Z[ki + l]Z∗[ki − l]G1[l], 0 ≤ l ≤ Qh,

Ktmp[Nth − l] = Z[ki +N − l]Z∗[ki −N + l]G1[Q− l], 1 ≤ l ≤ Qh + g

Ktmp[l] = Z[ki +N ]Z∗[ki −N ]G1[0], l = Nth.

and then recover the negative Doppler values from the positive ones

Ktmp[Nt − l] =
(Ktmp[l + 1]

)∗
, 1 ≤ l ≤ Nth + f.

3. For the same frequency sample point ki fold the Ktmp

KC[l, ki] =
1

a

a−1∑
p=0

Ktmp[pL+ l], 0 ≤ l ≤ Lh

and then recover the negative Doppler values from the positive ones

KC[L− l, ki] =
(
KC[l + 1]

)∗
, 1 ≤ l ≤ Lh − 1.

4. Iterate the two previous steps over the set {ki} to produce the L × J Doppler–
frequency function KC.

5. Transform the Doppler–frequency function to the time–frequency domain

ρC[an, ki] = IDFT
l→n

(
KC[l, ki]

)
for all values in the set {ki}.

The algorithm requires an L × J array and J/2 FFT−L operations to compute the
DWVD.
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