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ABSTRACT

Laboratory flotation tests using a bottom driven cell are reproduced with a high level of
confidence. These types of laboratory data are used to investigate the effect of reagent and
regrinding of coarse particles in an industrial flotation circuit. The addition of collector (BX)
has a significant effect on the flotation response of chalcopyrite in the scavenger bank. The
reconstructed recovery-time curve (combine products) is greater than that of the rougher
tailings (scavenger feed) prior to reagent addition. By adding collector (BX) in the scavenger
feed, the ultimate recovery of chalcopyrite increases 20% which means an increase of 1.7% of
chalcopyrite recovery in the scavenger feed.

Meanwhile, the reagrinding of coarse particles shows a detrimental effect on the collectorless
flotation of an initially hydrophobic chalcopyrite sample. Cyclone underflow, 80% recovery
at pH 7.7, was decreased to 40% after regrinding at the same range of pH. The chalcopyrite
flotation response immediately after regrinding is severely retarded. It is assumed that the
centrifugal action of the cyclone is another important factor restoring the chalcopyrite
hydrophobic flotation due to the oxygenation of the slurry. Therefore, additional pre-
conditioning time after a regrinding stage should have a positive change in the recovery of
chalcopyrite.

The overall flotation response before and after the regrinding stage showed that the cyclone
underflow response is slightly slower compared with the combine feed in the first four
minutes of flotation. This behavior is related to changes on surface chemistry because of the
regrinding of coarse particles.

INTRODUCTION

Evaluation and optimization of flotation circuits has been the focus on most metallurgists
since the first plant started hundreds of years ago. In the late 60’s, computer based techniques
were developed to evaluate flotation process performance and to develop mathematics model
which describe behavior of minerals across a flotation cell/bank or circuit. Such mathematical
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models were developed to simulate flotation circuit behavior through laboratory batch
flotation tests (Garcia Zuñiga, 1935). Since the development of a standard batch flotation tests;
laboratory tests have been used to investigate the kinetics of flotation (Meloy et al., 1998;
Brown and Hall, 1999; Bloom and Heindel, 2003) as well as the reproducibility, reliability and
performance index in a semi-batch flotation tests (Bazin et al., 1996; Apling and Ersayin,
1986; Petho and Tarshan, 2000). Applications of kinetics and liberation data to analyze
industrial flotation process were published in the 70’s and 80’s (Cameron et al., 1971; Lynch
et al., 1981; Frew, 1982).

These types of research are very useful to describe the behavior of mineral in the entire
flotation process or individual flotation cells. However, the most interesting approach for
evaluation of flotation processes is that in which the analysis can be used to quantify the effect
of reagent and regrinding to improve the recovery-grade relationship (Klimpel, 1984; 1995;
1996).

A new methodology to investigate the effect of reagent and regrinding on industrial flotation
circuits is presented in this paper. This methodology uses laboratory batch flotation tests
performend on plant streams across a flotation circuit under standard procedure and a bottom
driven cell.

EXPERIMENTAL

Sampling

Research work was carried out at the Mt Isa Copper Concentrator in June and August 2000.
Approximately between 2 or 4 liters of slurry were taken from several streams around the
copper flotation circuit to ensure a feed sample to make up to 4.4 liters approximately at 23 %
solids for each laboratory flotation test. All samples were weighed to calculate percent of
solids before the flotation test. Feed samples were analyzed for lead, zinc, iron and silica at the
Mt Isa laboratory.

Batch Flotation Tests

Figure 1 shows the bottom driven flotation cell used in the laboratory tests. Batch flotation
tests were conducted in conjunction with each plant survey to determine the floatability
parameters more accurately. Mill water, dosed with drops of methyl-isobutylcarbinol (MIBC),
was used to make up the volume of the laboratory flotation cell to 4.4 liters.

The following conditions were used in the tests:
 Tests were conducted in a bottom driven flotation cell;
 Both air rate and impeller speed were fixed for each test (13 liters/min and 1000 rpm);
 Six concentrates were collected over the following times:

o Con 1 - 20 seconds
o Con 2 - 20 seconds
o Con 3 - 20 seconds
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o Con 4 - 1 minute
o Con 5 - 2 minutes
o Con 6 - 4 minutes

 Throughout each test, froth depth was maintained at constant level of 1 cm. The
shallow froth depth was used to ensure the froth recovery was near 100%;

 No collector, frother, activator, pH modifier, or depressant was added in any test;
 The froth pull rate from the cell was constant at 6 scrapes per minute;
 Other measurements included:

o Wet weights of each product;
o Impeller speed;
o pH and Eh at the beginning and end of each test using Corning pH/Eh meters

(model 240). All potential measurements were against Ag/AgCl reference
electrode; and

o Air pressure.
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Figure 1.- Schematic representation of the bottom driven flotation cell.

All samples were weighed, filtered and weighed again to calculate the percent of solids. Then,
dried samples were assayed by lead, zinc iron and silica at the Mt Isa laboratory to construct
the recovery-time curves of each stream.

RESULTS AND DISCUSSIONS

Reproducibility of Batch Flotation Tests

Laboratory batch flotation tests are useful in the determination of the ore floatability
parameters, such as the kinetics (k) and the fraction (m) of that particular floatability class in
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the feed stream. Replicate laboratory batch flotation experiments were conducted in the
retreatment tailings during the first survey with the regrinding in operation. Figure 2 shows the
recovery-time and grade-time curves for chalcopyrite of two laboratory tests. As shown in
these curves, a good level of reproducibility is observed.
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Figure 2.- Reproducibility of batch flotation test performed in the retreatment tailings.

Nodal Analysis

The nodal analysis technique evaluates the ore floatability behavior around a single separator
or mixer in a flotation process using the mineral recovery-time curves (Runge et al., 1997;
Reyes Bahena, 2000; Runge and Reyes Bahena, 2004). This technique is a back calculation of
procedure in which the flotation responses of separator products are combined and compared
with that of the feed (Figure 3a). In the case of a mixer (Figure 3b), the flotation responses of
the various feed streams are combined and compared with that of the product stream.

(a) Separator (b) Mixer(a) Separator (b) Mixer

Figure 3: Typical separator and mixer in a flotation circuit: (a) combined stream separated into
two streams; (b) a number of feed streams produce one combine stream.

Evaluating Reagent Addition

Visual inspection of the flotation response of the scavenger bank is shown in Figure 4 and
Figure 5. The flotation response was obtained from samples taken from feed, concentrate and
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tailings of the scavenger bank as shown in Figure 4. It is important to note that the feed of the
scavenger bank is the rougher tailing which was taken before the collector sodium butyl
xanthate (BX) and the frother (MIBC) were added.
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Figure 4.- Sampling points for batch flotation tests around the scavenger bank. The symbols
are associated with the recovery-time curves in Figure 5.

Figure 5 shows the chalcopyrite recovery-time curves around the scavenger bank (Figure 4).
The concentrate stream shows a very fast flotation response in which 84% is recovered in the
first 2 minutes of flotation. Meanwhile, the chalcopyrite response in the tailings is slow, may
be due to the coarse particles or poor liberation.
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Figure 5.- Chalcopyrite recovery-time curves around the scavenger bank. Combined product is
calculated using the scavenger concentration and tailings.

The most important aspect of Figure 5 is that the reconstructed recovery-time curve (combine
products) is greater than that of the rougher tailings (scavenger feed) prior to reagent addition.
By adding more collector (BX) in the scavenger feed, the ultimate recovery of chalcopyrite
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increases 20% which means an increase of 1.7% of chalcopyrite recovery in the scavenger
feed.

When no collector is added across a separator or mixer in a flotation process, the ore
floatability must be conserved as in the case of the cleaner bank (Figure 6 and 7). The combine
feeds is calculated based on the rougher concentrate, column tailings, retreatment concentrate
and recleaner tailings and the combine products is calculated based on the cleaner concentrate
and tailings.
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Figure 6.- Sampling points for batch flotation tests around the cleaner bank. The symbols are
associated with the recovery-time curves in Figure 7.

Figure 7 shows the chalcopyrite recovery-time curves of the combine feeds and combine
products (Figure 6). As shown in Figure 7, both recovery-time curves are very similar. It is an
indication that the ore floatability is conserved when no collector or changes on the physical
properties of minerals occurs.
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Figure 7.- Chalcopyrite recovery-time curves around the cleaner bank. Combine product is
calculated using the cleaner concentrate and tailings.
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Evaluating Regrinding

Regrinding composite particles is expected to decrease the rate of flotation due to a decrease
in the particle size and the need for additional collector on the new surface available. In this
section, comparing the recovery-time curves before and after regrinding assesses the
regrinding on chalcopyrite. Figure 8 shows the sampling points around the regrinding circuit.
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Figure 8.- Sampling points for batch flotation tests around regrinding. The symbols are
associated with the recovery-time curves in Figure 9.

The combine feed involves the scavenger concentrate and cleaner tailings. Thus, a comparison
between the recovery-time curves of both the combine feed and the cyclone overflow is
investigated (Figure 9). It is important to note that only cyanide (CN) is added in the cyclone
overflow.
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Figure 9.- Chalcopyrite recovery-time curves around regrinding. Combine feed is calculated
using the scavenger concentrate and cleaner tailings.
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Figure 9 shows that the cyclone underflow response is slightly slower compared with the
combine feeds in the first four minutes of flotation. This behavior is due to changes on surface
chemistry because of the regrinding of coarse particles as observed in Figure 10.
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Figure 10.- Chalcopyrite recovery-time curves before and after regrinding.

This figure shows that the collectorless flotation of an initially hydrophobic chalcopyrite
sample, cyclone underflow (80% recovery at pH 7.7), was decreased to 40% after regrinding
at the same range of pH (see Table I). The chalcopyrite flotation response immediately after
regrinding is severely retarded. However, more investigation is required to determine which of
these two mechanisms are taking place on the chalcopyrite surface:

 Adsorption or precipitation of iron oxyhydroxide species as an overlayer on the iron-
deficient chalcopyrite;

 Ferric iron oxidative leaching of the chalcopyrite surface.

Table I.- Chemistry conditions of laboratory batch flotation tests.
pH Eh (SHE), mV Temp (ºC)Stream Start End Start End Start End

Regrinding Cyclone U/F 7.55 7.85 17 51 25 26
Ball Mill Discharge 7.50 7.70 -132 37 25 25

It should be noted that some oxidation products such as ferric or ferrous ionic species
originating from pyrite and/or pyrrhotite particles may exist in the pulp and produce an acidic
oxidation environment. Researchers (Subrahmanyam and Forssberg, 1993; Trahar et al., 1994)
have published that the following equation has a dominant role in determining the pulp
potential level in flotation:

VEFeeFe 0 771.023   (2)
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Consequently, the pulp potential becomes lower according to Equation 3. This could be the
reason why regrinding leads to more negative pulp potential as reported in Table .

 
 



 3

2

log05916.0771.0
Fe
Fe

E (3)

However, the retardation effect showed in Figure 10 is restored once the ball mill discharge is
mixed with the scavenger concentrate and cleaner tailings which passing through the cyclone
unit. It is assumed that the centrifugal action of the cyclone is another important factor
restoring the chalcopyrite hydrophobic flotation due to the oxygenation of the slurry.
Therefore, additional pre-conditioning time after a regrinding stage should have a positive
change in the recovery of chalcopyrite.

CONCLUSIONS

Laboratory flotation tests using a bottom driven cell are reproduced with a high level of
confidence. The addition of collector (BX) has a significant effect on the flotation response of
chalcopyrite in the scavenger bank. The reconstructed recovery-time curve (combine products)
is greater than that of the rougher tailings (scavenger feed) prior to reagent addition. By adding
more collector (BX) in the scavenger feed, the ultimate recovery of chalcopyrite increases
20% which means an increase of 1.7% of chalcopyrite recovery in the scavenger feed.

Meanwhile, the reagrinding of coarse particles shows a detrimental effect on the collectorless
flotation of an initially hydrophobic chalcopyrite sample. Cyclone underflow, 80% recovery at
pH 7.7, was decreased to 40% after regrinding at the same range of pH. The chalcopyrite
flotation response immediately after regrinding is severely retarded. It is assumed that the
centrifugal action of the cyclone is another important factor restoring the chalcopyrite
hydrophobic flotation due to the oxygenation of the slurry. Therefore, additional pre-
conditioning time after a regrinding stage should have a positive change in the recovery of
chalcopyrite.

The overall flotation response before and after the regrinding stage showed that the cyclone
underflow response is slightly slower compared with the combine feed in the first four minutes
of flotation. This behavior is related to changes on surface chemistry because of the regrinding
of coarse particles.
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