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We consider the distinguishability of Gaussian states from the viewpoint of continuous-variable quantum
cryptography using postselection. Specifically, we use the probability of error to distinguish between two pure
coherent �squeezed� and two particular mixed symmetric coherent �squeezed� states where each mixed state is
an incoherent mixture of two pure coherent �squeezed� states with equal and opposite displacements in the
conjugate quadrature. We show that the two mixed symmetric Gaussian states �where the various components
have the same real part� never give an eavesdropper more information than the two pure Gaussian states.
Furthermore, when considering the distinguishability of squeezed states, we show that varying the amount of
squeezing leads to a “squeezing” and “antisqueezing” of the net information rates.
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I. INTRODUCTION

The laws of quantum mechanics tell us that in general it is
impossible to perfectly distinguish between two nonorthogo-
nal quantum states �1�. This limitation imposed by quantum
measurement theory �2� is inherent in a number of
continuous-variable �CV� quantum information �3� applica-
tions, including quantum cloning and the security of quan-
tum cryptography protocols �e.g., see �4��. Closely related to
this is quantum state discrimination �5,6�, which is con-
cerned with the distinguishability of quantum states. There
are two commonly used distinguishability techniques �5,6�:
�1� minimum error discrimination and �2� unambiguous state
discrimination. In minimum error discrimination, a number
of approaches have been developed where quantum states
can be distinguished provided we allow a certain amount of
uncertainty or error in the measurement results. On the other
hand, unambiguous state discrimination is an error-free dis-
crimination process but relies on the fact that sometimes the
observer gets an inconclusive result.

Previous work on the distinguishability of CV quantum
states includes calculating the Bures distance between two
�displaced� squeezed thermal states �7,8�, unambiguous dis-
crimination of symmetric coherent states �9� using linear op-
tics �10�, binary optical communication for single and en-
tangled modes in realistic channels �11�, distinguishing
single-mode Gaussian states using homodyne detection �12�,
coherent state estimation with minimal disturbance �13�, us-
ing the quantum Chernoff bound as the distinguishability
measure �14�, and computable bounds for Gaussian state dis-
crimination �15�. Furthermore, various techniques for opti-
mally distinguishing pure optical coherent states with mini-
mum error have been investigated theoretically �16–21� and
also experimentally �22,23�.

In this paper, we consider a specific distinguishability
situation in terms of the CV distinguishability of Gaussian
states �in particular coherent and squeezed states� from the
viewpoint of CV quantum key distribution �CV-QKD�
�24–28�. The security of CV-QKD is fundamentally based on
the inability of an eavesdropper to perfectly distinguish be-
tween nonorthogonal quantum states �1�. Here we look at
how much information a potential eavesdropper can gain
when trying to distinguish between two pure coherent states
as opposed to distinguishing between two mixed coherent
states where each mixed state is an incoherent mixture of two
pure coherent states with equal and opposite displacements
in the conjugate quadrature. This is of particular interest in
CV-QKD schemes, which use the original postselection pro-
tocol �26�, where it is often accepted that an eavesdropper’s
knowledge can be upper bounded by assuming that she ob-
tains more information in the case of distinguishing between
two pure coherent states than two mixed coherent states of
equal phase-space separation �26,29–31�. It may have been
anticipated that, given our particular distinguishability con-
figuration in phase space, two mixed coherent states might
be more distinguishable than two pure coherent states. How-
ever, this is not the case and, consequently, we show that this
assumption in postselection-based CV-QKD is valid. In ad-
dition, we extend the coherent state case to include the dis-
tinguishability of squeezed states. We show that a squeezing
and antisqueezing of the net information rates occurs when
varying the amount of squeezing. Furthermore, we see the
effect �for both coherent and squeezed states� that after a
certain amount of phase-space separation the two mixed
Gaussian states start “behaving” like the two pure Gaussian
states in that the amount of information in distinguishing
them both is equal. We also briefly compare the probability
of errors from using an optimal positive operator-valued
measure �POVM� �which corresponds to our distinguishabil-
ity measure� to the more practical, and commonly used,
quadrature projective measurement.

This paper is structured as follows. In Sec. II we introduce
the probability of error as our measure of distinguishability.
Sections III and IV analyze the distinguishability of pure and
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mixed coherent and squeezed states, respectively. Finally,
Sec. V offers a discussion with concluding remarks.

II. DISTINGUISHABILITY MEASURE

In this section we introduce our measure of distinguish-
ability of CV quantum states: the probability of error pe. We
point out that there are other quantum distinguishability mea-
sures including the Kolmogorov distance, the Bhattacharyya
coefficient, and the Shannon distinguishability �for a review
of these measures, see e.g., Fuchs and van de Graaf �32��.

A. Probability of error

A benefit of the probability of error is that it is related to
the trace norm distance, or simply the trace distance D, be-
tween the two density matrices of the states being distin-
guished and hence can be readily calculated. Furthermore,
the corresponding Shannon information can be determined
directly from the probability of error measure as we will
soon see. It was originally shown by Helstrom �2� that the
probability of error between two density matrices is mini-
mized by performing an optimal positive operator-valued
measure �POVM� E �1�. The probability of error is defined as
�32�

pe��0,�1� =
def

min
E�M

pe„�0�E�,�1�E�… , �1�

where �0 and �1 are two arbitrary density matrices and the
POVM takes into account all measurements M. Helstrom
showed �2� that the probability of error can be expressed
explicitly as

pe��0,�1� =
1

2
+

1

2 �
�j�0

� j , �2�

where � j are the eigenvalues of the matrix �0−�1. It was
shown in �32� that the above could be rewritten as

pe��0,�1� =
1

2
−

1

4�
j=1

N

�� j� , �3�

where the summation is over all eigenvalues. Using this, the
probability of error can be alternatively expressed as �2�

pe = 1
2 �1 − D��0,�1�� , �4�

where D��0 ,�1� is the trace distance �1,2,33� between the
two density matrices �0 and �1 defined as

D��0,�1� =
1

2
tr���0 − �1�� =

1

2�
j=1

N

�� j� . �5�

Here tr��A�� is known as the “trace norm” with �A�=�A†A,
where A=�0−�1, which has the corresponding eigenvalues
� j. The distance measure given here ranges in value from 0,
where the two states are identical, to 1, where the two states
are orthogonal, while the corresponding probability of error
ranges from 1/2 to 0, respectively. Also the relation in Eq. �4�
applies equally to pure or mixed quantum states. For more on

the benefits and properties of the trace distance, see, e.g., the
discussion in �34�. Finally, we point out that in the case of
distinguishing between two pure states we have the relation
between the trace distance and the fidelity F given by
D��0 ,�1�=�1−F �32,34�. In the case of two pure coherent
states ��� and ��� the probability of error can be written as

pe = 1
2 �1 − �1 − �	�����2� �6�

and is known as the Helstrom bound �2�.

III. DISTINGUISHING PURE AND MIXED
COHERENT STATES

We will now consider distinguishing between two pure
and mixed coherent states using the previously defined prob-
ability of error. A coherent state is defined as ���=D����0�,
where D���=exp��â†−��â� is the displacement operator
and can be written in terms of the Fock state basis as

��� = exp
−
1

2
���2��

n=0

�
�n

�n!
�n� . �7�

A coherent state is also a minimum uncertainty state as well
as an eigenstate of the annihilation operator â, i.e., â���
=����, where �=x+ ip is the amplitude of the electromag-
netic wave with �=1 /2. Any two coherent states ��� and ���
are always nonorthogonal and only approach orthogonality
�i.e., 	� ���→0� when ��−���1, where the magnitude is
�	� ����2=exp�−��−��2�. For more background on this, see,
e.g., �35�. In the following analysis we will define a coherent
state displaced in the amplitude and phase quadratures by an
amount x and p, respectively, as

��� � �x + ip� . �8�

Consequently, we can write the density operators of two pure
coherent states �p0 and �p1 that we will consider here as

�p0 = �x + ip�	x + ip� ,

�p1 = �− x + ip�	− x + ip� . �9�

�Note that in this paper we will interchangeably use the
words “operator” and “matrix.”� In our analysis we also con-
sider two mixed coherent states, where each mixed state is an
incoherent mixture of two pure coherent states with equal
and opposite displacements in the phase quadrature. The
density operators corresponding to these two mixed states,
�m0 and �m1, are defined as

�m0 = 1
2 ��x + ip�	x + ip� + �x − ip�	x − ip�� ,

�m1 = 1
2 �− x + ip�	− x + ip� + ��− x − ip�	− x − ip�� . �10�

Figures 1�a� and 1�b� give a two-dimensional �2D� phase-
space illustration of the two pure coherent and the two mixed
coherent states as defined by Eqs. �9� and �10�, respectively.
While Fig. 2 gives an outline of the type of distinguishability
situation, we consider different values of x and p.

According to Eq. �5� we need to determine the eigenval-
ues of A=�0−�1 for both the two pure A�p� and the two
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mixed A�m� states, in order to eventually calculate the prob-
ability of error. To do this we write A in its matrix represen-
tation which can be expanded in terms of the Fock state �n�
basis defined as �35�

�n� =
�â†�n

�n!
�0� , �11�

where â† is the creation operator of a quantum harmonic
oscillator with n� �0,��. For example, the coherent state
�x+ ip� can be written in terms of the Fock state basis using
Eq. �7� as follows:

�x + ip� = e−�x + ip�2/2�
n=0

�
�x + ip�n

�n!
�n� . �12�

Once A is written in matrix form we can then numerically
determine its eigenvalues up to certain values of n. First
though we want to see what form the matrix elements take.
Hence, in this Fock state expansion, the inner product of an
arbitrary coherent state with a Fock state is given by

	n�	x 	 ip� =
�	x 	 ip�n

�n!
exp
−

1

2
�x2 + p2�� , �13�

		x 	 ip�m� =
�	x 
 ip�m

�m!
exp
−

1

2
�x2 + p2�� , �14�

where �n� and �m� are Fock states. Calculating the general
matrix coefficients for the case of two pure coherent states,
we obtain

	n�A�p��m� =
exp�− x2 − p2�

�n ! m!
��x + ip�n�x − ip�m

− �− x + ip�n�− x − ip�m� . �15�

Similarly for the two mixed state cases we find

	n�A�m��m� =
exp�− x2 − p2�

2�n ! m!
��x + ip�n�x − ip�m

+ �x − ip�n�x + ip�m − �− x + ip�n�− x − ip�m

− �− x − ip�n�− x + ip�m� . �16�

Numerically we can calculate the eigenvalues of Eqs. �15�
and �16� up to certain values of n and m. Then according to
Eq. �4� this will give us the probability of error in distin-
guishing between two quantum states. These probabilities of
errors are plotted in Fig. 3 for the pure and the mixed state
cases using n=m=50. Our choice of n=m=50 is based on
the fact that it gives a good approximation �resolution� given
our choice of axis values �i.e., 0�x , p�2.5�. For example,
consider the various limits of our Fock state expansion.
When n=m=0 we have an error probability independent of
the value of x and p. This is because we are essentially
distinguishing between two vacuum states and hence pe
=1 /2 ∀x , p. At the other limit when n=m→� we have an
“ideal” coherent state and, therefore, the resolution of our
plot of pe is perfect for any values of x and p. Accordingly,
anywhere in between these limits the value of n and m is
dependent on the scaling of x and p. Thus, by using n=m
=50 we get a good approximation of pe when 0�x , p�2.5.

From Fig. 3 we can see that both follow the same overall
pattern: for various fixed values of momentum p, position x
starts from a probability of error of pe=0.5 when there is no
displacement �indistinguishable and hence 50% chance of
guessing the right bit� and tends to pe=0 after a certain po-
sition value x
1.5 �this value of x was obtained numeri-
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FIG. 2. �Color online� Examples of the type of distinguishability
situations we consider in this paper. Due to the way that we have set
up our phase-space configurations �c.f. Fig. 1� we keep the momen-
tum fixed and vary the position in both the pure and the mixed state
cases. For example, in the pure state case �a��i� when x= p=0 the
two pure states overlap completely and are therefore indistinguish-
able. �a��ii� We then keep p fixed and move the pure states further
apart by varying x. �a��iii� This is then repeated for other fixed
values of p. A similar situation is considered for the mixed state
case �b�. Here when p=0 ��b��i�,�b��ii�� we recover the pure state
case, while for p�0, we have the distinguishability of two mixed
coherent states �b��iii�.
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1a 2a
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FIG. 1. �Color online� Phase-space representation of �a� two
pure coherent states �described by the density operators �p1

and �p0
�

and �b� two mixed coherent states ��m1
and �m0

� for various values
of position x and momentum p. Here the dotted lines and shadings
in �b� indicate which of the two coherent states are mixed.
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cally�. We note that a difference between the pure and the
mixed state cases is the role of p. In the pure state case, as
expected, the probability of error is the same for any value of
p when x is varied. However, there is a small region in the
mixed state case 
0� p�1.5, where for these different val-
ues of p the probability of error changes. More specifically,
in this region the mixed state probability of error is greater
than the pure state probability of error,

pe
�m� � pe

�p�. �17�

After 
p�1.5 the two become approximately equal. As we
will see, this is what results in the difference in information
rates �for certain values of x and p� between the pure and the
mixed coherent states. Now having numerically calculated
pe, we would like to interpret this in terms of the information
gained from using the distinguishing measure, i.e., the prob-
ability of error.

A. Shannon information

The information obtained by distinguishing between two
states can be calculated using the well-known Shannon in-
formation formula for a binary symmetric channel �36�,

I = 1 + pe log2 pe + �1 − pe�log2�1 − pe� . �18�

Figure 5 shows the difference between the Shannon informa-
tion obtained by distinguishing between two coherent states
I��p0

,�p1
� compared with distinguishing between two mixed

coherent states I��m0
,�m1

� �where the individual cases are
plotted in Fig. 4�. This information difference is defined as
the information gain Igain,

Igain = I��p0
,�p1

� − I��m0
,�m1

� . �19�

Figure 5 plots Igain in terms of the position �amplitude� and
momentum �phase� quadrature displacements of the pure and
the mixed states as defined in Eqs. �9� and �10�, respectively.
Here we have expanded up to 50 Fock states, i.e., n=m
=50 in our numerical analysis.

There are two main features of Fig. 5. First, we notice
that, given our distinguishability measure and initial configu-
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FIG. 3. �Color online� Individual plots of the probability of error
for �a� two pure coherent states and �b� two mixed coherent states
using n=m=50. Here our values for both position and momentum
start at 0 and go to 2.5. Both plots exhibit the same overall behavior
where the probability of error for the pure state case is independent
of the momentum value while, for the mixed state case, the prob-
ability of error is dependent on certain values of the momentum:

0� p�1.5, which alters the probability of error.
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FIG. 4. �Color online� Individual plots of the information rate
for �a� two pure coherent states and �b� two mixed coherent states.
Again we have expanded up to n=m=50 Fock states in our
analysis.
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ration of coherent states in phase space, two mixed states
never give more information than two pure states, i.e.,

I��m0,�m1� � I��p0,�p1� . �20�

This result is relevant given that in the original postselection
CV-QKD protocol �26� it means that an eavesdropper is up-
per bounded, in terms of her accessible information, when
choosing to distinguish between two pure coherent states �in-
stead of the two mixed coherent states�. Second, there is a
flat region where the information gain is zero, i.e., Igain=0,
where the information from distinguishing between two
mixed states is the same as that of two pure states. This
means that as the pure coherent and the mixed coherent
states are moved further and further apart in the amplitude
quadrature �for fixed values of momentum�, the probability
of error tends to the same value �i.e., pe=0� and hence the
same amount of information is obtained from both �c.f. Fig.
3�. So in some sense, at a certain point the two mixed states
start behaving �from a distinguishability point of view� like
two pure states. This only starts occurring for the mixed
states when the value of p is greater than a particular value.
This is because we require that the individual mixed states
themselves are further apart �in p value� and hence more
distinguishable individually, before we can then start distin-
guishing each of the two mixed states with one other.

1. Discussion: Maximum accessible information
for an eavesdropper

We now briefly note the equivalence between the infor-
mation rate obtained using the probability of error as defined
in Eq. �4� and the Levitin information bound �38� which is
used in postselection CV-QKD to ascertain how much infor-
mation an eavesdropper gains. The original postselection
protocol �26� involves the generation of a secure key by Al-
ice sending Bob coherent states that have had classical vari-

ables �x , p� encoded on them. Bob measures these states us-
ing homodyne �or heterodyne �30�� detection and then
decodes them using some previously agreed upon binary en-
coding. To calculate how much information an eavesdropper
can optimally obtain during the protocol, we use the Levitin
bound �38� which determines the maximum accessible infor-
mation from distinguishing between two nonorthogonal pure
states, i.e.,

IAE = 1
2 �1 + �1 − �z�2�log2�1 + �1 − �z�2�

+ 1
2 �1 − �1 − �z�2�log2�1 − �1 − �z�2� , �21�

where IAE denotes the mutual information between Alice and
the eavesdropper, Eve. Here z is the overlap of the two pure
coherent states which Eve needs to distinguish between, i.e.,
z= 	−x+ ip �x+ ip�=exp�−2�x2+ ixp�� �35�, where the modu-
lus squared is the Gaussian �z�2=exp�−4x2�. Again we as-
sumed that the channel transmission is set to unity. We note
here that Eq. �21� can be alternately derived by simply using
the probability of error given by the Helstrom bound for two
pure coherent states, i.e., Eq. �6�, and substituting that into
Shannon’s formula given in Eq. �18�. Consequently, after
some simple algebra, we see that I��p0 ,�p1�= IAE. This result
only applies to the pure state case. The question of maximiz-
ing the accessible information in CV quantum state discrimi-
nation �and hence, in CV-QKD eavesdropping analysis� for
two general mixed quantum states is still an open question,
although Levitin does discuss a specific �nongeneral� situa-
tion in �38�.

B. Homodyne detection versus POVM:
Pure and mixed state cases

In this section we consider the following questions: what
is the probability of error in distinguishing between two pure
coherent and two mixed coherent states �whose orientation is
defined in Fig. 1� given that a homodyne detection �also
known as a projective or von Neumann� measurement is per-
formed? And how does that compare to the probability of
error defined using the trace distance? Homodyne detection
is one of the most commonly used methods of measurement
in CV quantum communication protocols �3� and, conse-
quently, these questions are of practical interest, particularly
for CV-QKD. We note that previous work on this includes
binary optical communication distinguishability using direct
and homodyne detection in realistic situations �11�, as well
as optical pure coherent state distinguishability which has
been theoretically �16–21� and experimentally investigated
�22,23�. However, in the following analysis we consider a
specific distinguishability situation for both the pure and the
mixed coherent state cases as given in Fig. 1, which is mo-
tivated by postselection CV-QKD.

We will first analyze the pure state case as the results for
both the pure state and the mixed state cases will be the
same. The reason for this can be seen from Fig. 1 where an x̂
quadrature measurement will collapse and project the mixed
states onto the x axis in the same way as the pure state case
does. An x̂ quadrature measurement using homodyne detec-
tion is modeled theoretically by acting a projective measure-
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FIG. 5. �Color online� The difference in information rates be-
tween two pure coherent and two mixed coherent states in terms of
the position �amplitude� and momentum �phase� quadratures. Here
Igain= I��p0

,�p1
�− I��m0

,�m1
�. For the particular distinguishability

case consider here, the two mixed states never give more informa-
tion than two pure states, which allows us to upper bound informa-
tion rates in CV-QKD using the postselection protocol.
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ment �x�	x� on the two pure coherent states �x+ ip� and �−x
+ ip�. The probability of obtaining the measurement outcome
m is given by �11,37�

P�m��	x + ip�� = �	x�	x + ip��2 =� 2

�
e−2�m 
 x�2

. �22�

Such a formula is used to derive information rates for �the
receiver� Bob in the CV-QKD postselection protocol; except
in the above formula the loss on the quantum channel 

�which is typically associated with the eavesdropper� is set to
unity 
=1. The probability of error pe

�p�, when a projective
measurement is performed to distinguish between the two
pure coherent states, can now be written as

pe
�p� = �

P�m��− x + ip��
P�m��x + ip�� + P�m��− x + ip��

for m � 0

P�m��x + ip��
P�m��x + ip�� + P�m��− x + ip��

for m � 0.�
�23�

Substituting Eq. �22� into Eq. �23� leads to

pe
�p� = �

e−2�m + x�2

e−2�m − x�2
+ e−2�m + x�2 for m � 0

e−2�m − x�2

e−2�m − x�2
+ e−2�m + x�2 for m � 0.� �24�

The final probability of error p̄e
�p� once we have integrated

over all possible measurement results m is given by

p̄e
�p� = 2�

0

�

dm pe
�p�P�m��x + ip��

=� 8

�
�

0

� dm

e2�m + x�2
+ e2�− m + x�2 . �25�

We numerically evaluate the above integral and plot the re-
sults in Fig. 6�a�. Again the resulting plots for both the pure
and the mixed state cases are identical. Figure 6�a� has simi-
lar behavior as that of the probability of error obtained using
the trace distance for the pure coherent state case, i.e., Fig.
3�a�. Because the probability of errors given in Figs. 3�a� and
6�a� are independent of the value of momentum, we can plot
a 2D cross-sectional slice of the probability of error for both
the POVM and the projective measurement cases. This is
given in Fig. 6�b� where it can be seen that the measurement
associated with the probability of error using a POVM �i.e.,
as a function of the trace distance� is lower than the projec-
tive x̂ quadrature homodyne detection measurement. The dis-
tance between the two outside curves in Fig. 6�b� is slightly
reduced for certain values of p when considering the mixed
state case. For example, in Fig. 3�b� for values where 0� p
�1.5 the probability of error is slightly increased. We illus-
trate this in Fig. 6�b� by plotting the mixed state case for p
=0.55.

IV. DISTINGUISHING PURE
AND MIXED SQUEEZED STATES

Having analyzed the distinguishability of pure and mixed
coherent states, we now extend our analysis to another set of
Gaussian states: squeezed states. Figure 7 gives a phase-
space representation of the distinguishability situation we
consider, i.e., it is the same configuration as the coherent
state case except now we are considering it for displaced
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FIG. 6. �Color online� Probability of error plots for the coherent
state analysis. �a� The plot of the probability of error for both the
pure and the mixed coherent states for an x quadrature measure-
ment. Both are identical due to the fact that now a projective �ho-
modyne� measurement is performed on each of the quantum states
rather than the usual POVM as considered before. �b� Optimal
POVMs versus projective measurements for the pure and the mixed
coherent state cases. In Fig. 3�a� and �a�, due to probability of error
being independent of the momentum variable p, we can take a
cross-sectional slice at any value of p and plot the probability of
error as a function of x for both types of measurements. We also
plot a cross-sectional slice from the mixed state case given in Fig.
3�b� for p=0.55 �red dashed line�. As expected the POVM mini-
mizes the probability of error, i.e., the projective measurement is
not the optimal type of distinguishability measurement.
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squeezed states. A displaced squeezed vacuum state �35� is
defined as

��,�� = D���S����0� , �26�

where S��� is the single-mode squeezed gate defined as

S��� = exp���â2 − â†2�/2� = exp�i��x̂p̂ + p̂x̂�� �27�

with �=r exp�i��. Here r is known as the squeezing param-
eter �r� �0,��� performed �in our case� in only one �posi-
tion� quadrature direction and 0���2� with D��� again
being the displacement gate. As can be seen, the above state
is created by first squeezing the vacuum state �0� and then
displacing it. We will now define the density operators of two
pure squeezed states that we consider as

�p0 = �xs + ips�	xs + ips� , �28�

�p1 = �− xs + ips�	− xs + ips� , �29�

where the subscript s indicates that we are now considering
the squeezed state situation. We can define the density opera-
tors of two arbitrary mixed squeezed states �m0 and �m1 as

�m0 = 1
2 ��xs + ips�	xs + ips� + �xs − ips�	xs − ips�� , �30�

�m1 = 1
2 ��− xs + ips�	− xs + ips� + �− xs − ips�	− xs − ips�� .

�31�

As with the coherent state analysis, we need to ultimately
determine the eigenvalues of the appropriate matrices in or-
der to calculate the trace distance and then the probability of
error. Again this involves expanding the matrix in an or-
thogonal basis, i.e., the Fock state basis. With this in mind, a
displaced squeezed state can be expanded in terms of Fock
states as �35�

��,�� =
1

�cosh r
exp�−

1

2
����2 + ��2ei� tanh r��

��
n=0

� �1

2
ei�tanh r�n/2

�n!
Hn���ei� sinh 2r�−1/2��n� ,

�32�

where �=xs+ ips and �=� cosh r+��ei� sinh r. Here Hn�x�
are the Hermite polynomials of degree n which are a poly-
nomial sequence defined as

Hn�x� = �− 1�nex2 dn

dxne−x2
, �33�

where in our case x���ei� sinh 2r�−1/2. We point out that in
the limit r→0 in Eq. �32� we simply get back the coherent
state as given by Eq. �7�. Note that in our calculations we
will only consider the case when �=0, i.e., the squeezed
states are only squeezed along the position quadrature �c.f.
Fig. 7� and not at some angle �.

Using Eq. �32� the overlap of a Fock state and a displaced
squeezed state is given by

	n��,�� = �n ! cosh r�−1/2exp�− 1
2 ����2 + ��2ei� tanh r��

�� 1
2ei� tanh r�n/2Hn���ei� sinh 2r�−1/2� . �34�

We also have for the other matrix elements

	�,��m� = �m ! cosh r�−1/2exp�− 1
2 ����2 + �2e−i� tanh r��

�� 1
2e−i� tanh r�m/2Hm����e−i� sinh 2r�−1/2� . �35�

Writing the above in the x and p notation gives us

	n�xs + ips� = �n ! cosh r�−1/2

�exp�− 1
2 �xs

2 + ps
2 + �xs − ips�2ei� tanh r��

�� 1
2ei� tanh r�n/2Hn���ei� sinh 2r�−1/2� , �36�

where �= �xs+ ips�cosh r+ �xs− ips�ei� sinh r. We also have

	xs + ips�m� = �m ! cosh r�−1/2

�exp�− 1
2 �xs

2 + ps
2 + �xs + ips�2e−i� tanh r��

�� 1
2e−i� tanh r�m/2Hm����e−i� sinh 2r�−1/2�

�37�

with ��= �xs− ips�cosh r+ �xs+ ips�e−i� sinh r. Again calculat-
ing the general matrix coefficients for the case of the two
pure squeezed states we obtain

	n�As
�p��m� =

�n ! m!�−1/2

cosh r

1

2
tanh r��n+m�/2

�exp�− �xs
2 + ps

2 + tanh r�xs
2 − ps

2���

��Hn���Hm���� − Hn����Hm������ , �38�

where As
�p�=�p0−�p1 and �=0. Here the Hermite polynomi-

als are defined as

Hn��� � Hn���sinh 2r�−1/2� ,

x

p

x

p

(a) (b)

-x + ipss x + ipss

-x - ipss

x + ipss-x + ipss

x - ipss

FIG. 7. �Color online� Phase-space representation of �a� two
pure squeezed states �described by the density operators �p1

and
�p0

� and �b� two mixed squeezed states ��m1
and �m0

� for arbitrary
displacements �xs , ps�. Again, just as with the coherent state con-
figuration, the dotted lines and shadings in �b� indicate which of the
two squeezed states form a mixture.
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Hm���� � Hm����sinh 2r�−1/2� ,

Hn���� � Hn����sinh 2r�−1/2� ,

Hm����� � Hm�����sinh 2r�−1/2� , �39�

where � is defined as usual �but now with �=0� and
��= �−xs+ ips�cosh r+ �−xs− ips�sinh r. Similarly for the two
mixed squeezed states we find that the matrix elements are
given by

	n�As
�m��m� =

1

2

�n ! m!�−1/2

cosh r

1

2
tanh r��n+m�/2

�exp�− �xs
2 + ps

2 + �xs
2 − ps

2�tanh r��

��Hn���Hm���� + Hn����Hm�����

− Hn����Hm����� − Hn����Hm������ , �40�

where As
�m�=�m0−�m1 and the Hermite polynomials are de-

fined previously in Eq. �39� with the new additional variables

�� = �xs − ips�cosh r + �xs + ips�sinh r , �41�

�� = �− xs − ips�cosh r + �− xs + ips�sinh r �42�

plus their respective conjugates. We can simplify the Hermite
polynomials in Eq. �40� by realizing that the following rela-
tions hold:

�� = ��, �� = ��� �43�

plus their conjugates. Therefore Eq. �40� can be rewritten as

	n�As
�m��m� =

1

2

�n ! m!�−1/2

cosh r

1

2
tanh r��n+m�/2

�exp�− �xs
2 + ps

2 + �xs
2 − ps

2�tanh r��

��Hn���Hm���� + Hn����Hm���

− Hn����Hm����� − Hn�����Hm����� . �44�

Numerically we can calculate the eigenvalues of Eqs. �38�
and �44� for two values of the squeezing parameter r. Ac-
cording to Eq. �4� this will give us the probability of error in
distinguishing between the two sets of quantum states. Our
results are plotted in Figs. 8�a�, 8�c�, 8�e�, and 8�g� where we
have set �=0 and used two squeezing parameters: �1� r
=0.35 which corresponds to approximately 3 dB of squeez-
ing and �2� r=0.7 �6 dB� �these conversions are obtained by
using the formula −10 log10�e−2r� dB�. We can see that as
the squeezing is increased the probability of error is reduced
in both the pure and the mixed state cases. For example, in
the coherent state case for fixed values of momentum pe
→0 when 
x�1.5. However, in the pure squeezed state
case, we numerically find that the position value is 
x
�1.1 for 3 dB of squeezing and 
x�0.8 for 6 dB. The
reason why this occurs can be seen by comparing the distin-
guishability of two pure coherent states with two pure
squeezed states, if you first picture the two coherent states
initially overlapping �at x= p=0; c.f. Fig. 2�a�� and then in-
creasing the x distance between them to a point where the
phase-space circles no longer overlap. Now doing this again

but with the x quadrature squeezed states, we can see that
because these circles are narrower then it takes a smaller
distance for them to no longer overlap. Hence, a smaller x is
required to achieve a smaller probability of error.

A. Shannon information

Again we calculate the Shannon information to obtain the
information rate gain Igain for the two values of squeezing
and plot them in Fig. 9 �where the individual rates are given
in Figs. 8�b�, 8�d�, 8�f�, and 8�h��. As with the coherent state
analysis, based on our distinguishability measure and initial
configuration in phase space, two mixed squeezed states
�where each mixed state is an incoherent mixture of two pure
squeezed states with equal and opposite displacements in the
phase quadrature� never give more information than two
pure squeezed states. We again see, after certain values of
position and momentum, a flat region in both graphs which
indicates that the two mixed states have the same accessible
information as the two pure states. This results in a net in-
formation rate of Igain=0 and is due to the same reason as
was given for the coherent states. The effect of increasing the
squeezing parameter is given in Figs. 9�a� and 9�b� with a
side-on profile depicted in Fig. 9�c�. Figure 9�c� shows that
by increasing the amount of squeezing in the x direction the
effect for fixed p is to narrow the information distribution for
different position values. In some sense we have a squeezing
of the information rate along the x axis. This comes from the
fact that, as mentioned before, as the squeezing increases the
probability of error decreases for smaller values of x. This
ultimately leads to Igain→0 for smaller values of x than what
we had for the �zero squeezing� coherent state case �c.f. Fig.
9�c��. Conversely, we also notice that as squeezing is in-
creased, for fixed values of x, the net information rate re-
quires larger values of p until Igain=0. This leads to a broad-
ening or an antisqueezing of the information rate along the p
direction.

V. DISCUSSION AND CONCLUSION

In our analysis we used the probability of error to dis-
criminate between specific phase-space configurations of two
pure and two mixed CV quantum states. Recently, Pirandola
and Lloyd �15� combined the Minkowski inequality and the
quantum Chernoff bound to derive upper bounds on quantum
state discrimination for CV. This was in the context of
Gaussian states using symplectic algebraic methods �e.g., see
�28��. Future work would entail comparing these techniques
to the ones given in this paper and extending it to include
other Gaussian states, such as Einstein-Podolsky-Rosen
�EPR� states and thermal states.

In conclusion, we have considered a situation in
postselection-based CV-QKD where there is an assumption
that an eavesdropper upper bounds her information by dis-
tinguishing between two pure coherent states instead of dis-
tinguishing between two mixed coherent states �where the
various mixtures have the same position component�. We
showed that the eavesdropper will never get more informa-
tion from the two mixed coherent states. Hence, we have
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FIG. 8. �Color online� Indi-
vidual plots of both the probabil-
ity of errors and information rates
for �a�–�d� two pure squeezed
states and �e�–�h� two mixed
squeezed states for two types of
squeezing parameters: r=0.35 �3
dB� and r=0.70 �6 dB�. These
plots reflect the same overall be-
havior and characteristics of the
probability of error and informa-
tion rates which were exhibited in
the coherent state case. The chief
difference is the increase in
squeezing results in the distin-
guishability measure pe tending
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position x.
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FIG. 9. �Color online� The difference in information rates Igain between the two pure squeezed and two mixed squeezed states for two
types of squeezing: �a� r=0.35 �3 dB� and �b� r=0.70 �6 dB�. As with the coherent state case, two mixed squeezed states never give more
information than two pure squeezed states, with respect to the phase-space configurations considered in this paper. �c� Side-on profile of the
variation in the information distribution for the three cases studied: 0 �coherent state; c.f. Fig. 5�, 3, and 6 dB �squeezed states�.
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proven the assumption to be true. We showed this using the
probability of error as the distinguishability measure along
with the Shannon information formula. Furthermore, we ex-
panded our analysis to include other types of Gaussian states:
pure and mixed squeezed states. In that analysis, the
squeezed states are aligned in phase space in the same con-
figuration as were the coherent states. The same types of
behavior and characteristics are present in the probability of
error and information rate plots for the squeezed states as
was for the coherent state case. Furthermore, varying the
amount of squeezing results in the squeezing and antisqueez-
ing of the net information gain rates, i.e., smaller values of x
and larger values of p are required to reach a net information
rate of zero. This corresponds to the case where two mixed
squeezed states are as equally likely to be distinguished as
two pure squeezed states.

We also considered the practical case where a homodyne
detection measurement is used to distinguish the pure and
mixed coherent states and compared the probability of error
in those situations to the POVM measurement of the trace
distance. As expected, we find that the POVM outperforms
the projective measurement of the homodyne detector, i.e., it
reduces the probability of error.
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