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Using a high temperature virial expansion, we present a controllable study of the thermodynamics of

strongly correlated Fermi gases near the BEC-BCS crossover region. We propose a practical way to

determine the expansion coefficients for both harmonically trapped and homogeneous cases, and calculate

the third order coefficient b3ðTÞ at finite temperatures T. At resonance, a T-independent coefficient

bhom3;1 � �0:290 952 95 is determined in free space. These results are compared with a recent thermody-

namic measurement of 6Li atoms, at temperatures below the degeneracy temperature, and with

Monte Carlo simulations.

DOI: 10.1103/PhysRevLett.102.160401 PACS numbers: 05.30.Fk, 03.75.Hh, 03.75.Ss, 64.10.+h

Strongly correlated Fermi gases are of wide interest and
underlie many unanswered problems in quantum many-
body systems, ranging from neutron stars, hadrons, and
quark matter through to high Tc superconductors [1].
Recent investigations of Feshbach resonances in ultracold
atomic Fermi gases have opened new, quantitative oppor-
tunities to address these challenges [1]. A great deal of
theoretical work has been carried out for this simple, well-
controlled case of a strongly interacting yet low-density
Fermi gas, which is known as the unitarity limit. However,
a profound understanding is plagued by the large interac-
tion strength, for which the use of perturbation theory
requires infinite order expansions. Numerically exact
quantum Monte Carlo simulations are also less helpful
than one might expect [2–4]. Because of the Fermi sign
problem [2], computer simulations are often restricted to
small samples, and are therefore difficult to extrapolate to
the thermodynamic limit.

In this Letter, we approach this problem by using a
controllable virial expansion study of trapped strongly
interacting Fermi gases at high temperatures. We focus
on the low-density physics which is described by an effec-
tive S-wave contact potential. Our expansion has a small
parameter. The fugacity

z ¼ expð�=kBTÞ � 1

is small because the chemical potential � diverges loga-
rithmically to �1 at large temperatures T. The virial
expansion up to the second virial coefficient was applied
by Ho and Mueller to explore the universal thermodynam-
ics of a homogeneous Fermi gas at unitarity [5]. Here we
extend this to the third order coefficient. Most importantly,
we present a practical theoretical strategy which can even
be extended beyond third order. Surprisingly, we find that
the simplest theoretical route to calculating these higher-
order coefficients is via the use of exact solutions for the

energy eigenstates of harmonically trapped clusters. This
gives a unified approach to calculating virial coefficients in
both trapped and untrapped cases.
In reality, the strongly interacting spin-1=2 6Li and 40K

fermionic gases were realized by tuning a magnetic field
across a resonance [1]. Extensive experiments have studied
the crossover from the BCS limit (Cooper pairing of
atoms) to the BEC limit (Bose-Einstein condensation of
diatomic dimers). The most interesting region lies at the
middle of crossover, where the two-body S-wave scattering
length a becomes much larger in magnitude than the
inverse Fermi vector 1=kF [6]. Fascinating phenomena
may occur in this ‘‘unitarity limit’’ [7,8], such as the
observed scale-invariant, universal thermodynamic behav-
ior [9–11]. Accurate, high-order virial coefficients provide
an extremely useful tool in analyzing these experimental
results above the superfluid transition. At the same time,

FIG. 1 (color online). Predicted interaction energy as a func-
tion of entropy at unitarity, compared with experimental data
from Duke University [10]. The solid (dashed) line shows the
contribution up to the third (second) order virial coefficient. The
arrow indicates the degeneracy point.

PRL 102, 160401 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

24 APRIL 2009

0031-9007=09=102(16)=160401(4) 160401-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.102.160401


the methods given here may have general applicability to
other strongly interacting systems.

In what follows, we first introduce a practical way to
calculate the nth virial coefficients bnðTÞ and, by solving
exactly the two- and three-particle problems, determine the
second and third virial coefficients in an isotropic har-
monic trap at the BCS-BEC crossover. We then focus on
the unitarity limit and calculate the energy and entropy of a
trapped gas using the virial expansion method.

Our main result is summarized in Fig. 1, which shows
the comparison of the virial expansion prediction to a
recent measurement of the entropy dependence of the
interaction energy EintðSÞ at unitarity. The experiment
was carried out for atomic gases of 6Li atoms at a broad
Feshbach resonance [10]. We find an excellent agreement
at temperatures below the Fermi degeneracy temperature
TF. This remarkable result is opposite to the consensus that
the virial expansion is valid at the classical Boltzmann
regime with T � TF. We suggest that it can be understood
by the significant suppression of higher-order virial coef-
ficients in a harmonic trap.

Even in the absence of a harmonic trap, our method can
still be used to calculate the virial coefficients. We deter-
mine a universal coefficient bhom3;1 � �0:290 952 95 for a

homogeneous Fermi gas at unitarity, in contrast to a recent
calculation that obtained a result with the opposite sign
[12]. Our resulting equation of state is in good agreement
with existing Monte Carlo results, and may provide a
useful benchmark for testing future quantum
Monte Carlo simulations of strongly interacting Fermi
systems at high temperatures.

Virial expansion.—Let us consider the thermodynamic
potential � ¼ �kBT lnZ, where Z ¼ Tr exp½�ðH �
�N Þ=kBT� is the grand partition function. At high tem-
peratures, we can rewrite Z in terms of the partition
functions of clusters, i.e., Qn ¼ Trn½expð�H n=kBTÞ�
with n denoting the number of particles in the cluster and
Trn denoting the trace over n-particle states of the proper
symmetry; thus we find Z ¼ 1þ zQ1 þ z2Q2 þ � � � . The
thermodynamic potential can then be written as

� ¼ �kBTQ1½zþ b2z
2 þ � � � þ bnz

n þ � � ��; (1)

where the virial coefficients are given by

b2 ¼ ðQ2 �Q2
1=2Þ=Q1; (2)

b3 ¼ ðQ3 �Q1Q2 þQ2
1=3Þ=Q1; etc. (3)

These equations present a general definition of virial ex-
pansion and are applicable to both homogeneous and
trapped systems. The determination of the nth virial coef-
ficient thus requires full solutions up to the n-body prob-
lem. It is convenient to focus on the interaction effects only

and consider �bn � bn � bð1Þn and �Qn � Qn �Qð1Þ
n ,

where the superscript ‘‘1’’ denotes the noninteracting sys-

tems. We shall calculate �b2 ¼ �Q2=Q1 and �b3 ¼
�Q3=Q1 ��Q2.
Second and third virial coefficients in traps.—By solving

the few-body problem exactly, we now evaluate the virial
coefficients in a three-dimensional isotropic harmonic po-
tential VðrÞ ¼ m!r2=2, with a trapping frequency ! and
fermion mass m. The partition function Q1 is easily ob-
tained from the single-particle spectrum of the harmonic
potential, Enl ¼ ð2nþ lþ 3=2Þ@!, and the single-particle
wave function, RnlðrÞYm

l ð�;’Þ. We find that Q1 ¼
2 expð�3 ~!=2Þ=½1� expð� ~!Þ�3 with a dimensionless fre-
quency ~! ¼ @!=kBT � 1. The prefactor of 2 in Q1 ac-
counts for the two possible spins of each fermion.
To solve the two- and three-fermion problems, we adopt

a short-range S-wave pseudopotential for interatomic in-
teractions, in accord with the experimental situation of
broad Feshbach resonances. This can be replaced by the
Bethe-Peierls contact conditions on the wave function
c ðr1; r2; . . . ; rnÞ: when any particles i and j with unlike
spins close to each other, rij ¼ jri � rjj ! 0, rijc satisfies

@ðrijc Þ=@rij ¼ �ðrijc Þ=a: (4)

Otherwise, the wave function c obeys the noninteracting
Schrödinger equation,

Xn
i¼1

�
� @

2

2m
r2

ri þ
1

2
m!r2i

�
c ¼ Ec : (5)

Unlike Bose gases, no additional many-particle interaction
parameters are required. This is due to the absence of
many-particle S-wave bound states (i.e., Efimov-like
states) for these low-density Fermi gases, which has a
physical origin in the Pauli exclusion principle.
The Hamiltonian of two fermions with different spins

was solved by Busch et al. [13]. As the center of mass is
separable for a harmonic trap, we may single out the
(single-particle) center-of-mass energy Ec:m: and rewrite
the total energy as E ¼ Ec:m: þ Erel. Following Busch et al.
[13], the relative energy Erel ¼ ð2�þ 3=2Þ@! satisfies,

2�ð��Þ=�ð��� 1=2Þ ¼ d=a, where d¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2@=m!

p
is the

length scale of the trap, and the (un-normalized) two-body
relative wave function is given by, c rel

2bðr¼ r2�r1;�Þ¼
expð�r2=2d2Þ�ð��ÞUð��;3=2;r2=d2Þ. Here, the total an-
gular momentum of c rel

2b is strictly zero since only these

states do not vanish at r ¼ 0 and thus are influenced by the
pseudopotential. � and U are the Gamma function and
confluent hypergeometric function, respectively. It is read-

ily shown that b2 � bð1Þ2 ¼ �Q2=Q1 is given by b2�bð1Þ2 ¼
ð1=2ÞP�n

½e�ð2�nþ3=2Þ ~!�e�ð2�ð1Þ
n þ3=2Þ ~!�, where the summa-

tion over Ec:m: cancels Q1 in the denominator, and �ð1Þ
n ¼

0; 1; . . . is the nth solution of the relative energy spectra in
the noninteracting limit. At unitarity, the two-body solu-
tions, �n;1 ¼ n� 1=2, are known exactly [13], leading to
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b2;1�bð1Þ2;1¼1

2

expð� ~!=2Þ
½1þexpð� ~!Þ�¼

1

4
� 1

32
~!2þ��� : (6)

The three-fermion problem was studied analytically by
Werner and Castin [14] at unitarity, and numerically by
Kestner and Duan [15] for arbitrary scattering lengths.
Although the calculations are more involved, the exact
solution is intuitively understandable. Let us skip the trivial
center-of-mass motion. Assuming a spin state #"# and using
the Jacobi coordinates r ¼ r2 � r1 and � ¼ ð2= ffiffiffi

3
p Þ½r3 �

ðr1=2þ r2=2Þ� as shown in the inset of Fig. 2, the three-
body relative wave function c rel

3bðr; �Þ can be written as

c rel
3b ¼ ð1� P 13Þ

X
n

anRnlð�ÞYm
l ð�̂Þc rel

2bðr;�nÞ; (7)

which is simply the summation of products of the eigen-
state of the paired particles 1 and 2, c rel

2bðr;�nÞ, and of the

eigenstate of particle 3 relative to the pair, Rnlð�ÞYm
l ð�̂Þ.

The value of �n for each index ‘‘n’’ is uniquely determined
from energy conservation: Erel=@! ¼ ð2nþ lþ 3=2Þ þ
ð2�n þ 3=2Þ and should not be confused with the solutions
for the two-body relative energy. The relative wave func-
tion c rel

3b has a well-defined total relative angular momen-

tum of the 3 particles with quantum numbers l and m. The
operator P 13 ensures the correct exchange symmetry of
the wave function. This introduces correlations between
the 1–2 pair and the remaining particle 3 and thus a
hybridization as parametrized by an. We solve the eigen-
state ‘‘an’’ and eigenvalue Erel by imposing the Bethe-
Peierls boundary condition Eq. (4). We find

2�ð��nÞ
�ð��n � 1=2Þan þ Cnmam ¼

�
d

a

�
an; (8)

where the (symmetric) matrix Cnm � ½ð�1Þl= ffiffiffiffi
�

p � �R1
0 d��2Rnlð�ÞRmlð�=2Þc rel

2bð
ffiffiffi
3

p
�=2;�mÞ arises from the

exchange operator P 13. Without Cnm we have a three-body
problem of uncorrelated pair and single particle. We label
the relative energy in this case as �Erel and calculate it
directly from the two-body relative energy.

We have solved Eq. (8) numerically for 104 energy
levels Erel at different relative angular momenta l and
have checked that at unitarity our results agree exactly
with the analytic spectrum in Ref. [14], with relative
numerical errors typically <10�6. Figure 2 shows how
the relative energy spectrum evolves from the BCS to the
BEC side in the subspace of l ¼ 1.

To calculate the third virial coefficient using b3 � bð1Þ3 ¼
�Q3=Q1 ��Q2, we notice that the spin states of #"# and "#"
contribute equally to Q3. Also, Q1 in the denominator is
canceled by the summation over Ec:m:, and the term��Q2

is canceled by the difference between �Erel and the non-

interacting energy Eð1Þ
rel . Thus, the third virial coefficient is

determined solely by the exchange correlation, so that

b3 � bð1Þ3 ¼ P
expð�Erel=kBTÞ �

P
expð� �Erel=kBTÞ,

where the summation is performed over all possible three-
body states that are affected by interactions. At unitarity,
we obtain

b3;1�bð1Þ3;1¼�0:06833960þ0:038867 ~!2þ��� : (9)

The second and third virial coefficients through the
crossover is given in Fig. 3 at three typical temperatures.
Here we consider a gas with N ¼ 100 atoms and scale the
inverse scattering length using the Fermi vector at the trap

center, kF ¼ ð24NÞ1=6=ðd= ffiffiffi
2

p Þ. The temperature is given

in units of Fermi temperature TF ¼ EF=kB ¼ ð3NÞ1=3 �
ð@!=kBÞ. All the curves with distinct temperatures cross at
a ! 	1. This is the manifestation of universal behavior
anticipated if there is no any intrinsic length scale.
However, the characteristic length scale d of harmonic
traps brings a small (nonuniversal) temperature depen-

dence that decreases as N�2=3, shown by the terms ~!2 in
Eqs. (6) and (9).
High-T thermodynamics in traps.—We are ready to in-

vestigate the thermodynamics of a strongly interacting
Fermi gas at high temperatures. At unitarity, the energy

FIG. 2 (color online). Relative energy levels of a three-fermion
system at the ground state section (l ¼ 1).

FIG. 3 (color online). The second and third virial coefficients
as a function of the interaction parameter 1=kFa. We have used a
total number of atoms N ¼ 100, leading to ~! ¼ ð3NÞ�1=3 �
0:15 at T ¼ TF.
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E and entropy S in the limit of small ~! or large N can be
calculated according to the universal relations [7,8],

E ¼ �3��=2; (10)

S ¼ �ð3�=2þ 1Þ�=T � kBN lnz; (11)

together with Eq. (1) for � and the number identity N ¼
�ð@�=@�Þ ¼ Q1½zþ 2b2z

2 þ � � ��, and the virial coeffi-
cients shown in Eqs. (6) and (9). Here, � ¼ 2 for a har-
monically trapped gas. We also calculate the equation of
state EIGðSÞ of an ideal noninteracting Fermi gas, using

bð1Þn ¼ ð�1Þnþ1½1=n4 � ~!2=ð8n2Þ þ � � ��.
Figure 1 shows the predicted interaction energy Eint ¼

E� EIG as a function of entropy, compared to the experi-
mental data reported by Luo et al. [10]. We find a rapid
convergence of expansion, even below the degeneracy
temperature TF, with excellent agreement between theory
and experiment: the virial expansion is applicable to a
trapped Fermi gas even at T < TF.

This remarkable observation is counterintuitive, as
the virial expansion is generally believed to be useful at
the Boltzmann regime with T � TF. This occurs be-
cause there is a significant reduction of higher-order virial
coefficients in harmonic traps. Consider the thermo-
dynamic potential of a harmonically trapped gas in the
local density approximation,� ¼ R

�ðrÞdr / R
dr½zðrÞþ

bhom2;1 z2ðrÞ þ � � � þ bhomn;1 znðrÞ þ � � ��, where zðrÞ ¼
z exp½�VðrÞ=kBT� is a local fugacity with the local chemi-
cal potential �ðrÞ ¼ �� VðrÞ. It is readily seen on spatial
integration that the universal (T-independent) part of the
trapped virial coefficient is,

bn;1ðuniversalÞ ¼
�

1

n3=2

�
bhomn;1 : (12)

Therefore, the higher density of states in traps suppresses
the higher-order virial coefficients, leading to an improved
convergence of the expansion at low temperatures.
High-T thermodynamics in free space.—Using relation

(12), we may determine the third virial coefficient in free
space: bhom3;1 � �0:290 952 95. This does not agree with a

previous field-theoretic calculation reported by Rupak
[12], bhom3;1 � 1:11. As well, we may calculate the high-T

thermodynamics in free space, by taking � ¼ 1 and Q1 ¼
2VðmkBT=2�@

2Þ3=2 in Eqs. (10) and (11). Figure 4
presents the interaction energy Eint of a homogeneous
Fermi gas at unitarity as a function of temperature. For
comparison, we also show the results of two quantum
Monte Carlo simulations. The virial expansion in free
space seems to converge at T > 2TF.
In conclusion, we have shown that the virial expansion

converges rapidly for a degenerate, resonant Fermi gas in a
harmonic trap. This allows us to investigate the thermody-
namics in a controllable way. We have proposed a practical
method to obtain the third virial coefficient throughout
BCS-BEC crossover. Higher-order coefficients are calcu-
lable in a similar manner, and may hold the prospect of
revealing the exact thermodynamics of resonant Fermi
gases in the deep degenerate regime. The current work
provides a useful benchmark on testing future experiments
and quantum Monte Carlo simulations on strongly inter-
acting Fermi gases.
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FIG. 4 (color online). Temperature dependence of inter-
action energy of a homogeneous gas at unitarity, obtained using
different virial coefficients. For comparison, two quantum
Monte Carlo data reported in Refs. [2,4] are shown. A finite
range of interactions has been used in Ref. [2], which may lead
to a systematic downshift in energies. We list also the result
calculated by using Rupak’s bhom3;1 � 1:11.
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