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Numerical study of the hard-core Bose-Hubbard model on an infinite square lattice
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We present a study of the hard-core Bose-Hubbard model at zero temperature on an infinite square lattice
using the infinite projected entangled pair state algorithm [J. Jordan, R. Ords, G. Vidal, F. Verstraete, and J. 1.
Cirac, Phys. Rev. Lett. 101, 250602 (2008)]. Throughout the whole phase diagram our values for the ground-
state energy, particle density, and condensate fraction accurately reproduce those previously obtained by other
methods. We also explore ground-state entanglement, compute two-point correlators, and conduct a fidelity-
based analysis of the phase diagram. Furthermore, for illustrative purposes we simulate the response of the
system when a perturbation is suddenly added to the Hamiltonian.
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I. INTRODUCTION

The physics of interacting bosons at low temperature has
since long attracted considerable interest due to the occur-
rence of Bose-Einstein condensation.! The Bose-Hubbard
model, a simplified microscopic description of an interacting
boson gas in a lattice potential, is commonly used to study
related phenomena, such as the superfluid-to-insulator tran-
sitions in liquid helium? or the onset of superconductivity in
granular  superconductors® and arrays of Josephson
junctions.* In more recent years, the Bose-Hubbard model is
also employed to describe experiments with cold atoms
trapped in optical lattices.

As in most many-body systems, the theoretical study of
interacting bosons cannot rely only on the few exact solu-
tions available. Numerical results are also needed, but these
are not always easy to obtain. Indeed, the exponential growth
of the Hilbert space dimension in the lattice size (even after
placing a bound on the number of bosons allowed on each of
its sites) implies that exact diagonalization techniques are
only capable of addressing very small lattices. Thus, in order
to study the ground-state properties of the Bose-Hubbard
model on, e.g., the square lattice, as is the goal of the present
work, a number of more elaborate techniques, such as mean-
field theory, spin-wave (SW) calculations, or quantum Monte
Carlo are traditionally used (see, e.g., Ref. 6 and references
therein).

Recently, a new class of simulation algorithms for two-
dimensional (2D) systems, based on tensor networks, has
gained much momentum. The basic idea is to use a network
of tensors to efficiently represent the state of the lattice. Spe-
cifically, the so-called tensor product states”® (TPSs) or pro-
jected entangled-pair states™!'? (PEPSs) are used to (approxi-
mately) express the d" coefficients of the wave function |¥)
of a lattice of N sites in terms of just N tensors in such a way
that only O(N) coefficients are actually specified. After opti-
mizing these tensors so that |W) represents, e.g., the ground
state of the system, one can then extract from them a number
of properties, including the expected value of arbitrary local
observables. Moreover, in systems that are invariant under
translations, the tensor network is made up of copies of a
small number of tensors. This leads to an even more compact
description that depends on just O(1) parameters. The latter
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is the basis of the infinite projected entangled-pair state (iP-
EPS) algorithm,!" which addresses infinite lattices and can
thus be used to compute thermodynamic properties directly,
without needing to resort to finite-size scaling techniques.

In this work we initiate the exploration of interacting
bosons in an infinite 2D lattice with tensor network algo-
rithms. We use the iPEPS algorithm'!'? to characterize the
ground state of the hard-core Bose-Hubbard (HCBH) model,
namely, the Bose-Hubbard model in the hard-core limit,
where either zero or one bosons are allowed on each lattice
site. Although no analytical solution is known for the 2D
HCBH model, there is already a wealth of numerical results
based on mean-field theory, spin-wave corrections, and sto-
chastic series expansion.® These techniques have been quite
successful in determining some of the properties of the
ground state of the 2D HCHB model, such as its energy,
particle density, or condensate fraction. Our goal in this pa-
per is twofold. First, by comparing our results against those
of Ref. 6, we aim to benchmark the performance of the iP-
EPS algorithm in the HCBH model. Second, once the valid-
ity of the iPEPS algorithm for this model has been estab-
lished, we use it to obtain results that are harder to compute
with (or simply well beyond the reach of) the other ap-
proaches. These include the analysis of entanglement, two-
point correlators, fidelities between different ground
states,'>!5 and simulation of time evolution. We note that the
present results naturally complement those of Ref. 10 for
finite systems, where the PEPS algorithm® was used to study
the HCBH model in a lattice made up of at most 11X 11
sites.

The rest of the paper is organized as follows. Sec. II in-
troduces the HCBH model and briefly reviews the iPEPS
algorithm. Sec. III contains our numerical results for the
ground state of the 2D HCBH model. These include the com-
putation of local observables such as the energy per lattice
site, the particle density, and the condensate fraction. We also
analyze entanglement, two-point correlators, and ground-
state fidelities. Finally, the simulation of time evolution is
also considered. Sec. IV contains some conclusions.

II. MODEL AND METHOD

In this section we provide some basic background on the
HCBH model, as well as on the iPEPS algorithm.

©2009 The American Physical Society
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A. Hard-core Bose-Hubbard model

The Bose-Hubbard model> with on-site and nearest-
neighbor repulsion is described by the Hamiltonian

HBH——JE (ala/+a Ta;) — E,un +E Via(i;—1)
(i.j)

+V, 2 i,
(i.j)

where a " and a; are the usual bosonic creation and annihila-
tion operators n=p;=aj Ta; is the number (density) operator
at site 7, J is the hopping strength, w is the chemical poten-
tial, and V; and V,=0. The four terms in the above equation
describe, respectively, the hopping of bosonic particles be-
tween adjacent sites (J), a single-site chemical potential (),
an on-site repulsive interaction (V;), and an adjacent site
repulsive interaction (V).

Here we shall restrict our attention to on-site repulsion
only (V,=0) and to the so-called hard-core limit in which
this on-site repulsion dominates (V;— ). Under these con-
ditions the local Hilbert space at every site describes the
presence or absence of a single boson and has dimension
two. With the hard-core constraint in place, the Hamiltonian
becomes

Hyc=-J2 (aja;+ala;) - 2 iz, (1)
(i.j)

where a,T and a; are now hard-core bosonic operators obeying
the commutation relation,

[di,d}] =(1-27,) ;)

A few well-known facts of the HCBH model are:
(i) U(1) symmetry. The HCHB model inherits particle
number conservation from the Bose-Hubbard model,

[Hye,N1=0, N=2X i, (2)
1

and it thus has a U(1) symmetry, corresponding to transform-
ing each site [ by ¢'?", ¢ € [0,2m).

(ii) Duality transformation. In addition, the transformation
a,—a, applied on all sites / of the lattice maps Hyc(x) into
Hyc(—p) (up to an irrelevant additive constant). Accordingly,
the model is self-dual at u=0, and results for, say, >0 can
be easily obtained from those for u<<0.

(iii) Equivalence with a spin model. The HCBH model is
equivalent to a quantum spin % model, namely, the ferromag-
netic quantum XX model),

Hyy=- 2 oj0j+0joj+ E 3)
24 ) 2
which is obtained from Hyc with the replacements
oi+io) . oi-io]
al == al = £
2 2

where o, 0,, and o, are the spin % Pauli matrices. In par-
ticular, all the results of this paper also apply, after a proper
translation, to the ferromagnetic quantum XX model on an

infinite square lattice.

PHYSICAL REVIEW B 79, 174515 (2009)

(iv) Ground-state phase diagram (the hopping term in Hyc
favors delocalization of individual bosons in the ground
state, whereas the chemical potential term determines the
ground-state bosonic density p,

1
p= X,EI <a,Tai>-

For u negative, a sufficiently large value of |u| forces the
lattice to be completely empty, p=0. Similarly, a large value
of (positive) u forces the lattice to be completely full, p=1,
as expected from the duality of the model. In both cases
there is a gap in the energy spectrum and the system repre-
sents a Mott insulator. When, instead, the kinetic term domi-
nates, the density has some intermediate value 0 <p <1, the
cost of adding/removing bosons to the system vanishes, and
the system is in a superfluid phase.? The latter is character-
ized by a finite fraction of bosons in the lowest momentum
mode o= (1/N)Z,a;, that is, by a nonvanishing conden-
sate fraction p,

P 1
Po= <alt:0ak=0> = _22 <a;ai>-
i
In the thermodynamic limit, N— c, a nonvanishing conden-
sate fraction is only possible in the presence of off-diagonal

long-range order (ODLRO) 16 or <a a;))#0 in the limit of
large distances |i-j

po= lim <a a). 4)
li-j| o
(v) Quantum phase transition. Between the Mott insulator
and superfluid phases, there is a continuous quantum phase
transition,” tuned by 4.

B. Algorithm

The state |¥) of the infinite square lattice is represented
using a TPS (Ref. 7) or PEPS (Ref. 9) that consists of just
two different tensors, A and B, that are repeated in a check-
erboard pattern (see Fig. 1). Each of these two tensors de-
pends on O(dD*) coefficients, where d is the Hilbert space
dimension of one lattice site (with d=2 for the HCBH
model) and D is a bond dimension that controls the amount
of correlations or entanglement that the ansatz can carry.

The coefficients of tensors A and B are determined with
the iPEPS algorithm.!" Specifically, the ground state |W ) of
the HCBH model is obtained by simulating an evolution in
imaginary time according to Hyc, exploiting that

e~ ™hc| W)

[Wes) = lim——7—
O Ll el

)

We have also used the iPEPS algorithm to simulate (real)
time evolution starting from the ground state |Wg) and ac-
cording to a modified Hamiltonian H [see Eq. (12)],

[P (1) = "W). (6)

These simulations, as well as the computation of expected
values of local observables from the resulting state, involve
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FIG. 1. (Color online) Diagrammatic representation of a TPS/
PEPS on a 2D square lattice. Tensors are represented by circles, and
their indices are represented by legs. A leg connecting two circles
corresponds to a bond index shared by two tensors and takes D
different values. Since correlations between different sites of the
lattice are carried by bond indices, the bond dimension D is a mea-
sure of how many correlations the TPS/PEPS can represent. An
open leg (diagonal line) corresponds to a physical index that labels
the local Hilbert space at a given lattice site. It takes d different
values, where d is the local Hilbert space dimension (with d=2 for
the HCBH model). Two different tensors, denoted as A and B, are
repeated all over the infinite lattice, exploiting the fact that a trans-
lation invariant state is being represented. In principle, repeating a
single tensor, say, A, would be enough to represent a translation
invariant state, but the iPEPS algorithm (Ref. 11) breaks translation
invariance down to a checkerboard pattern.

contracting an infinite 2D tensor network. This is achieved
with techniques developed for infinite one-dimensional (1D)
lattice systems,'” namely, by evolving a matrix product state
(MPS). An important parameter in these manipulations is the
bond dimension y of the MPS, which parametrizes how
many correlations the latter can account for. We refer to Ref.
11 for a detailed explanation of the iPEPS algorithm. In what
follows we briefly comment on the main sources of errors
and on the simulation costs.

We distinguish three main sources of errors in the simu-
lations, one due to structural limitations in the underlying
TPS/PEPS ansatz and two that originate in the particular way
the iPEPS algorithm operates:

(i) bond dimension D. A finite bond dimension D limits
the amount of correlations the TPS/PEPS can carry. A typical
state of interest |\If>, e.g., the ground state of a local Hamil-
tonian, requires in general a very large bond dimension D if
it is to be represented exactly. However, a smaller value of
D, say, D=Dy for some value Dy that depends on |‘If),
often already leads to a good approximate representation in
that the expected values of local observables are reproduced
accurately. However, if D <D, then the numerical estimates
may differ significantly from the exact values, indicating that
the TPS/PEPS is not capable of accounting for all the
correlations/entanglement in the target state |W).

(ii) MPS bond dimension y. Similarly, using a finite MPS
bond dimension y implies that the contraction of the infinite
2D tensor network (required both in the simulation of real/
imaginary time evolution and to compute expected values of
local observables) is only approximate. This may introduce
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errors in the evolved state or in the expected value of local
observables even when the TPS/PEPS was an accurate rep-
resentation of the intended state.

(iii) Time step. A time evolution (both in real or imaginary
time) is simulated by using a Suzuki-Trotter expansion of the
evolution operator (¢~ or e=™), which involves a time step
(8¢ or 7). This time step introduces an error in the evolution
that scales as some power of the time step. Therefore this
error can be reduced by simply diminishing the time step.

The cost of the simulations scales as O(x’D®+ x>D3d)
(here we indicate only the leading orders in y and D; the cost
of the simulation is also roughly proportional to the inverse
of the time step). This scaling implies that only small values
of the bond dimensions D and x can be used in practice. In
our simulations, given a value of D (D=2, 3, or 4), we
choose a sufficiently large x (in the range of 10-40) and
sufficiently small time step (&t or §7) such that the results no
longer depend significantly on these two parameters. In this
way the bond dimension D is the only parameter on which
the accuracy of our results depends.

On a 2.4 GHz dual core desktop with 4 GB of RAM,
computing a superfluid ground state (e.g., u=0) with D=2,
with =20, and with 87 decreasing from 107! to 107* re-
quires about 12 h. Computing the same ground state with
D=3 and y=40 takes on the order of 2 weeks.

III. RESULTS

In this section we present the numerical results obtained
with the iPEPS algorithm. Without loss of generality, we fix
the hopping strength /=1 and compute an approximation to
the ground state |Wqs) of Hye for different values of the
chemical potential u. Then we use the resulting TPS/PEPS to
extract the expected value of local observables, analyze
ground-state entanglement, compute two-point correlators
and fidelities, or as the starting point for an evolution in real
time.

In most cases we only report results for =0 (equiva-
lently, density 0=p=0.5) since due to the duality of the
model, results for positive u (equivalently, 0.5=p=1) can
be obtained from those for negative u.

A. Local observables and phase diagram

Particle density p. Figure 2 shows the density p as a func-
tion of the chemical potential x in the interval -4 =u=0.
Notice that p=0 for u=-4 since each single site is vacant.
Our results are in remarkable agreement with those obtained
in Ref. 6 with SSE for a finite lattice made of 32X 32 and
with mean-field calculations plus SW corrections. We note
that the curves p(u) for D=2 and D=3 are very similar.

Energy per site €. Figure 2 also shows the energy per site
€ as a function of the density p. This is obtained by comput-
ing €(w) and then replacing the dependence on w with p by
inverting the curve p(u) discussed above. Again, our results
for e(p) are in remarkable agreement with those obtained in
Ref. 6 with SSE for a finite lattice made of 32X 32. They are
also very similar to the results coming from mean-field cal-
culations with SW corrections of Ref. 6 and for small densi-
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FIG. 2. (Color online) Particle density p(u), energy per lattice
site €(p), and condensate fraction py(p) for a TPS/PEPS with D
=2 and 3. We have also plotted results from Ref. 6 corresponding to
several other techniques. Our results follow closely those obtained
with stochastic series expansion (SSE) and mean field with SW
corrections.

ties reproduce the scaling (valid only in the regime of a very
dilute gas) predicted in Ref. 18 by using field theory methods
based on a summation of ladder diagrams. Once more, the
curves €(p) obtained with bond dimensions D=2 and D=3
are very similar, although D=3 produces slightly lower en-
ergies.

Condensate fraction p,. In order to compute the conden-
sate fraction py, we exploit that the iPEPS algorithm induces
a spontaneous symmetry breaking of particle number conser-
vation. Indeed, one of the effects of having a finite bond
dimension D is that the TPS/PEPS that minimizes the energy
does not have a well-defined particle number. As a result,
instead of having (a;)=0, we obtain a nonvanishing value
{a;)# 0 such that

po=_lim (aja))=[a)|. (7)
i-j|—
In other words, the ODLRO associated with the presence of
superfluidity, or a finite condensate fraction, can be com-
puted by analyzing the expected value of a,

(a) =\pe'®, 8)

where the phase ¢ is constant over the whole system but is
otherwise arbitrary. The condensate fraction p, shows that
the model is in an insulating phase for |u|=4 (p=0,1) and
in a superfluid phase for -4 <u <4 (0<p<1), with a con-
tinuous quantum phase transition occurring at |u|=—4, as
expected. However, this time the curves py(p) obtained with
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FIG. 3. (Color online) Purity r and entanglement entropy S; as a
function of the chemical potential w. The results indicate that the
ground state is more entangled deep inside the superfluid phase
(u=0) than at the phase transition point (u=-4). Notice that the
more entangled the ground state is, the larger the differences be-
tween results obtained with D=2 and D=3 (see also Fig. 2).

D=2 and D=3 are noticeably different, with D=3 results
again in remarkable agreement with the SSE and SW results
of Ref. 6.

B. Entanglement

The iPEPS algorithm is based on assuming that a TPS/
PEPS offers a good description of the state |¥) of the sys-
tem. Results for small D will only be reliable if |¥) has at
most a moderate amount of entanglement. Thus, in order to
understand in which regime the iPEPS algorithm should be
expected to provide reliable results, it is worth studying how
entangled the ground state |Wg) is as a function of wu.

The entanglement between one site and the rest of the
lattice can be measured by the degree of purity of the re-
duced density matrix @; for that site,

I+7- ¢
2 b

Ql = 5- = (a-x’ O-y’a-z) > (9)
as given by the norm r of the Bloch vector 7. If the lattice is
in a product or an unentangled state, then each site is in a
pure state, corresponding to purity ¥=1. On the other hand, if
the lattice is in an entangled state, then the one-site reduced
density matrix will be mixed, corresponding to purity r<<1.
Accordingly, one can think of r as measuring the amount of
entanglement between one site and the rest of the lattice,
with less purity corresponding to more entanglement.

Figure 3 shows the purity r as a function of the chemical
potential. In the insulating phase (u=-4), the ground state
of the system consists of a vacancy on each site. In other
words, it is a product state, where r=1. Instead, For u>—-4
the ground state is entangled. Several comments are in order:

(i) the purity r(u) for D=3 is smaller than that for D=2
by up to 3%. This is compatible with the fact that the TPS/
PEPS with larger bond dimension D can carry more en-
tanglement.
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FIG. 4. (Color online) Two-point correlation function C(s) ver-
sus distance s (measured in lattice sites) along a horizontal direction
of the lattice. For very short distances the correlator for D=2, 3, and
4 are very similar, whereas for larger distances they differ
significantly.

(ii) Results for D=2 and 3 seem to indicate that the
ground state is more entangled (r is smaller) deep into the
superfluid phase (e.g., u=0) than at the continuous quantum
phase transition u=-4. This is in sharp contrast with the
results obtained, e.g., for the 2D quantum Ising model,!!
where the quantum phase transition displays the most en-
tangled ground state. However, notice that in the Ising model
the system is only critical at the phase transition whereas in
the present case criticality extends throughout the superfluid
phase. Each value of w in the superfluid phase corresponds to
a fixed point of the renormalization group (RG) flow. That is,
in moving away from the phase transition we are not follow-
ing an RG flow. Therefore, the notion that entanglement
should decrease along an RG flow,'” as observed in the 2D
Ising model, is not applicable for the HCBH model.

(iii) Accordingly, we expect that the iPEPS results for
small D become less accurate as we go deeper into the su-
perfluid phase (that is, as we approach p=0.5). This is pre-
cisely what we observe: the curves py(p) for D=2 and D
=3 in Fig. 2 differ most at p=0.5.

Figure 3 also shows the entanglement entropy,

S(ey) =-tr(e,In @), (10)

for the reduced density matrix @;(L=1,2,4) corresponding
to one site, two contiguous sites and a block of 2 X2 sites,
respectively. The entanglement entropy vanishes for an un-
entangled state and is nonzero for an entangled state. The
curves S(@;) confirm that the ground state of the HCBH
model is more entangled deep in the superfluid phase than at
the quantum phase transition point.

C. Correlations

From a TPS/PEPS for the ground state |Wg) it is easy to
extract equal-time two-point correlators. For illustrative pur-
poses, Fig. 4 shows a connected two-point correlation func-
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tion C(s),
C(s) = (afa) = a) X5 (11)

between two sites that separated s lattice sites along the hori-
zontal direction x. The plot corresponds to a superfluid
ground state, u=0, where C(s) displays an exponential decay
despite the fact that the Hamiltonian is gapless.

The results show that while for short distances s=0, 1,
and 2 the correlator C(s) is already well converged with
respect to D, for larger distances s the correlator still depends
significantly on D. This seems to indicate that while the iP-
EPS algorithm provides remarkably good results for local
observables already for affordably small values of D, a larger
D might be required in order to also obtain accurate esti-
mates for distant correlators.

D. Fidelity

Given two ground states |Wgs(u)) and |Wgs(u,)), corre-
sponding to different chemical potential u, the fidelity per
site f,'* defined through

5

1
In f(py, m0) = Zym N1n|<\I’GS(/~L1)|\PGS(/~L2)>

can be used as a means to distinguish between qualitatively
different ground states.'*!# In the above expression, N is the
number of lattice sites and the thermodynamic limit N — is
taken. Importantly, the fidelity per site f(w;,u,) remains fi-
nite in this limit, even though the overall fidelity
[(Pgs(my) | Wes(un))| vanishes. In a sense, f(u;,u,) captures
how quickly the overall fidelity vanishes.

Fortunately, the fidelity per site f(u;,u,) can be easily
computed within the framework of the iPEPS algorithm.'> In
the present case, before computing the overlap, each
ground state is rotated according to e’¢J2, where ¢ is the
random condensate phase of Eq. (8). In this way all the
ground states have the same phase ¢=0. The fidelity per site
Sy, my) is presented in Fig. 5. The plateaulike behavior of
f(uy,my) for points within the separable Mott-Insulator
phase (w; and pu,=-4 or u; and w,=4) is markedly differ-
ent from that between ground states in the superfluid region
(—4=p,my=4), where the properties of the system vary
continuously. Moreover, similar to what has been observed
for the 2D quantum Ising model'® or in the 2D quantum XYX
model,?° the presence of a continuous quantum phase transi-
tion between insulating and superfluid phases in the 2D
HCBH model is signaled by pinch points of f(u,,u,) at
=M= *4. That is, the qualitative change in ground-state
properties across the critical point is evidenced by a rapid,
continuous change in the fidelity per lattice site as one con-
siders two ground states on opposite sides of the critical
point and moves away from it.

E. Time evolution

An attractive feature of the algorithms based on tensor
networks is the possibility to simulate (real) time evolution.
A first example of such simulations with the iPEPS algorithm
was provided in Ref. 12, where an adiabatic evolution across
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FIG. 5. Fidelity per lattice site f(u;,u,) for the ground states of
the HCBH model. Notice the plateau f(u;,u,)=1 (white) for w;,
Mo =—4 (also for u;, uy=4) corresponding to the Mott insulating
phase, and the pinch point at u;, uy=—4 (also at w;, u,=4) con-
sistent with a continuous quantum phase transition.

the quantum phase transition of the 2D quantum compass
orbital model was simulated in order to show that the tran-
sition is of first order.

The main difficulty in simulating a (real) time evolution is
that, even when the initial state |W(0)) is not very entangled
and therefore can be properly represented with a TPS/PEPS
with small bond dimension D, entanglement in the evolved
state |W(¢)) will typically grow with time ¢ and a small D will
quickly become insufficient. Incrementing D results in a
huge increment in computational costs, which means that
only those rare evolutions where no much entanglement is
created can be simulated in practice.

For demonstrative purposes, here we have simulated the
response of the ground state |Wg) of the HCBH model at
half filling (p=0.5 or w=0) when the Hamiltonian Hyc is
suddenly replaced with a new Hamiltonian H given by

H=Hyc+yV, V=-iX (a,—a)), (12)
k

where y=0.2 and, importantly, the perturbation V respects
translation invariance. As the starting point of the simulation,
we consider a TPS/PEPS representation of the ground state
with bond dimension D=2, obtained as before through
imaginary time evolution.

Figure 6 shows the evolution in time of the expected
value per site of the energies (Hyc) and (H), as well as the
density p and condensate fraction p,. Notice that the
expected value of H should remain constant through the
evolution. The fluctuations observed in (H), on the order of
0.2% of its total value, are likely to be due to the small bond
dimension D=2 and indicate the scale of the error in the
evolution. The simulation shows that, as a result of
having introduced a perturbation V that does not preserve
particle number, the particle density p oscillates in time.
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FIG. 6. (Color online) Evolution of the energies (H) and (H),
density p, and condensate fraction p, after a translation invariant
perturbation V is suddenly added to the Hamiltonian.

2, is seen to

The condensate fraction, as measured by [(a;)
oscillate twice as fast.

IV. CONCLUSION

In this paper we have initiated the study of interacting
bosons on an infinite 2D lattice using the iPEPS algorithm.
We have computed the ground state of the HCBH model on
the square lattice as a function of the chemical potential.
Then we have studied a number of properties, including
properties that can be easily accessed with other techniques,’
as is the case of the expected value of local observables, as
well as properties whose computation is harder, or even not
possible, with previous techniques.

Specifically, using a small bond dimension D=2 and 3 we
have been able to accurately reproduce the result of previous
computations using SSE and SW of Ref. 6 for the expected
value of the particle density p, energy per particle €, and
condensate fraction p, throughout the whole phase diagram
of the model, which includes both a Mott insulating phase
and a superfluid phase, as well as a continuous phase transi-
tion between them. Interestingly, in the superfluid phase the
TPS/PEPS representation spontaneously breaks particle
number conservation, and the condensate fraction can be
computed from the expected value of the annihilation opera-
tor, po=|{a,)|*.

We have also conducted an analysis of entanglement,
which revealed that the most entangled ground state corre-
sponds to half filling, p=0.5. This is deep into the superfluid
phase and not near the phase transition, as in the case of the
2D quantum Ising model.!! Furthermore, inspection of a
two—point correlator at half filling showed much faster con-
vergence in the bond dimension D for short distances than
for large distances. Also, pinch points in plot of the fidelity
f(uy,my) were consistent with continuous quantum phase
transitions at u= *4. Finally, we have also simulated the
evolution of the system, initially in the ground state of the
HCHB model at half filling, when a translation invariant per-
turbation is suddenly added to the Hamiltonian.
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Now that the validity of the iPEPS algorithm for the
HCBH model (equivalently, the quantum XX spin model)
has been established, there are many directions to which the
present work can be extended. For instance, one can easily
include nearest-neighbor repulsion, V, # 0, (corresponding to
the quantum XXZ spin model) and/or investigate a softer-
core version of the Bose-Hubbard model by allowing up to
two or three particles per site.
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