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Abstract

The discrete time–frequency matched filter should replicate the con-
tinuous time–frequency matched filter. But the methods differ. To
avoid aliasing the discrete method transforms the real-valued signal to
the complex-valued analytic signal. The theory for the time–frequency
matched filter does not consider the discrete case using the analytic sig-
nal. We find that the performance of the matched filter degrades when
using the analytic, rather than real-valued, signal. This performance
degradation is dependent on the signal to noise ratio and the signal
type. In addition, we present a simple algorithm to efficiently compute
the time–frequency matched filter. The algorithm with the real-valued
signal, comparative to using the analytic signal, requires one-quarter
of the computational load. Hence the real-valued signal—and not the
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analytic signal—enables an accurate and efficient implementation of
the time–frequency matched filter.

1 Introduction

The time–frequency matched filter is used to detect signals in a noisy en-
vironment. Important applications for this detection method include radar
and sonar systems [1–3]. To compute the time–frequency matched filter, we
require a discrete version of this matched filter. The discrete time–frequency
matched filter uses the analytic associate of the real-valued signal to avoid
aliasing [1, 4, 5]. But the effect on performance of using this analytic signal
has yet to be determined. Also, the two-dimensional matched filter requires
a large computational load to compute. This article addresses the two im-
portant issues of accurate and efficient computation of the time–frequency
matched filter.

The time-domain matched filter, often refered to as the ambiguity func-
tion [6], is used to detect a known signal embedded in noise [7]. The time–
frequency matched filter extends the time-domain filter to incorporate both
time–frequency smoothing and filtering. This matched filter can outperform
the time-domain method when we relax some of the strict conditions on the
time-domain matched filter [8]. Thus the time–frequency matched filter is
applicable to a larger set of detection scenarios. Examples include detecting
a radar signal that is transmitted through a randomly time-varying channel,
or detecting a passive sonar signal that is not exactly known but inferred
from noisy measurements. For these detection scenarios, the time–frequency
matched filter will outperform the time-domain matched filter [8, 9].

The time–frequency matched filter correlates, in time and frequency, a
time–frequency distribution (TFD) of the received signal with a TFD of
the known signal. A TFD is a representation of the signal’s energy in the
joint time–frequency domain. The discrete matched filter correlates discrete
TFDs. To avoid aliasing, the discrete TFDs use the complex-valued analytic
associate of the real-valued signal [10–13]. But what effect does this mapping
from real-valued to analytic signal have on the performance of the discrete
matched filter?

We show that using the analytic signal, rather than the real-valued sig-
nal, degrades the performance of the discrete matched filter. We infer this
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statement from experimental results using a set of example signals. The
results show that the performance degradation was greater at smaller sig-
nal to noise ratios (SNRs) compared with the performance degradation at
higher SNRs. We should therefore correlate two aliased, and not alias-free,
discrete TFDs to form the matched filter.

We also propose a computationally efficient algorithm to compute the
time–frequency matched filter. The algorithm, for N -point signals, requires
a computational load of approximately O(cN2 log2N), comparative to the
computational load of O(c8N2 log2N) for the algorithm that first generates
two discrete TFDs and then correlates them in time and frequency; the
constant c is specific to the Fourier transform algorithm used. In addition,
we show that the analytic signal could be used in the proposed algorithm,
but at a computational cost of four times the computational load of the
algorithm using the real-valued signal. Hence we propose using the real-
valued signal to minimise the computational load and to avoid a reduction
in the performance of the time–frequency matched filter.

2 Background

Here we present some background on the time–frequency matched filter. We
review TFDs, the time-domain matched filter, the time–frequency matched
filter, and finally the discrete time–frequency matched filter.

2.1 Time–Frequency Distributions

TFDs are used to analyse nonstationary signals because they highlight the
time-varying characteristics of these nonstationary signals. Examples of
TFD applications include radar and sonar systems [14–16].

There are many different types of TFDs, which can all be grouped into
classes. Probably the most commonly-used class is the quadratic class of
TFDs. At the core of this class is the Wigner–Ville distribution (WVD).
The WVD,

Ws(t, f) =
∫ ∞
−∞

s(t+ τ
2 )s∗(t− τ

2 )e−j2πτf dτ

is a quadratic function of the time-domain signal s(t). Because the transfor-
mation from the time to the time–frequency domain is not linear, the WVD
contains cross-terms between the signal’s components [17]. Convolving the
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WVD with the time–frequency kernel γ(t, f) can suppress these cross-terms.
This smoothed WVD represents the quadratic TFD class ρs(t, f ; γ),

ρs(t, f ; γ) = Ws(t, f) ∗
t
∗
f
γ(t, f)

where different kernels define different distributions in the class.

2.2 Time-domain Matched Filter

Detecting a known real-valued signal s(t) embedded in a Gaussian noise
process w(t) requires a distinction between the two hypotheses H0 and H1,

H0 : r(t) = w(t)

H1 : r(t) = as(t− t0)ej2πtf0 + w(t).
(1)

Here, r(t) is the received signal; a is a scaling parameter; w(t) is zero-mean
with a constant variance of W0, that is E[w(t)] = 0 and var[w(t)] = W0; and
the time t0 and frequency f0 variables represent time and frequency shifts
to the signal s(t).

An example of this detection scenario is the typical radar system. The
system transmits a signal s(t) modulated at carrier frequency fc; thus the
transmitted signal is s(t) exp (j2πfc). The received signal r(t) may be shifted
in time by t0, the lag value, and in frequency by f0, the Doppler value. Thus,

r(t) = bs(t− t0)e j(2πfc−2πfo)(t−t0) + w(t)

where b is the target reflectivity, t0 = 2R/c, and R is the target’s range.
Assuming a small lag–Doppler product of 2πfoto � 1, then

r(t) ≈ bs(t− t0)ej2πfc(t−t0)+j2πfot + w(t).

After demodulation, this expression reduces approximately to that in (1)
when a = b exp (−j2πfct0).

To test the received signal r(t) in (1) for each hypothesis, we compare a
test statistic η with a predefined threshold th,

H0 : η > th

H1 : η < th.

4



When a in (1) is small enough so that the signal to noise (SNR) ratio between
s(t) and w(t) is small, then the locally optimal test statistic [8] is the bilinear
matched filter,

η(t0, f0) =
∣∣∣∣∫ ∞
−∞

r(t)s∗(t− t0)e−j2πtf0 dt
∣∣∣∣2 (2)

where we use the generalised likelihood ratio test [8, 9] to obtain the test
statistic over the time–frequency area (t0, f0),

η = max
(t0,f0)

η(t0, f0).

Note that the bilinear matched filter in (2) is equal to the more familiar
ambiguity function,

η(t0, f0) = |χ(−τ,−ν)|2

using the notation t0 = −τ and f0 = −ν. The cross-ambiguity function
χ(τ, ν) is defined in [6].

2.3 Time–Frequency Matched Filter

We can express the time-domain matched filter in (2) in the time–frequency
domain [8, 9] as

ηTF(t0, f0) =
∫ ∞
−∞

∫ ∞
−∞

Wr(t, f)Ws(t− t0, f − f0) dt df (3)

=
∣∣∣∣∫ ∞
−∞

r(t)s∗(t− t0)e−j2πtf0 dt
∣∣∣∣2 = η(t0, f0).

When s(t) is a random process, we replace the WVD Ws(t, f) in (3) with
the Wigner–Ville spectrum (WVS) E[Ws(t, f)] [17]. For many applications,
the WVS is equal to the TFD ρs(t, f ; γ); for example,

• if s(t) the output of a random time-varying channel with a determin-
istic input g(t), then E[Ws(t, f)] = ρg(t, f ;S), where S(t, f) is the
scattering function of the channel [8, 9];
• if s(t) is deterministic, but perturbed in time and frequency by random

variables, then E[Ws(t, f)] = ρs(t, f ;G), where G(t, f) is the time–
frequency probability distribution of the time–frequency perturbation
parameters [8]. This is the same as modelling the time t0 and frequency
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f0 shifts as random variables, with G(t0, f0) equal to the probability
distribution of the shifts, and using the test statistic ηTF(t0 = 0, f0 =
0) [9];
• if s(t) is not exactly known and is inferred from noisy measurements,

then E[Ws(t, f)] = ρs(t, f ; γ) represents a time–frequency estimate of
s(t). The kernel γ(t, f) represents the probability distribution of the
uncertainty of s(t) [4, 18,19].

Thus, for many detection scenarios the locally optimum test statistic is

ηTF(t0, f0) =
∫ ∞
−∞

∫ ∞
−∞

Wr(t, f)ρs(t− t0, f − f0; γ) dt df. (4)

This form is a more general expression of the bilinear matched filter: when
γ(t, f) = δ(t)δ(f), then ηTF reduces to the bilinear matched filter.

Another advantage of the time–frequency matched filter is that we can
time–frequency filter the TFD of s(t), by simply multiplying it with a time–
frequency weighting function, known as a mask, M(t, f) [8, 9]. Thus,

ηTF(t0, f0) =
∫ ∞
−∞

∫ ∞
−∞

Wr(t, f)ρs(t−t0, f−f0; γ)M(t−t0, f−f0) dtdf. (5)

2.4 Discrete Matched Filter

Before we can implement the time–frequency matched filter on a computer,
we require a discrete version of the filter. We assume that the discrete-
time signals r(nT ) and s(nT ) are Nyquist sampled, where T is the sampling
period. When forming the discrete WVD (DWVD) for r(nT ) and s(nT ),
these real-valued signals are usually transformed to discrete analytic signals
to avoid aliasing in the DWVD [10–12, 20]. The discrete analytic associate
zr(nT ) of the N -point r(nT ) is a complex-valued signal of the form

zr(nT ) =

r(nT ) + jH[r(nT )], 0 ≤ n ≤ N − 1,

0, N ≤ n ≤ 2N − 1.

where the function H represents a discrete version of the Hilbert transform
[12]. The analytic signal is zero-padded to length 2N to avoid aliasing in
the time direction. Fig. 1 shows an example of the DWVD of r(nT ) and
the DWVD of zr(nT ). Note that the DWVD of the analytic signal zr(nT )
is free from aliasing whereas the DWVD of the real-valued signal is aliased
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and contains negative–positive frequency cross-terms.

[Figure 1 about here.]

There are different DWVD definitions [10, 11, 20], and care must be
taken as some of these definitions do not preserve the mathematical prop-
erties of the continuous WVD. For example, the Claasen–Mecklenbräuker
DWVD [10] does not satisfy Moyal’s formula, an important property for the
time–frequency matched filter, whereas the DWVD in [11] does. There is
a degradation in performance for the matched filter when the DWVD does
not exactly satisfy this property [21,22].

3 Performance of Discrete Matched Filter

Using the discrete analytic signal introduces error in the time–frequency
matched filter. To show this, we form the time–frequency matched filter in
(3) at (t0 = 0, f0 = 0), using alias-free DWVDs as follows:

ηTF[zr(nT )] =
2N−1∑
n=0

2N−1∑
k=0

Wzr(nT2 ,
k

4NT )Wzs(nT2 ,
k

4NT )

=

∣∣∣∣∣
N−1∑
n=0

zr(nT )zs∗(nT )

∣∣∣∣∣
2

.

(6)

As zs(nT ) = s(nT ) + jH[s(nT )] then,

ηTF[zr(nT )] =

∣∣∣∣∣
2N−1∑
n=0

{r(nT )s(nT )−H[r(nT )]H[s(nT )]}

+ j
2N−1∑
n=0

{r(nT )H[s(nT )] +H[r(nT )]s(nT )}
∣∣∣∣∣
2

.

For the aliased DWVDs, which use the real-valued signals,

ηTF[r(nT )] =
N−1∑
n=0

N−1∑
k=0

Wr(nT2 ,
k

2NT )Ws(nT2 ,
k

2NT )

=

∣∣∣∣∣
N−1∑
n=0

r(nT )s∗(nT )

∣∣∣∣∣
2

(7)
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which, unlike ηTF[zr(nT )], is equal to a discrete version of the continuous
matched filter in (2).

To assess the consequence of the inequality ηTF[zr(nT )] 6= ηTF[r(nT )],
we use the standard detection performance measure—the deflection criterion
for test statistic η [1, 8, 21]

d =
|E(η|H1)− E(η|H0)|{

1
2 [var(η|H1) + var(η|H0)]

}1/2
. (8)

For the real-valued signal r(nT ), the deflection criterion is [1]

dRE =

√
Es
W0

1√
1 +W0/Es

(9)

where Es is the energy of s(nT ) and W0 is the estimated variance of w(nT ),
defined as

Es =
1
N

N−1∑
n=0

|s(nT )|2, W0 =
1

N − 1

N−1∑
n=0

|w(nT )|2

as w(nT ) is zero mean. We cannot assume, however, that dAN, the deflection
criteria for analytic signal, is similarly defined as dRE is in (9). This is
because the discrete analytic signal may not preserve the statistics of the
real-valued signal. For example, although w(nT ) is zero mean, zw(nT ) may
not be zero mean. In addition, the analytic signal zs(nT ) does not preserve
the energy of s(nT ) [12,23].

To relate the two performance measures, we define a loss factor Q as

Q =
dAN

dRE
(10)

When Q = 1, the test statistics ηTF[r(nT )] and ηTF[zr(nT )] have the same
performance, even though ηTF[zr(nT )] 6= ηTF[r(nT )]. The inequality Q < 1
implies that the matched filter with the real-valued signal better discrimi-
nates between the two hypotheses compared to the matched filter with the
analytic signal.

We found from experimental estimates of dRE and dAN that Q is approx-
imately always less than one. We used five different signal types for s(nT ),
and a zero-mean Gaussian random process for w(nT ) with a variance of one.
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Then we computed ηTF[r(nT )], using (7), for both hypothesis. To estimate
the expectation and variance operators in (8), we used 1,000 realisations of
w(nT ) and thus calculated dRE. Next, we did the same for ηTF[zr(nT )],
using (6). For calculating the discrete analytic signal, we used the method
in [12]; we also used the conventional method [10] but found similar results.
Note that the energy of the real-valued signal is not equal or proportional
to the energy of either of these discrete analytic signals. The five different
signal types for s(nT ) were an impulse signal, a unit-step signal, a linear
frequency modulated signal, a pulse train signal, white Gaussian noise, and
an underwater recording of a whale cry.

We iterated this whole process over different signal to noise ratios (SNRs)
and plotted the results in Fig. 2. These findings suggest that the perfor-
mance is dependent on two things: the signal type and the SNR value. We
infer from the results that the matched filter using the real-valued signal is
better able to discriminate between the hypotheses than the matched filter
with analytic signal.

[Figure 2 about here.]

4 Computation

Here we propose a computational efficient algorithm to implement the time–
frequency matched filter, assuming the general form in (4); that is, the
matched filter equals the WVD of r(t) correlated with the TFD of s(t). We
rewrite (4) as

ηTF(t0, f0) = Wr(t, f) ∗
t
∗
f
ρs(−t,−f ; γ)

using the correlation–convolution relation a(t) ? b(t) = a(t) ∗ b(−t), where
? represents the correlation and ∗ represents convolution, and a(t), b(t) are
arbitrary real-valued functions.

Separating the kernel from the WVDs,

ηTF(t0, f0) =
[
Wr(t, f) ∗

t
∗
f
Ws(−t,−f)

]
∗
t
∗
f
γ(t, f)

=
∣∣∣∣∫ ∞
−∞

r(t)s∗(t− t0)e−j2πtf0 dt
∣∣∣∣2 ∗t ∗f γ(t, f)
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In discrete form, for N -point real-valued signals r(nT ) and s(nT ),

ηTF(nT, k
NT ) =

∣∣∣∣∣
N−1∑
m=0

r(mT )s((m− n)T )e−j2πmk/N

∣∣∣∣∣
2

~
n

~
k
γ(n, k

NT ) (11)

where ~ represents the circular convolution operation. We shall use the
notation

∣∣∣F rs (nT, k
NT )

∣∣∣2 =

∣∣∣∣∣
N−1∑
m=0

r(mT )s((m− n)T )e−j2πmk/N

∣∣∣∣∣
2

where |F rs (nT, k/NT )|2 is the spectrogram of signal s(nT ) with window
r(nT ) [9].

4.1 Algorithm

The following algorithm implements (11) with a minimal computational
load. We implement the convolution operation in (11) by multiplying two
functions in the Doppler–lag domain. Thus, we require to discrete Fourier
transform (DFT) the spectrogram |F rs (nT, k/NT )|2 to the Doppler–lag do-
main. Rather than first forming the spectrogram and then mapping to the
Doppler–lag domain, which requires the following processes,

time–lag DFT−−−−→ time–frequency IDFT−−−−→ time–lag DFT−−−−→ Doppler–lag

we skip the first DFT and inverse DFT (IDFT) operations and reduce the
processes to

time–lag DFT−−−−→ Doppler–lag. (12)

We do this by using the relation

IDFT
k→m

{
DFT
n→l

{∣∣∣F rs (nT, k
NT )

∣∣∣2}} = Ar( l
NT ,mT )A∗s(

l
NT ,mT ) (13)

where Ar(l/NT,mT ) are As(l/NT,mT ) are discrete ambiguity functions
(AFs); the proof for this relation is in Appendix A. Also, the algorithm
takes advantage of the conjugate symmetric relation,

Ar( l
NT ,−mT )A∗s(

l
NT ,−mT ) = A∗r(

l
NT ,mT )As( l

NT ,mT ).
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This relation is a consequence of (13): as the spectrogram is a real-valued
function, the DFT of the spectrogram must be conjugate symmetrical [24].

The complete algorithm is as follows. (We assume that Doppler–lag
kernel is conjugate symmetrical in the lag direction; this condition ensures
that the test statistic is real valued.)

• INPUT:N -point real-valued received signal r(nT ); N×(Nh + 1) Doppler–
lag kernel g(l/NT,mT ).
• OUTPUT: N ×N time–frequency test statistic ηTF(nT, k/NT ).

1. Form the time–lag functions Kr(nT,mT ) and Ks(nT,mT ):

Kr(nT,mT ) = r(nT )r((n−m)T )

Ks(nT,mT ) = s(nT )s((n−m)T )

for 0 ≤ n ≤ N − 1 and 0 ≤ m ≤ Nh, where Nh = dN/2e.

2. Discrete Fourier transform (DFT) both N × (Nh + 1) time–lag func-
tions to the Doppler–lag domain:

Ar( l
NT ,mT ) =DFT

n→l
{Kr(nT,mT )}

As( l
NT ,mT ) =DFT

n→l
{Ks(nT,mT )} .

for 0 ≤ m ≤ Nh. Note in Appendix A how we define these discrete
AFs.

3. Multiply these two discrete AFs with the kernel as follows:

S( l
NT ,mT ) = Ar( l

NT ,mT )A∗s(
l
NT ,mT )g( l

NT ,mT ).

over 0 ≤ n ≤ N − 1 and 0 ≤ m ≤ Nh.

4. IDFT back to the time–lag domain,

R(nT,mT ) = IDFT
l→n

{
S( l

NT ,mT )
}
.

for 0 ≤ m ≤ Nh.

5. Recover the negative lag values from the positive ones:

R(nT, (N −m)T ) = R(nT,mT ), 1 ≤ m ≤ Nh − 1
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for 0 ≤ n ≤ N − 1.

6. DFT to the time–frequency domain,

ηTF(nT, k
NT ) = DFT

m→k
{R(nT,mT )}

for 0 ≤ n ≤ N − 1.

4.2 Computational Complexity

The majority of the computational complexity for the matched filter is from
the number of DFTs in the algorithm. Thus, we count the DFTs in the
algorithm to assess the computational load. When quantifying this load,
we assume that the Doppler–lag kernel g(l/NT,mT ) is real valued, which is
true for almost all TFDs [17].

Using the notation 1× RDFT-N to represent one real-valued N -point
DFT operation, we quantify the computational load as follows. The discrete
AFs As and Ar require 2Nh× RDFT-N operations and the time–lag function
R requires Nh× inverse RDFT-N operations. To DFT R from the time–lag
to the time–frequency domain, we use a real-symmetric DFT algorithm [25],
which requires the equivalent load of N/2× RDFT-N operations. Thus, the
algorithm requires a total load of approximately 2N× RDFT-N operations.

Fast Fourier transform (FFT) algorithms can implement RDFT-N and
inverse RDFT-N operations with O(cN/2 log2N) multiplications and addi-
tions, where c is a constant which depends on the specific algorithm [26,27].
Hence the time–frequency matched filter algorithm requires a total com-
putational load of O(cN2 log2N). If we were to use the discrete analytic
signal in this algorithm then the load would increase to O(c4N2 log2 2N),
more than four times the load of the algorithm with the real-valued signals.

The direct approach is to implement the matched filter as a discrete
version of (4). This method forms the alias-free DWVD and DTFD and
then correlates, in time and frequency, these two functions [5, 18, 19]. It
is important to use a DWVD and DTFD that satisfies Moyal’s formula,
otherwise the performance of the detector degrades [21, 22]. We thus use
the DTFD proposed in [13] which satisfies Moyal’s formula. The DTFD
and DWVD require a total load of O(4N2 log2N) [11, 28], and to convolve
these function in time–frequency requires an extra load of approximately
O(4N2 log2N). Hence the total load for this method is O(8N2 log2N).
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Sayeed in [9] proposes using the sum-of-spectrograms method [29] to
approximate the matched filter. This method decomposes the kernel into
eigenvalues and eigenvectors and then approximates the DTFD by sum-
ming only a smaller number of eigenvalues weighted by the spectrograms
of the signal and eigenvectors. The method requires a computational load
of O(cLN2/4 log2N), where 1 ≤ L ≤ 2N − 1 is the number of eigenvalues
used in the approximation. Table 1 summaries the computational load for
the various methods.

[Table 1 about here.]

When the received signal r(nT ) is of infinite or long duration, the com-
mon practice is to use a sliding window on r(nT ) and process each win-
dowed segment separately. Thus, s(nT ) remains the same but r(nT ) changes
over repeated matched-filtering operations. We can therefore pre-compute
As(l/NT,mT ) and use this array as an input to the proposed algorithm and
save the computational load of having to repetitively computeAs(l/NT,mT ).
The computational load for this algorithm is O(c3N2/4 log2N), which re-
duces the computational load of the proposed algorithm by one-quarter.

4.3 Algorithm Incorporating Time–Frequency Filtering

Here we augment the matched filter algorithm to incorporate time–frequency
filtering. This algorithm implements a discrete version of (5). First to do
the filtering, we compute the DWVD of s(nT ), then filter the DWVD in the
time–frequency domain, and then DFT to the Doppler–lag domain to obtain
the resultant discrete AF. Next, we use this discrete AF in the matched filter
algorithm.

The first part of the algorithm, using the time–frequency filterM(nT, k/NT ),
generates the time–frequency filtered AF as follows.

1. Form the time–lag function,

Ks(nT,m2T ) = s((n+m)T )s((n−m)T )

Ks((n+ 1
2)T,m2T ) = s((n+m+ 1)T )s((n−m)T )

for 0 ≤ n ≤ N−1 and 0 ≤ m ≤ Nh and recover the negative lag values
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from the positives ones [28]:

Ks(nT, (N −m)2T ) = Ks(nT,m2T )

for 1 ≤ m ≤ Nh − 1 and

Ks((n+ 1
2)T, (N −m− 1)2T ) = Ks((n+ 1

2)T,m2T )

for 0 ≤ m ≤ Nh − 1.

2. DFT to the time–frequency domain,

Ws(nT2 ,
k

2NT ) = DFT
m→k

{
Ks(nT2 ,m2T )

}
for 0 ≤ n ≤ N − 1. We do not modulate this DWVD with the re-
quired complex exponential [20] because, in the following steps, we
transform the (masked) WVD back to the time–lag domain and the
multiplication and division of the exponential cancel [28].

3. Time–frequency filter, let

WM
s (nT2 ,

k
2NT ) = Ws(nT2 ,

k
2NT )M(nT2 ,

k
2NT ).

4. Then, DFT back to the time–lag domain

KM
s (nT2 ,mT ) = IDFT

k→m

{
WM
s (nT2 ,mT )

}
.

5. Reorder the array as follows:

Rd
s (nT,m2T ) = RMs (nT,m2T )

Rd
s (nT, (m+ 1

2)2T ) = RMs ((n+ 1
2)T,m2T )

over 0 ≤ n ≤ N − 1 and 0 ≤ m ≤ N . Note that this is a simple
reordering of the position of the elements in the array RMs [28].

6. DFT to the Doppler–lag domain,

AMs ( l
NT ,mT ) = DFT

n→l

{
Rd
s (nT,mT )

}
.

for 0 ≤ m ≤ Nh.
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The complete algorithm, using the time–frequency filtered AF AMs , im-
plements the matched filter as follows.

• INPUT:N -point real-valued received signal r(nT ); N×(Nh + 1) Doppler–
lag kernel g(l/NT,mT ); and N × (Nh + 1) AF AMs (l/NT,mT ).

• OUTPUT: N ×N time–frequency test statistic ηTF(nT, k/NT ).

1. Form the time–lag function Kr,

Kr(nT,m2T ) = s((n+m)T )s((n−m)T )

Kr(nT, (m+ 1
2)2T ) = s((n+m+ 1)T )s((n−m)T )

for 0 ≤ n ≤ N − 1 and 0 ≤ m ≤ Nh.

2. DFT N × (Nh + 1) Kr to the Doppler–lag domain:

Ar( l
NT ,mT ) = DFT

n→l
{Kr(nT,mT )}

for 0 ≤ m ≤ Nh.

3. Multiply the two ambiguity functions with the kernel,

S( l
NT ,mT ) = Ar( l

NT ,mT )
[
AMs ( l

NT ,mT )
]∗
g( l
NT ,mT ).

over 0 ≤ n ≤ N − 1 and 0 ≤ m ≤ Nh.

4. To complete, follow steps 4 to 6 of the algorithm in Section 4.1.

This algorithm requires the same computational load as that for the
matched filter in Section 4.1 assuming that we pre-compute As(l/NT,mT );
this load is O(c3N2/4 log2N).

5 Conclusions

The discrete time–frequency matched filter correlates two discrete TFDs.
When we use aliased discrete TFDs, the discrete matched filter is a dis-
crete version of the continuous matched filter. When we use alias-free dis-
crete TFDs—and therefore the analytic, rather than real valued, signal—the
discrete matched filter does not equal a discrete version of the continuous
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matched filter. This is because the test statistic contains extra terms in-
volving the products of real and imaginary parts of the analytic signal. We
have yet to determine the precise effects of these extras terms on the per-
formance of the detector. What we can infer from the simulation results
however is that using the analytic signal degrades the performance of the
matched filter. The results also showed that this relative performance was
dependent on the SNR and the type of signal. Theoretical analysis may
shed some insight into why this relative performance varies with SNR and
signal characteristics. Nonetheless, because of this unknown quantity of
performance degradation—and because the algorithm with the real-valued
signal requires only one-quarter of the computational load of the algorithm
with the analytic signal—we recommend using the real-valued signal in the
time–frequency matched filter.

A Proof of Spectrogram–Ambiguity Function Re-

lation

Here we prove the relation in (13). This relation relates the spectrogram to
discrete AFs. For this proof, we rewrite (13) as

∣∣∣F rs (nT, k
NT )

∣∣∣2 = DFT
m→k

{
IDFT
l→n

{
Ar( l

NT ,mT )A∗s(
l
NT ,mT )

}}
(14)

where |F rs |2 represents the spectrogram,

∣∣∣F rs (nT, k
NT )

∣∣∣2 =

∣∣∣∣∣
N−1∑
m=0

r(mT )s((m− n)T )e−j2πmk/N

∣∣∣∣∣
2

.

We define the AF Ar as

Ar( l
NT ,mT ) =

N−1∑
n=0

r(nT )r((n−m)T )e−j2πnl/N .

(We omit the modulation term, usually used with the anti-symmetric time–
lag function r(nT )r((n−m)T ) [20], as it cancels on the forward and inverse
DFT operations.)
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To start, we expand the spectrogram as follows,∣∣∣F rs (nT, k
NT )

∣∣∣2 = F rs (nT, k
NT )

[
F rs (nT, k

NT )
]∗

= DFT
m→k

{
[x(mT )y((m− n)T )] ~

m
[x(−mT )y((−m− n)T )]

}

=
N−1∑
p=0

x(pT )y((p− n)T )

.
N−1∑
m=0

x((p+m)T )y((p+m− n)T )e−j2πmk/N (15)

where ~ represents circular convolution.
In the Doppler–lag domain we have

Ar( l
NT ,mT )A∗s(

l
NT ,mT )

=
N−1∑
n1=0

N−1∑
n2=0

x(n1T )x((n1 −m)T )y(n2T )y((n2 −m)T )e−j2π(n1−n2)l/N .

We map these AF products to the time–lag domain,

IDFT
l→m

{
Ar( l

NT ,mT )A∗s(
l
NT ,mT )

}
=

N−1∑
n1=0

N−1∑
n2=0

x(n1T )x((n1−m)T )y(n2T )y((n2−m)T )
N−1∑
l=0

e−j2π(n1−n2−n)l/N .

The sum of the exponential term in this expression equates to the Dirac
function δ(n1 − n2 − n) and therefore this expression reduces to

N−1∑
n2=0

y(n2T )y((n2 −m)T )x((n2 + n)T )x((n2 + n−m)T ).

Mapping this time–lag function to the time–frequency domain we obtain

DFT
m→k

{
IDFT
l→m

{
Ar( l

NT ,mT )A∗s(
l
NT ,mT )

}}

=
N−1∑
m=0

N−1∑
n2=0

y(n2T )y((n2−m)T )x((n2 +n)T )x((n2 +n−m)T )e−j2πmk/N .

By letting q = p− n+m,
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DFT
m→k

{
IDFT
l→m

{
Ar( l

NT ,mT )A∗s(
l
NT ,mT )

}}

=
N−1∑
q=0

x(qT )y((q − n)T )
N−1∑
m=0

x((q +m)T )y((q +m− n)T )e−j2πmk/N

which is equal to (15) thus proving the relation in (14).
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Figure 1: Aliasing in DWVDs. (a) DWVD of real-valued signal and (b)
DWVD of analytic signal. This test signal is a linear frequency modulated
signal. The components in (a), not in (b), are from by aliasing and negative–
positive frequency cross-terms.
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Figure 2: Loss factor Q for different signals over different SNR values. A
value of Q < 1 implies that the matched filter using the real-valued signal
outperforms the matched filter using the analytic signal. The six different
signal types are an impulse signal, a unit-step signal, a linear frequency
modulated signal (LFM) signal, a white Gaussian noise (WGN) signal, and
an underwater recording of a whale cry.
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method signal type computational load

proposed algorithm real O(cN2 log2N)

proposed algorithm analytic O(c4N2 log2 2N)

DTFD analytic O(c8N2 log2N)

Sum-of-spectrogram real O(cLN2/4 log2N)

Table 1: Computational complexity to compute the matched filter on an N -
point signal. The sum-of-spectrogram method approximates the matched
filter for L < 2N .
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