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Modeling abundance using N-mixture models:
the importance of considering ecological mechanisms
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Abstract. Predicting abundance across a species’ distribution is useful for studies of
ecology and biodiversity management. Modeling of survey data in relation to environmental
variables can be a powerful method for extrapolating abundances across a species’ distribution
and, consequently, calculating total abundances and ultimately trends. Research in this area
has demonstrated that models of abundance are often unstable and produce spurious
estimates, and until recently our ability to remove detection error limited the development of
accurate models. The N-mixture model accounts for detection and abundance simultaneously
and has been a significant advance in abundance modeling. Case studies that have tested these
new models have demonstrated success for some species, but doubt remains over the
appropriateness of standard N-mixture models for many species. Here we develop the N-
mixture model to accommodate zero-inflated data, a common occurrence in ecology, by
employing zero-inflated count models. To our knowledge, this is the first application of this
method to modeling count data. We use four variants of the N-mixture model (Poisson, zero-
inflated Poisson, negative binomial, and zero-inflated negative binomial) to model abundance,
occupancy (zero-inflated models only) and detection probability of six birds in South
Australia. We assess models by their statistical fit and the ecological realism of the parameter
estimates. Specifically, we assess the statistical fit with AIC and assess the ecological realism by
comparing the parameter estimates with expected values derived from literature, ecological
theory, and expert opinion. We demonstrate that, despite being frequently ranked the ‘‘best
model’’ according to AIC, the negative binomial variants of the N-mixture often produce
ecologically unrealistic parameter estimates. The zero-inflated Poisson variant is preferable to
the negative binomial variants of the N-mixture, as it models an ecological mechanism rather
than a statistical phenomenon and generates reasonable parameter estimates. Our results
emphasize the need to include ecological reasoning when choosing appropriate models and
highlight the dangers of modeling statistical properties of the data. We demonstrate that, to
obtain ecologically realistic estimates of abundance, occupancy and detection probability, it is
essential to understand the sources of variation in the data and then use this information to
choose appropriate error distributions.

Key words: AIC; ecological realism; excess zeros; model choice; negative binomial; overdispersion;
Poisson regression; South Australian birds; zero-inflated Poisson; zero inflation.

INTRODUCTION

Estimating the abundance of a species across its

distribution is a valuable tool for biodiversity manage-

ment and ecological studies. For example, abundance

estimates may be used to inform conservation planning

(Gaston and Rodrigues 2003) and to investigate

ecological questions such as understanding the processes

that drive population size (e.g., Meents et al. 1983) and

source–sink dynamics (e.g., Pulliam 1988, Tittler et al.

2006). The logistical constraints of collecting detailed

abundance data across a species distribution have led to

the development of a range of predictive techniques for

modeling abundance. Often these techniques model the

relationship between survey data and environmental

variables to obtain predictions of site and total

abundances (Pearce and Ferrier 2001). However, pre-

dictions of abundances across species distributions are

often unsuccessful (Pearce and Ferrier 2001). Successful

development of robust modeling techniques is impor-

tant, for both ecological and conservation applications.

Identifying and modeling the sources of variation in

data are key components of successfully predicting

abundance. Variation in the number of individuals

recorded in count data at each site will often be the

product of both ecological processes (true variation) and

sampling error (false variation [Martin et al. 2005b]).

True variation in abundance results from ecological

mechanisms such as the reaction of a species to

environmental gradients, metapopulation dynamics,
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interactions with other species (e.g., competition or

predation) or by chance (i.e., environmental and

demographic stochasticity [Martin et al. 2005b]). Con-

versely, false variation in count data results from

incorrect identification and imperfect detection, i.e., a

surveyor miscounting or failing to observe an individual

that occupies the survey site. Failing to observe a species

may occur in two ways: the species may be present but

the surveyor failed to observe it or the species utilizes the

site but was not present at the time of the survey (Tyre et

al. 2003, Martin et al. 2005b). A mobile species may

often be absent from a site that it utilizes when it is

visiting a proportion of its home range that lies outside

the survey site. Other species (e.g., perennial plants or

fungi) may not be visible during the survey. A model of

abundance needs to simultaneously model true variation

and false variation in a manner that accurately

represents underlying ecological mechanisms and obser-

vation error.

Modeling true variation

Traditionally, site abundance has been estimated by

modeling variation that arises through environmental

gradients while ignoring the other forms of true

variation and detection error (e.g., Sánchez-Zapata

and Calvo 1999). Poisson regression is a popular

approach for modeling the true variation in count data

(see Nelder and Wedderburn 1972, McCullagh and

Nelder 1989) as it assumes that variation can be

described with environmental variables and the error is

Poisson distributed. However, if extra-Poisson variation

exists due to a deviation from randomness these models

will be inappropriate. Non-randomness may be caused

by the omission of relevant explanatory variables,

demographic and environmental stochasticity or nonin-

dependence of individuals as may occur when organisms

are observed in pairs or groups.

Abundance data sets often have a large number of

zeros that result from surveying unoccupied sites. If a

data set contains more zeros than expected from a

standard distribution then these data are referred to as

zero inflated. Zero inflation is a special case of extra-

Poisson true variation and often precludes the use of

Poisson regression models. When a data set contains

extra-Poisson variation due to zero inflation or other

problems mentioned above, a negative binomial distri-

bution is often used (e.g., Lee et al. 2002, Kuhnert et al.

2005). The negative binomial accounts for extra-Poisson

variation by allowing the mean abundance estimate to

vary stochastically. However, while a negative binomial

can accommodate a limited amount of zero inflation, a

high number of zeros can exceed its capabilities (Welsh

et al. 1996, Hall 2000).

Astute sampling of only the sites that are likely to be

occupied may reduce zero-inflation (Austin and Meyers

1996). However, this technique may be impractical in

many situations such as when surveys are designed for

multiple species or we don’t know what sites are likely to

be occupied. Instead, the number of unoccupied sites

may be reduced after the data have been collected, by

truncating the data set. This process may inadvertently

remove zeros that arise through other processes, such as

detection error, and may compromise parameter esti-

mation. Additionally, this process removes information

about the species’ probability of occupancy and makes it

impossible to examine environmental variables that

determine presence. It may be preferable to model

occupancy and abundance simultaneously. Zero-inflated

Poisson (ZIP) or zero-inflated negative binomial (ZINB)

regression methods (see Lambert 1992, Zorn 1996,

Ridout et al. 1998, Barry and Welsh 2002, Kuhnert et

al. 2005, Martin et al. 2005a, b) are modeling techniques

that allow for occupancy and abundance to be estimated

simultaneously. These models predict the areas where

individuals are absent and estimate abundance when

they are present without the need to truncate the data.

Modeling false variation

Standard count regressions ignore false variation (i.e.,

detection error). These models produce an index of

abundance that is assumed to be related to true

abundance through a proportionality constant (Pollock

et al. 2002). Because the proportionality constant

remains fixed, the assumption is made that detection

error is constant in space and time. This assumption is

universally untrue as the proportionally constant and

detection error vary spatially and temporally with

habitat, time of day and observer, among other things.

If variation in detection error is ignored, the abundance

prediction will be incorrect. This will result in the model

having poor predictive abilities and will compromise

scientific inference.

Successfully accounting for detection error has been a

limiting stage in the development of adequate Poisson

regression models (Pearce and Ferrier 2001). There has

been much interest in dealing with detectability for

presence–absence data (MacKenzie et al. 2002, 2003,

Tyre et al. 2003), but until recently no practical

techniques were available to simultaneously model true

variation and false variation in abundance data (An-

derson 2001, Rosenstock et al. 2002). The N-mixture

regression method uses spatially and temporally repli-

cated count data to model abundance and detection

error simultaneously (Royle 2004, Royle et al. 2005). It

is a mixture between the binomial distribution and a

standard count model (Poisson or negative binomial, see

Methods [Royle 2004, Royle et al. 2005]). The binomial

distribution and explanatory variables (e.g., time of day

or season) are employed to estimate detection probabil-

ity. The binomial distribution requires an estimate for

the actual number of individuals; this is modeled as a

random variable from a count model such as the Poisson

or the negative binomial. Simulations (Royle 2004) and

empirical studies (Dodd and Dorazio 2004, Kéry et al.

2005, Royle et al. 2005) have demonstrated that this

model is robust for many scenarios.
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The N-mixture model can be a mixture of the

binomial and any other distribution used to model

count data. The N-mixture with a Poisson distribution is

an appropriate model to use to estimate abundance and

detection probability simultaneously when the count

data are randomly distributed. In other cases, the N-

mixture negative binomial may be appropriate. The

negative binomial form is only useful when the true

variation arises from the omission of covariates and a

limited proportion of excess zeros; it is not useful when

there is a violation of the independence assumption (i.e.,

IID; Doob 1934) or when data are greatly zero-inflated.

Non-independence of data may occur when individuals

are clumped (e.g., flocks of birds). Because the

independence assumption is made in both the binomial

and the count model components of the N-mixture

model, simply replacing the Poisson with a model that

can accommodate dependent data will not suffice. When

data are not independent, the N-mixture model, in the

forms that have been described to date, is not

appropriate. In the case where the data are zero inflated,

the negative binomial may be less appropriate than a

zero-inflated Poisson model.

In this paper, we develop Royle’s (2004) N-mixture

model to accommodate zero-inflated data by using zero-

inflated count models (zero-inflated Poisson and zero-

inflated negative binomial). To our knowledge, this is

the first application of this approach to modeling

abundance. The methodology presented accomplishes

three goals: (1) it removes error due to false variation

(detection error), (2) it predicts whether a species will

occur in an area and, if the species does occur, (3) it

provides an accurate abundance estimate through

modeling the true variation that results from biological

responses to ecological gradients. We employ four

variants of the N-mixture model: Poisson, zero-inflated

Poisson, negative binomial, and zero-inflated negative

binomial. We compare models using the Akaike

information criterion (AIC) and assess their ecological

realism by comparing the parameter estimates with

expected values derived from literature, ecological

theory and expert opinion. We present a novel

interpretation of the results obtained from the N

mixtures. Specifically, we explain that the site abundance

predicted with the N-mixture model is an estimate of the

number of individuals that utilize a site, not the true site

density, and is more appropriately referred to as a

relative density estimate. We provide examples of the

implementation of the novel combination of modeling

methods and the new interpretation of parameter

estimates with survey data of the birds of the Mount

Lofty ranges in South Australia.

METHODS

We conducted a survey of woodland birds in the

Mount Lofty Ranges (348580 S, 1388420 E), an area of

national conservation significance in South Australia,

during the spring and summer of 2000 (25 August 2000 to

19 December 2000). The Mount Lofty Ranges lie in a

Mediterranean climatic region that consists of eucalypt

woodlands and low shrublands. There are two main

vegetation types: ‘‘stringybark’’ forest (dominated by

Eucalyptus obliqua and E. baxteri) and ‘‘gum’’ woodland

(dominated by E. leucoxylon and/or E. fasciculosa). We

surveyed 109 sites and visited each nine times; 48 of the

sites (44%) were located in stringybark woodland and the

other 61 sites (56%) were in gum woodland. We used

active, time-area searches (e.g., 20 minutes in 2-ha plots

[Loyn 1986]). Individual birds were recorded only if they

were seen or heard within the 2-ha plot. For statistical

purposes it was necessary to assume that the populations

were closed (i.e., no birth, death, immigration, or

emigration) over the survey period. We believe this

assumption to be reasonable, as surveys were made

during the first half of the breeding season (Possingham

and Possingham 2000). Six bird species (out of 111

identified species) were selected to encompass a range

of abundances, detection probabilities and site occu-

pancies: the White-throated Treecreeper (Cormobates

leucophaeus), Gray Fantail (Rhipidura fuliginosa), Mis-

tletoebird (Dicaeum hirundinaceum), Rufous Whistler

(Pachycephala rufiventris), Golden Whistler (Pachyceph-

ala pectoralis), and Scarlet Robin (Petroica multicolor).

Statistical model

Four variants of Royle et al.’s N mixture—the

Poisson (P), zero-inflated Poisson (ZIP), negative

binomial (NB), and zero-inflated negative binomial

(ZINB)—are employed to simultaneously model detec-

tion probability, abundance and, in the case of ZIP and

ZINB, probability of occupancy, of the six bird species.

Environmental covariates are used to inform the

abundance estimates, detection error estimates and

probability of occupancy estimates (only for zero-

inflated forms). The distribution that models each

parameter can utilize unique covariates (e.g., vegetation

type, time of day of survey) that can be selected based on

the mechanism being modeled (i.e., observer detection

error, likelihood of occurrence and abundance). Below,

we present the N-mixture model with three main

components—(1) the estimation of detection probabil-

ity, (2) abundance, and (3) probability of occupancy—

and highlight statistical issues associated with each.

Estimation of detection probability

The N-mixture models the number of observed

individuals, nit, recorded at i ¼ 1, 2, . . . , R locations

during t ¼ 1, 2, . . . , T sampling occasions. Counts, nit,

are binomial random variables with index Ni (the actual

number of individuals present during the survey) and p

(the probability of detecting each individual). The

likelihood for the data from site i is

LðNi; pj ni1; . . . ; niTf gÞ ¼
YT

t¼1

Binðnit; Ni; pÞ ð1Þ
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where

Binðnit; Ni; pÞ ¼
Ni!

nit!ðNi � nitÞ!
pnit ð1� pÞNi�nit : ð2Þ

The joint likelihood of the data from replicate samples

at R locations in space is the product of all the site
binomials (Eq. 1):

Lð Nif g; pj nitf gÞ ¼
YR

i¼1

YT

t¼1

Binðnit; Ni; pÞ
" #

ð3Þ

conditional on fNig ¼ (N1, N2, . . . , NRg and detection

probability p. The actual number of individuals, Ni, in a
survey period has a distribution f(Ni; h). The prior

distribution on N can be any distribution suitable to

model count data, typically a Poisson or a negative
binomial. The integrated likelihood is

Lðp; hj nitf gÞ ¼
YR

i¼1

X‘

Ni¼maxtnit

YT

t¼1

Binðnit; Ni; pÞ
" #

f ðNi; hÞ
( )

ð4Þ

where h is the parameter(s) of f(Ni; h) (e.g., h¼ k for the
Poisson model).

Detection probability, p, can depend on covariates

such as time of day, season, or observer. This variation
can be modeled using standard generalized linear

regression techniques. In this case, the response variable

is binary (individual bird is detected or not detected).
Hence, the expected value may be modeled using the

logit link function (McCullagh and Nelder 1989). The

logistic regression is

logitðpitÞ ¼ a0 þ
X

j

ajxit ð5Þ

where pit is the probability that the individual will be
detected at site i at time t, a0 is the intercept coefficient,

the xi are the predictor variables, and aj is the predictor
coefficient for the jth predictor.

Estimation of abundance

Abundance is commonly modeled using either the

Poisson or the negative binomial distribution. The

Poisson distribution is a natural choice for modeling
count data because it assumes that events occur at

random in space. If the discrete random variable, N (the

number of individuals at the site), is Poisson distributed,
it has a density

PrðN ¼ xjkÞ ¼ e�kkx

x!
x ¼ 0; 1; 2; . . . ;‘ ð6Þ

where the parameter lambda, k, is the mean number of

events occurring in a unit area or, in this case, the

number of individuals present at the site at the time of
the survey.

The negative binomial accounts for deviation from

randomness by allowing the mean l (analogous to the k
of the Poisson distribution) to vary stochastically

through the inclusion of an explicit dispersion param-

eter, d:

PrðN ¼ xjl; dÞ ¼ ðx þ d� 1Þ!
ðd� 1Þ!x!

d
dþ l

0
@

1
A
�d

l
lþ d

0
@

1
A

x

;

x ¼ 0; 1; 2; . . . ;‘ ð7Þ

where N is the number of individuals present at the site

at the time of the survey.

Environmental covariates that influence abundance

are incorporated into the abundance models by again

using generalized linear regression. As the Poisson or

negative binomial error distribution is used for the mean

site abundance, a log-linear transformation is appropri-

ate:

logðhiÞ ¼ c0 þ
X

j

cjxi ð8Þ

where hi¼ki or li, is the mean abundance at site i for the

Poisson and negative binomial distribution, respectively,

c0 is the intercept coefficient, the xi are the predictor

variables, and cj is the predictor coefficient for the jth

predictor.

Estimation of probability of occupancy

While Poisson and negative binomial models may do

a good job of modeling abundance at sites that are

occupied, they do not adequately model a large number

of true zeros that will arise from sampling unoccupied

sites. These zeros can be incorporated into the abun-

dance models by estimating the probability of occupan-

cy through the use of zero-inflated forms of the

abundance models. There are two types of zero-inflated

count models used in the ecological literature: the

conditional models (Mullahy 1986, King 1989) and the

mixture models (Lambert 1992). They are both a

combination of a Bernoulli process (to determine

occupancy) and a Poisson or negative binomial process

(to determine the site abundance). However, in the

conditional model, the abundance distribution in

occupied sites is truncated at zero, whereas in the

mixture model it is not (for a more detailed description

of the differences between the models, see Zorn 1996). A

truncated-at-zero distribution requires the assumption

that all the zeros in the data arise from the process

driving occupancy and that none of the zeros arise from

the Poisson or negative binomial process that drives site

abundance. This would imply that non-zero abundance

is a certainty in suitable sites and zero abundance could

not occur by chance. As this is unlikely, the mixture

model, which describes some zeros as part of the Poisson

distribution and others as the point mass, is more

appropriate for describing the distribution of site

abundance data.

In the case of the Poisson mixture, the probability

density function is as follows:
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PrðNi ¼ 0jk;wÞ ¼ wþ ð1� wÞe�k

PrðNi . 0jk;wÞ ¼ ð1� wÞ e
�kkx

x!
; x ¼ 0; 1; 2; . . . ;‘

ð9Þ

where N is the actual site abundance, w is the probability
that the site is occupied, and k is the mean abundance
(Lambert 1992, Martin et al. 2005a).

Similarly, the mixture negative binomial probability
density function is

PrðNi ¼ 0jl; d;wÞ ¼ wþ ð1� wÞ 1

1þ l=d

� �d

PrðNi . 0jl; d;wÞ

¼ ð1� wÞ ðx þ d� 1Þ!
x!ðd� 1Þ!

ðl=dÞx

ð1þ l=dÞxð1þ l=dÞd

x ¼ 1; 2; . . . ;‘ (10)

where N is the actual site abundance, w is the probability

that the site is occupied, l is the mean abundance, and d
is the dispersion parameter of the negative binomial.

Environmental covariates that affect occupancy were
included in the probability of occupancy component of
these models. The covariates that influence occupancy
may or may not be the same covariates that are
incorporated into the abundance component of the
model. The probability that the site is occupied (w) is a
binary process (occupied or unoccupied); hence, a
logistic regression is appropriate to predict occupancy:

logitðwiÞ ¼ b0 þ
X

j

bjxi ð11Þ

where b0 is the intercept coefficient, the xi are the
predictor variables, and bj is the predictor coefficient for
the jth predictor.

Covariates

We selected five covariates to include in the models:
rainfall, solar radiation, area of vegetation cover within
a 5-km buffer, Julian day of survey, and time of day of
survey. These five covariates were chosen based on
expert opinion and a preliminary model-fitting exercise
where we assessed different covariate combinations
using the Akaike information criteria (AIC, Burnham
and Anderson 1998). We used two covariates to model
detectability (Julian day of year and time of day) and the
same three covariates for each of the abundance and
occupancy components of the model (rainfall, solar
radiation, 5-km buffer). In addition to running the
models with the covariates, we also conducted null
model runs in which no covariates were used.

Model fit and selection using AIC

The models were fit by minimizing the negative log

likelihood using the minimization procedure (fminunc.m)

in the software package MATLAB (Version 7.0.1; The

MathWorks, Natick Massachusetts, USA). To enhance

convergence of the numerical optimization algorithm,

all covariates were transformed into standard normal

deviates by first subtracting the arithmetic mean and

then dividing by the standard deviation. Following

standard maximum likelihood theory, the asymptotic

variance–covariance matrix of the parameter estimates

was derived by finding the inverse of the Hessian matrix

(i.e., the observed Fisher Information Matrix). Standard

errors were calculated as the square root of the diagonal

of the covariance matrix (De Groot and Schervish 2002).

Ninety-five percent confidence intervals (CI) were

obtained using the standard method (i.e., mean 6 1.96

SE).

The best model for each species was selected by

comparing the AIC values (Burnham and Anderson

1998). Models with the smallest AIC value are

considered the best model. However, it is insufficient

to simply select the model with the lowest AIC value

because values of AIC may vary due to model

uncertainty. Instead, using the difference between model

AIC and the minimum AIC (D) is recommended:

Di ¼ AICi �min AIC: ð12Þ

Models having Di � 2 can be considered equally

superior (Burnham and Anderson 1998).

Assessment of ecological realism

For each species, we predicted the abundances,

detection probabilities, and site occupancies using

estimates derived from the literature and expert opinion

(Table 1). To assess ecological realism of model results,

we compared the parameters estimated by the best

statistical models (as determined by AIC) to these

predictions. The predicted estimates are approximations

only and, hence, it is not statistically sensible to perform

standard statistical comparative tests. Instead, we used

the predictions as a gauge and employed threshold

TABLE 1. Estimates of ecologically realistic abundance,
probability of detection, and probability of occupancy for
six bird species of the Mount Lofty Ranges, South Australia
derived from published surveys, expert opinion, and ecolog-
ical theory.

Species
Abundance

(no. birds/ha2)
Probability
of detection

Probability of
occupancy

Rufous Whistler 4 .0.1 0.56
Mistletoebird 4 .0.1 0.56
Scarlet Robin 6 .0.1 0.5
White-throated

Treecreeper
6 .0.1 0.9

Gray Fantail 10.5 .0.1 1
Golden Whistler 2.6 .0.1 0.9

Notes: Abundance is the maximum abundance reported for
each species in the literature. The probability of detecting each
species is suspected to be at least once in 10 surveys. Probability
of occupancy was estimated from the known distributions of
vegetation types and the expected vegetation preference of each
species.

April 2009 635ZERO-INFLATED N-MIXTURE MODELS



criteria to assess the ecological realism of the model

estimates. Only models that passed the thresholds for all

three parameters were deemed ecologically realistic.

We determined a plausible abundance from our

models by selecting the maximum density reported by

Australian surveys (mean number of studies¼ 14.6, CV

¼ 0.4) published in the Handbook of Australian, New

Zealand and Antarctic Birds (Higgins et al. 2001, 2006,

Higgins and Peter 2002). We selected the maximum

value, as this provided an upper estimate to compare to

the modeled estimates. We converted the published

density (birds/ha) into an approximate estimate of the

number of birds in 2 ha (i.e., the units that are predicted

by the statistical models) by doubling the values. The

abundance estimates produced by the N-mixture models

are estimates of the number of species that utilize a site

rather than true density (see Discussion for further

explanation). Therefore, the parameter estimates may be

slightly greater than the predictions from the literature.

Also, because the density estimates from the literature

were for different regions (sites located throughout

Australia), we expect some inconsistency with modeled

estimates. However, despite these caveats, it is possible

to assume that considerably larger estimates would not

be ecologically plausible. Hence, we assume that the

density estimated with the statistical models should not

be more than 10 birds/2 ha greater than the prediction.

Obtaining a priori estimates of the probability of

detecting a species is possible though eliciting expert

knowledge. Because estimates provided by experts are

approximate, we asked a group of experts to provide a

lower bound on the probability of detecting an

individual if it was present in the survey rather than a

point estimate. The experts believe that the probability

of detection should be greater than 0.1 for all species

(i.e., an individual that is present in the survey site will

be detected by an observer during the survey period at

least once in 10 surveys). For the species considered

here, estimates of detection probability that are less that

0.1 are assumed to be ecologically unlikely.

The predictions of probability of occupancy of each

species were based on the proportions of survey sites

located in each of the vegetation types and prior

knowledge of vegetation preferences of each of the species.

Forty-eight (44%) survey sites were located in stringybark

forest and 61 (56%) were located in gum woodlands. Two

of the species, Mistletoebird and Rufous Whistler, have a

well-known preference for gum woodlands. Given that

surveys were conducted in both stringybark forests and

gum woodlands, we expected the count data of these two

species to be zero inflated. The Scarlet Robin has declined

significantly from much of its former range in the Mount

Lofty Ranges (Ford and Howe 1980, Possingham et al.

2004). Therefore, we expected that this species was likely

to be absent from greater than 50% of the sites (i.e., 54

sites). The other three species were found throughout the

study region, hence were unlikely to have excess zeros

(true zeros) that would arise through unoccupied sites. It is

possible for sites to be unoccupied for reasons other than

vegetation preference; hence, it is realistic to have more

zeros than predicted based on proportion of sites in

suitable vegetation types. However, it is extremely unlikely

to have fewer zeros than predicted. Therefore, we assumed

the models were not ecologically realistic if the number of

zero-counts estimated by the statistical models were

considerably fewer than predicted (i.e., .10 sites fewer).

RESULTS

Model selection using AIC

Based on the comparison of AIC values, models that

incorporated covariates always produced better fits than

the null models. Covariate models had AIC values that

were 4 to 93 points less than the comparable null

models, with most of the best covariate models having

AIC values that were at least 20 points less. For the

remainder, we present only the results from the models

that used covariates. We graph the estimates for mean

abundance per site for (1) the species that were likely to

be absent in many sites and, therefore, have zero-inflated

data (Fig. 1) and (2) the species that were likely to occur

in most sites (Fig. 2).

AIC values and the parameter estimates (mean site

abundance, probability of detection, mean probability

of occupancy and dispersion parameter, d, are presented
for each of the N-mixture models (P, ZIP, NB, and

ZINB) in Table 2. According to AIC, the zero-inflated

negative binomial model was the most parsimonious

model for all six species. For two species (the White-

throated Treecreeper and the Golden Whistler), one

other model was equally as parsimonious (the zero-

inflated Poisson and the negative binomial, respectively).

Assessment of ecological realism

The Poisson and the zero-inflated Poisson variant of

the N-mixture generated ecologically realistic parameter

estimates for five of the six species (Table 3). Estimates

from both of these models were unrealistic for the scarlet

robin. The Poisson model estimated a probability of

occupancy that was much larger than expected (i.e., 1

instead of ,0.50). The ZIP estimated probability of

detection that was too low (i.e., 0.06 instead of .0.1). In

contrast, the estimates generated by both the negative

binomial and zero-inflated negative binomial were

realistic for only two species. Specifically, realistic

estimates were generated for species having data unlikely

to be zero inflated. The negative binomial models

performed poorly at estimating abundance and detec-

tion error for most of the species; however, they

successfully predicted occupancy for most species.

DISCUSSION

Inconsistency between AIC and ecological realism

Ecologically unreasonable predictions of abundance

and detection probabilities were obtained from the

models that were ranked as the best models based on
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the Akaike information criteria. The zero-inflated

negative binomial variant of the N-mixture model was
always the best model according to the AIC (although
for two of the species either the zero-inflated Poisson or

the negative binomials were indistinguishable). The
negative binomial variant was often ranked second best
according to AIC. However, parameter estimates for

both of the negative binomial variants were ecologically
unreasonable for all three of the birds that were absent
from a large proportion of the sites (i.e., Rufous

Whistler, Mistletoebird, and Scarlet Robin) and one

that was expected to be almost everywhere (i.e., Golden

Whistler). For these species, the negative binomial
variants predicted site abundances that were often
higher (e.g., 20 birds/2 ha) and detection probabilities

that were appreciably lower (e.g., 0.02) than reasonable.
These models suggest that the sites are frequented by a
large number of birds, all with a low detection

probability. This behavior is very unlikely for these
species, especially at the time of year when the surveys
were conducted (i.e., during the breeding season, when

discrete territories are maintained).

FIG. 1. Histograms of the modeled actual abundance predicted by the four N-mixture count models for the species with known
vegetation preferences or low levels of occupancy and, consequently, zero-inflated data. The abundance predicted with the binomial
component of the zero-inflated models (N¼ 0) is presented as pale gray bars, whereas the abundance predicted by the Poisson or
negative binomial component of the zero-inflated model (N¼ 0, 1, . . . , ‘) is presented as dark gray bars. Dotted lines on the y-axes
indicate the approximate number of zero counts (i.e., unoccupied sites) that are expected given vegetation preferences (i.e.,
ecologically realistic estimates). Arrows on the x-axes point to approximate, ecologically realistic abundance derived from
published surveys. The probability of detection, p, is stated for each species.
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In contrast, for two of the three species that were

expected to occupy most sites (White-throated Tree-

creeper and Gray Fantail), the two forms of the negative

binomial N mixture generated reasonable parameter

estimates. The fact that the negative binomial variants of

the N-mixture models perform poorly when data are

zero-inflated but perform better when excess zeros were

absent suggests that these variants are unable to

successfully model extra-Poisson variation due to excess

true zeros.

Importantly, the Poisson and ZIP variant of the N-

mixture model generated ecologically reasonable pa-

rameter estimates for five of the six species. Given that

the Poisson variant is unlikely to appropriately model

zero-inflated data, it is surprising that this model

generated good estimates for two of the species that

were expected to have zero-inflated data (i.e., Rufous

Whistler and Mistletoebird). This is likely to occur

because a Poisson model provides a good approxima-

tion of the true values when the true maximum

FIG. 2. Histograms of the modeled actual abundance predicted by the four N-mixture count models for species that are thought
to utilize all vegetation types and, hence, for which the data are unlikely to be zero-inflated. The abundance predicted with the
binomial component of the zero-inflated models (N ¼ 0) is presented as pale gray bars, whereas the abundance predicted by the
Poisson or negative binomial component of the zero-inflated model (N¼0, 1, . . . , ‘) is presented as dark gray bars. Dotted lines on
the y-axes indicate the approximate number of zero counts (i.e., unoccupied sites) that are expected given known vegetation
preferences (i.e., ecologically realistic values). Arrows on the x-axes point to approximate, ecologically realistic abundance derived
from published surveys. The probability of detection, p, is stated for each species.
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abundance is relatively close to zero (i.e., mean of

approximately five) and the number of sites with a count

of zero is relatively high (i.e., approximately 40 sites are

unoccupied). Imagine site abundance displayed in a

histogram similar to those presented in Fig. 1 and Fig. 2.

Imagine that the number of unoccupied sites (e.g.,

abundance¼ 0) is reasonably high (e.g., 40–50) and the

mean abundance of all occupied sites is quite low (e.g.,

;5). A Poisson model will fit this distribution well. The

Poisson will slightly underestimate the true abundance;

however, the underestimated parameters remain ecolog-

ically reasonable. Conversely, if the number of unoccu-

pied sites is reasonably high but the mean abundance of

occupied sites is further from zero (e.g., ;10), the

Poisson will not fit the data as well. In this case, the

Poisson model will generate parameter estimates that are

not reasonable.

For one species (the Scarlet Robin), the ZIP variant of

the N-mixture model estimated the probability of

occupancy to be less than expected (i.e., 0.06 instead

of .0.1). We suspect the estimates would be improved if

variation in the probability of detection were modeled

appropriately. Specifically, the probability of detection

is likely to vary with many variables, including the

observer, time of day, time of year and weather. A

binomial distribution was used to model detection

probability with only two covariates to model detection

probability: time of day and time of year. Therefore,

there is likely to be extra-binomial variation in the

detection probability response variable. The beta-bino-

mial distribution is an alternative to the binomial and

accounts for the extra-binomial variation (n.b. the beta

binomial may also account for extra-binomial variation

that results from violation of the independence assump-

tion). The beta-binomial model assumes that the

responses follow an independent Bernoulli process,

and that the Bernoulli parameter itself is a random

variable that varies among groups according to a beta

distribution. Further research is required to determine if

the N-mixture model with a beta binomial distribution

modeling the detection probability will generate ecolog-

ically reasonable parameter estimates. Given the large

number of components of a beta-binomial N-mixture

model, care must be take to ensure that this model does

not overfit the data.

In most cases, both of the Poisson variants of the N-

mixture model produced parameter estimates that are

ecologically sensible. In contrast, the parameter esti-

TABLE 2. N-mixture model results for six bird species of the Mount Lofty Ranges using Poisson (P), zero-inflated Poisson (ZIP),
negative binomial (NB), and zero-inflated negative binomial (ZINB) distributions.

Bird species
and distribution AIC Abundance, k

Probability of
detection, d

Probability of
occupancy, w Delta, d

Rufous Whistler

P 730.34 0.79 (0.70–0.95) 0.19 (0.15–0.25)
ZIP 706.21 3.30 (1.83–6.31) 0.11 (0.06–0.19) 0.37 (0.30–0.48)
NB 699.90 4.85 (0.52–51.17) 0.03 (0.00–0.29) 0.30 (0.16–0.56)
ZINB 693.38 6.33 (0.95–60.63) 0.03 (0.00–0.21) 0.83 (0.20–0.80) 0.39 (0.21–0.73)

Mistletoebird

P 1148.90 1.25 (1.08–1.63) 0.32 (0.27–0.37)
ZIP 1099.98 3.46 (2.64–4.87) 0.21 (0.15–0.28) 0.43 (0.36–0.53)
NB 1104.54 3.51 (3.60–3.89) 0.15 (0.08–0.27) 0.06 (0.34–1.07)
ZINB 1094.76 6.14 (2.84–15.77) 0.11 (0.04–0.29) 0.44 (0.37–0.56) 3.42 (1.15–10.79)

Scarlet Robin

P 869.80 1.09 (0.70–1.87) 0.16 (0.12–0.21)
ZIP 831.72 5.84 (2.44–15.17) 0.06 (0.03–0.14) 0.43 (0.31–0.53)
NB 826.25 8.87 (3.11–31.49) 0.02 (0.01–0.04) 0.36 (0.22–0.58)
ZINB 823.89 20.79 (8.36–55.92) 0.02 (0.01–0.04) 0.48 (0.31–0.61) 1.65 (0.49–5.52)

White-throated Treecreeper

P 1532.45 1.78 (1.33–2.43) 0.30 (0.25–0.35)
ZIP 1518.69 2.75 (1.96–4.10) 0.25 (0.19–0.31) 0.73 (0.63–0.78)
NB 1525.97 2.11 (1.40–3.30) 0.25 (0.20–0.32) 2.65 (1.07–6.61)
ZINB 1520.27 2.82 (1.93–4.44) 0.24 (0.18–0.31) 0.74 (0.62–0.79) 15.71 (0.55–447.69)

Gray Fantail

P 2484.73 3.88 (3.43–4.43) 0.30 (0.26–0.34)
ZIP 2466.85 5.17 (4.38–6.27) 0.25 (0.20–0.30) 0.90 (0.77–0.96)
NB 2469.40 5.09 (4.15–6.49) 0.23 (0.17–0.30) 3.76 (1.93–7.31)
ZINB 2463.76 5.97 (4.59–8.06) 0.21 (0.15–0.29) 0.93 (0.83–0.93) 8.15 (2.89–23.01)

Golden Whistler

P 1573.44 2.62 (2.09–3.36) 0.16 (0.12–0.20)
ZIP 1569.11 3.82 (2.53–5.88) 0.12 (0.08–0.18) 0.88 (0.75–0.94)
NB 1563.52 6.55 (1.81–24.37) 0.06 (0.02–0.22) 2.03 (0.97–4.27)
ZINB 1564.19 9.42 (1.35–67.32) 0.05 (0.01–0.28) 0.91 (0.69–0.98) 2.88 (1.06–7.81)

Note: The best models (according to AIC) are indicated in bold; 95% confidence intervals appear in parentheses.
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mates generated by the negative binomial variants were

often ecologically unrealistic. This result directly con-

flicts with AIC model selection that commonly selected

the negative binomial variants in preference to the

Poisson variants. The AIC is used to select models on

their statistical fit to data and, clearly, is unable to assess

ecological realism.

Statistical models like the negative binomial variants

of the N mixture, that model statistic properties of data

and not ecological mechanisms, are susceptible to

unexpected and erroneous parameter estimation such
as we describe here. The process by which negative

binomial models accommodate zero-inflation (or any

form of extra-Poisson variation) is to allow the mean site

abundance (lambda) to vary stochastically. This process

will lead to the simultaneous prediction of excess zeros

and excessively large values. When data are modeled

with a traditional negative binomial distribution (i.e.,

not within an N-mixture model), the extent of large

values that can be predicted by a parsimonious model

will be restricted by the data. However, for an N-mixture

model, the large estimates of site abundance can be

‘counteracted’ with excessively small detection proba-

bilities by modeling the observed site abundance as a

large number of individuals present each with very low

probability of detection. The AIC cannot discriminate

among models that use different components of the N

mixture (i.e., the detection error or the abundance

estimators) to model the error and may, as is the case in
our study, find a ‘‘best’’ model that generates unrealistic

estimates. The ZIP variant of the N-mixture model is an

appropriate alternative that models ecological mecha-

nism and successfully estimates ecologically realistic

parameters. This variant of the N-mixture models excess

zeros as either detection error or unoccupied sites in a

manner that is similar to the ecological mechanism

underlying the data.

Our distrust of the negative binomial N-mixture model

is corroborated by results presented in Kéry et al. (2005),

who compared estimates of site abundance predicted

with the N-mixture model (fitting Poisson and negative

binomial distributions) with those estimated from

territorial mapping methods for six bird species. They

found that the negative binomial form of the N-mixture

TABLE 3. Assessment of the ecological realism of parameter estimates for six bird species of the
Mount Lofty Ranges for the four variants of the N-mixture model: Poisson (P), zero-inflated
Poisson (ZIP), negative binomial (NB), and zero-inflated negative binomial (ZINB).

Bird species
and distribution Abundance

Probability
of detection

Probability
of occupancy

Ecologically
realistic models

Rufous Whistler

P 3 3 3 3
ZIP 3 3 3 3
NB O O O O
ZINB O O O O

Mistletoebird

P 3 3 3 3
ZIP 3 3 3 3
NB O 3 O O
ZINB O 3 3 O

Scarlet Robin

P 3 3 O O
ZIP 3 O 3 O
NB O O O O
ZINB O O 3 O

White-throated Treecreeper

P 3 3 3 3
ZIP 3 3 3 3
NB 3 3 3 3
ZINB 3 3 3 3

Gray Fantail

P 3 3 3 3
ZIP 3 3 3 3
NB 3 3 3 3
ZINB 3 3 3 3

Golden Whistler

P 3 3 3 3
ZIP 3 3 3 3
NB 3 O 3 O
ZINB O O 3 O

Notes: Crosses (3) indicate that parameter estimates are realistic, and circles (O) indicate that
parameters are not realistic based on criteria described in Methods. Models that produced
ecologically reasonable estimates for all three parameters are deemed ecologically realistic models
and are highlighted in bold.
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model commonly estimated mean site abundance that

was approximately double the estimates from the

territory mapping method. Specifically, the ratio of site

abundances of the two methods (NN-mixture/NN-mapping)

ranged up to 8.86. For all species, the N mixture under

the Poisson distribution and the territory mapping

technique gave very similar estimates for site abundance

(mean NN-mixture/NN-mapping N was 1.18, ranging from

0.93 to 1.45). The problem with these comparisons was

that the AIC and goodness-of-fit statistics frequently

selected the negative binomial form of the N mixture as

the best model (i.e., for five of the six species). Kéry et al.

(2005) expressed suspicion that the negative binomial

distribution may not have been the best choice for

representing the over-dispersion in abundance relative to

the Poisson. Given the conclusions drawn from our

analysis, we suspect that the negative binomial distribu-

tion was inappropriate. We suggest that estimates of site

abundance given under the Poisson distribution and the

territorial mapping technique are more trustworthy than

those produced under the negative binomial distribution.

Ecologically sensible model choice

Our results demonstrate the importance of carefully

considering sources of variation and selecting ecologi-

cally sensible models before fitting data to models. An

inappropriate error distribution in the N-mixture model

will give misleading parameter estimates. Conversely,

properly representing ecological mechanisms in models

will assist in appropriate model selection (see Austin and

Meyers 1996). We have demonstrated that the extra-

Poisson variation in three of our six species occurred due

to an ecological mechanism that is easily recognized and

modeled. Zero-inflation can be successfully modeled by

allowing an extra parameter to estimate the site

suitability before estimating conditional density. This

process is ecologically meaningful and appropriate,

unlike the process represented by the negative binomial

model. Our results demonstrate the dangers of using

statistical models that lack an underlying ecological

mechanism and are instead based only on statistical

properties of the data.

The N mixture is a powerful model for estimating the

abundance and detection probability of species. The

zero-inflated Poisson N-mixture model improves the

capabilities of the modeling technique by allowing the

simultaneous estimating of probability of site occupan-

cy. These models can be used to simultaneously describe

true variation that represents important ecological

mechanisms and false variation that is due to observa-

tion error. If a species is likely to be present in all survey

sites and true and false variation exists in abundance

estimates, a standard Poisson N-mixture model to

estimate abundance and detectability may be sufficient.

However, if the species is absent from a reasonable

proportion of sites (e.g., .30%), the zero-inflated

Poisson N-mixture model is more appropriate.

Interpretation of site abundance for mobile species

It is useful to be able to make predictions about the

potential abundance across a species distribution;

however, N-mixture estimates of abundance should be

used with care. By extrapolating the abundance that is

estimated with the N-mixture model across a species’

distribution, we make the implicit but invalid assump-

tion that the abundance estimate corresponds to density

(i.e., number of individuals per unit area). In actuality,

the mean abundance estimated (i.e., hi¼ ki or li,) by the

N-mixture model (N̂) is the number of individuals that

have territories that at least partially overlap with the

survey area. For mobile species, the actual numbers of

individuals that utilize a site and are available for

observation (N ) come from an area that is generally

much larger than the actual survey area. The N-mixture

abundance estimate (i.e., the number of individuals that

utilize a site) will be consistently larger than the true

density and in some cases the overestimation will be

substantial.

CONCLUSION

By examining the parameters estimated using stan-

dard and zero-inflated forms of the Poisson and negative

binomial N-mixture models, we demonstrate that the

zero-inflated Poisson model appears an appropriate and

meaningful model. On the other hand, the negative

binomial forms are, in many cases, not appropriate and

may give misleading results. We demonstrate that to

obtain ecologically realistic estimates of abundance and

detection probability it is essential to understand the

sources of variation in the data and then use this

information to choose appropriate error distributions.

There is little ecological reason for using a negative

binomial N-mixture model. Given that the negative

binomial variant produces ecologically unrealistic esti-

mates, we recommend that it not be used to predict

abundance and detection probability when using the N-

mixture model. The zero-inflated Poisson will be

particularly applicable when excess zeros in the data

are due to unoccupied sites. We have demonstrated that

the zero-inflated Poisson will produce sensible estimates

of detection probability and abundance even when data

are not zero inflated. Additionally, using the zero-

inflated Poisson model, by properly modeling error, will

allow researchers to make best use of other features of

N-mixture models such as the ability to include

ecological correlates relevant to occupancy and abun-

dance.
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