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Abstract: In an open channel, a sudden rise in water level induces a positive surge. Once fully-

developed, the surge becomes a hydraulic jump in translation. Herein unsteady turbulent shear

stresses were measured during the translation of a fully-developed positive surge. New

investigations were conducted in a large rectangular channel (12 m long, 0.5 m wide) and

measurements were performed using acoustic Doppler velocimetry with a high temporal and

spatial resolution (200 Hz sampling rate). Horizontal and adverse bed slope configurations were

tested. In the latter, the surge decelerated until it became a stationary hydraulic jump.
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INTRODUCTION

A hydraulic jump in translation results from a sudden change in flow that increases the depth.

Called also a positive surge, it is the quasi-steady flow analogy of the stationary hydraulic jump

(HENDERSON 1966). Positive surges were studied by hydraulicians and applied

mathematicians for a few centuries. Pertinent reviews comprised BENJAMIN and LIGHTHILL

(1954), CUNGE (2003) and CHANSON (2009a).

Although most studies considered horizontal channels, a wide range of practical applications

encompasses hydraulic jumps propagating upstream on downward sloping channels: e.g., step

pool channels during a flash flood, rejection surges in power canals serving hydro-power

stations during sudden decrease in power output, swash runup against rundown on a beach

slope. When a positive surge propagates upstream against a supercritical flow on a steep slope,

the surge will progressively decelerate and becomes a stationary hydraulic jump. Recent

findings hinted a major transformation of the turbulence field during the deceleration phase(s)

(KOCH and CHANSON 2009).

In this study, turbulence measurements were performed in decelerating hydraulic jumps. The

results are based upon a comparative analysis of the turbulence in fully-developed and

decelerating positive surges. It is the aim of this work to gain a better understanding of

decelerating surges and their slow transformation process into stationary hydraulic jumps.

EXPERIMENTAL APPARATUS AND INSTRUMENTATION

New experiments were performed in a 12 m long 0.5 m wide tilting flume. The flume had a

smooth PVC bottom and glass walls. Comparative experiments were conducted with a

horizontal bed (Series 1) and against a bed slope So set between 0.009 and 0.027 (Series 2)

(Table 1).

In steady flows, the water depths were measured using rail mounted pointer gauges. The

unsteady water depths were measured with a series of non-intrusive acoustic displacement

meters Microsonic™. Pressure and velocity measurements in steady flows were performed with

a Prandtl-Pitot tube (3.3 mm ∅). Instantaneous velocity measurements were conducted with an

acoustic Doppler velocimeter Nortek™ Vectrino+ (Serial No. VNO 0436) equipped with a

three-dimensional side-looking head. For each experiment, the velocity range was 1.0 m/s, the

sampling rate was 200 Hz and the data accuracy was 1%. The translation of the ADV probes in

the vertical direction was controlled by a fine adjustment travelling mechanism connected to a

MitutoyoTM digimatic scale unit. Further details were reported in CHANSON (2008).
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Table 1- Experimental flow conditions

Reference So Q

(m
3
/s)

do

(m) 

Surge type at x

= 5 m

U

(m/s)

Fr Remarks

(1) (2) (3) (4) (5) (6) (7) (8)

Series 1 0 0.058 0.137 Undular to

breaking

0.56 to

0.90

1.17 to

1.49

Smooth PVC bed.

L = 12 m, B = 0.5 m.

Series 2 0.009 to

0.027

0.035 to

0.06

0.040 to

0.072

Decelerating:

undular to

breaking

0.002 to

0.22

1.71 to

2.83

Smooth PVC bed.

L = 12 m, B = 0.5 m.

Notes: do: initial depth measured at x = 5 m; Fr: surge Froude number (
oo dg/)UV(Fr ×+= ); Q: initial

steady flow rate; So: bed slope; U: surge front celerity measured at x = 5 m.

Surge generation

A positive surge was generated by the sudden partial closure of the downstream gate. After

closure, the bore propagated upstream and each experiment was stopped when the bore front

reached the intake structure to avoid wave reflection interference. For each experiment against

an adverse slope, the initially steady flow was supercritical and the gradually-varied flow had a

S2 profile (BRESSE 1860, HENDERSON 1966). After gate closure, the travelling jump

propagated upstream against the supercritical flow (Fig. 1). For some experiment, the jump

travelled the full channel length and the experiment was stopped when the bore reached the

channel intake. In other tests, the surge front decelerated and stopped prior to the channel

upstream end, and the data acquisition was conducted for up to 14 minutes after gate closure.

Turbulence measurements were conducted with one discharge (Q = 0.058 m3/s) and two bed

slopes (So = 0 & 0.0145). The ADV unit was located at x = 5 m, and the initial steady flow was

partially-developed with δ/do = 0.3 at the sampling location.

Reynolds stress estimates in rapidly-varied flow motion

The instantaneous turbulent velocity data were decomposed as: v = V - V , where V is a

variable-interval time average VITA (PIQUET 1999). A cutoff frequency must be selected such

that the averaging time is greater than the characteristic period of fluctuations, and small with

respect to the characteristic period for the time-evolution of the mean properties. During the

undular surge flows, the Eulerian flow properties showed an oscillating pattern with a period of

about 2 s that corresponded to the period of the free-surface undulations. Hence the unsteady

data were filtered with a low/high-pass filter threshold greater than 0.5 Hz (i.e. 1/2 s-1) and

smaller than the Nyquist frequency (herein 100 Hz). Following KOCH and CHANSON

(2008,2009), the cutoff frequency was deduced from a sensitivity analysis: Fcutoff = 1 Hz. The

same filtering technique was applied to all velocity components for all experiments.

Instantaneous Reynolds stresses were calculated from the high-pass filtered signals.

HYDRAULIC JUMP PROPAGATION AND FLOW PATTERNS

On the horizontal slope, the positive surges were fully-developed and visual observations

indicated several types of hydraulic jumps in translation: an undular (non-breaking) bore for

Froude numbers Fr less than 1.3, an undular surge with some slight breaking for Froude

numbers between 1.3 and 1.45, and a breaking jump with a marked roller for Froude number

greater than 1.45.

On a steep slope, the positive surge was generated by the rapid closure of the gate at the

downstream end of the channel, and the breaking surge propagated against the supercritical

flow. Its shape evolved progressively and the surge front speed decreased with increasing time.

Figure 1 presents an example with several photographs. The figure caption includes the
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location of the jump xs from the upstream channel end and the surge front celerity U. In some

experiments, the surge remained a breaking bore. In others, the surge front transformed

progressively into an undular bore. During some experiments, the surge front travelled up to the

upstream intake structure. For others, the positive surge became arrested before the channel

upstream end and the bore transformed into a stationary hydraulic jump. In some experiments,

the shape of the surge changed from a breaking bore into an undular surge, before becoming a

stationary undular hydraulic jump. During others, the bore remained a breaking surge until it

became a stationary hydraulic jump with a roller.

(A) xs = 8 m (U = 0.18 m/s, breaking) (B) xs = 5 m (U = 0.10 m/s, breaking)

(C) xs = 3 m (U = 0.075 m/s, breaking) (D) xs = 1 m (U = 0.05 m/s, breaking)

Fig. 1 - Photographs of a decelerating surge fronts against a steep slope: So = 0.00943, Q = 0.0354 m3/s,

do = 0.0538m

The observations of the hydraulic jump propagation showed consistently an initial rapid

deceleration of the front until the surge leading edge progressed at a very slow pace (1 to 10

mm/s). Ultimately the surge became arrested after a long time. Figure 2 presents some

dimensionless graphs with the dimensionless time cd/gt × as a function of the

dimensionless distance from the gate (xgate-xs)/dc and of the dimensionless surge front celerity

cdg/U × as a function of (xgate-xs)/dc. Herein dc is the critical flow depth of the initially

steady flow: 3 22
c )Bg/(Qd ×= where Q is the steady flow rate, g is the gravity acceleration

and B is the channel width. Figure 2 shows in particular a comparison between an experiment

with an arrested surge (run 071105_02) and a non-arrested surge (run 071105_03). (A non-

arrested surge propagated all along the channel and entered into the intake structure.) The

experimental observations highlighted that the transformation from a positive surge into a

stationary hydraulic jump was a very slow process, taking anywhere between 5 to 12 minutes.

These observations were consistent with the anecdotal observations of CHANSON (1995) in a

0.25 m wide 20 m long channel.
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Importantly, qualitative and quantitative experiments emphasised the complicated

transformation of a positive surge into an arrested surge (i.e. stationary hydraulic jump). The

process time scale was about 300-600 s (5 to 10 min.). During the decelerating stage, the surge

might evolve from a breaking bore to an undular (non-breaking) surge. The change would be

very gradual and the evolution time scale was a minute to a few minutes.

(xgate-xs)/dc

t×
sq

rt
(g

/d
c)

U
/s

q
rt

(g
×

d
c)

0 20 40 60 80 100 120

0 0

10 0.03

20 0.06

30 0.09

40 0.12

50 0.15

60 0.18

70 0.21

Run 071105

So = 0.01417

Q = 0.0423 m3/s

Run 071105_2 : arrested surge

Run 071105_3 : surge vanishing in intake

x(t) Run 071105_2

U(x) Run 071105_2

x(t) Run 071105_3

U(x) Run 071105_3

Run So Q (m
3
/s) h (m) Type

071105_02 0.01417 0.0423 0.065 Arrested

071105_03 0.060 Non-arrested

Fig. 2 - Dimensionless surge front position (xgate-xs)/dc and celerity U/ g×dc for arrested and non-arrested

decelerating surges (Exp. Series 2)
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Fig. 3 - Dimensionless instantaneous velocity components beneath a breaking bore on a smooth horizontal

invert: do = 0.1388 m, Vo = 0.832 m/s, U = 0.903 m/s, Fr = 1.50, So = 0, z/do = 0.762 (Exp. Series 1)

TURBULENT VELOCITY MEASUREMENTS

On the horiziontal slope, the turbulent velocity measurements highlighted a rapid flow

deceleration during the jump passage associated with large turbulent fluctuations afterwards.

The longitudinal velocity component decreased rapidly when the bore front passed above the

sampling volume (Fig. 3). The measurements showed consistently some differences in velocity

redistributions between the undular and breaking surges that were consistent with the earlier

5048



33rd IAHR Congress: Water Engineering for a Sustainable Environment

findings of KOCH and CHANSON (2009). When the undular bore passed above the ADV

control volume, a relatively gentle longitudinal flow deceleration was noted at all vertical

elevations. Vx was minimum beneath the first wave crest and oscillated afterwards with the

same period as the surface undulations and out of phase. The vertical velocity Vz presented a

similar oscillating pattern beneath the free-surface undulations with the same periodicity, but

out of phase. Such a pattern can be predicted by ideal-fluid flow theory (LIGGETT 1994,

CHANSON 2009b).

The breaking surge exhibited in contrast a marked roller and a sharp flow depth discontinuity.

The free-surface elevation curved upwards immediately prior to the roller. This is illustrated in

Figure 3 for 1199 < t×U/do < 1201. The velocity data showed some distinct redistribution

patterns depending upon the vertical elevation z/do. For z/do > 0.5, Vx decreased rapidly at the

surge front although the longitudinal velocity data tended to remain positive beneath the roller.

For z/do < 0.2, the longitudinal velocity became negative although for a short duration. Such

flow feature was first reported by KOCH and CHANSON (2009).

Positive surge propagating against an adverse steep slope

The velocity measurements in a positive surge advancing against an adverse sloping surge were

conducted for z/do < 0.7 only because the ADV head could not be placed at higher sampling

locations without interfering with the free-surface. Typical measurements are presented in

Figure 4. For the experiment shown in Figure 4, the arrested surge became a stationary

hydraulic jump at xs = 2.65 m about 330 s (6.5 minutes) after the gate closure. In Figure 4, the

data were collected at x = 5 m and spanned between t = 75 s and 115 s after the gate closure. At

t×U/do = 70 (i.e. t = 115 s), the surge front was located at xs = 4.3 m.

The experimental observations demonstrated that the bore propagation was a slow turbulent

process. At x = 5 m, the surge front celerity was 27 times slower than that of the experiment

shown in Figure 3. As a result, the velocity data exhibited a gentle deceleration when the bore

passed the sampling location. Interestingly the longitudinal velocity component remained

positive at all times and at all vertical elevations. In the upper flow region (z/do > 0.3), the Vx

data showed some long-period oscillations with a period of about 2 s. These are seen in Figure

4 for 54 < t×U/do < 60. The oscillations were caused by the growth, advection, and pairing of

large-scale vortices in the developing shear layer of the surge roller. This was also observed in

stationary hydraulic jumps. The pulsation frequency F of the longitudinal velocity gave a

Strouhal number F×do/Vo = 0.021 that was close to classical hydraulic jump data (LONG et al.

1991, MURZYN and CHANSON 2007, CHANSON and GUALTIERI 2008).
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0.1 0.9
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Fig. 4 - Dimensionless instantaneous velocity components beneath a positive surge advancing against a
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steep slope: do = 0.0701 m, Vo = 1.641 m/s, U = 0.034 m/s, Fr = 2.02, So = 0.0145, z/do = 0.653 (Exp.

Series 2)

TURBULENT STRESSES IN HYDRAULIC JUMPS IN TRANSLATION

During the surge passage, the unsteady flow field was associated with large fluctuations in

Reynolds stresses (Fig. 5). Figures 5A and 5B present some unsteady Reynolds stress data

beneath a tidal bore propagating in a horizontal and sloping channel respectively. In each

figure, the graph presents the time-variation of the dimensionless Reynolds stresses vx
2/Vo

2 and

vx×vz/Vo
2, and water depth d/do, where v is the turbulent velocity, the subscripts x and z refer

respectively to the longitudinal and vertical velocity components. Table 2 summarises the range

of Reynolds stress fluctuations.

The experimental measurements indicated systematically large, fluctuating turbulent stresses

below the bore front and in the flow behind the surge front. The finding was observed for both

undular and breaking surges. The Reynolds stress levels were significantly larger than before

the surge passage, and substantial normal and tangential stress fluctuations were observed. In

the breaking surge, large shear stress levels and fluctuations were observed in particular for z/do

> 0.5. It is believed that these were caused by the proximity of the developing mixing layer of

the roller. A comparison between undular and breaking surges showed that (a) the magnitude of

the turbulent stresses was comparable for both undular (non-breaking) and breaking bores

(Table 2), and (b) the large fluctuations in Reynolds stresses lasted for a significantly longer

period beneath the undular bore.

Table 2 - Experimental observations: range of Reynolds stress fluctuations

Slope Fr Surge type z/do vx
2
/Vo

2
vy

2
/Vo

2
vz

2
/Vo

2
vxvz/Vo

2
vxvy/Vo

2
vyvz/Vo

2

(1) (2) (3) (4) (5) (6) (7) (6) (7) (8)

0 1,17 Undular 0.15 0-0.04 0-0.015 0-0.05 ±0.02 ±0.01 ±0.015

0.76 0-0.025 0-0.01 0-0.06 ±0.02 ±0.008 ±0.01

0 1.50 Breaking 0.15 0-0.04 0-0.015 0-0.06 ±0.02 ±0.015 ±0.015

0.76 0-0.07 0-0.015 0-0.1 ±0.03 ±0.012 ±0.015

0.0145 2.02 Breaking 0.15 0-0.08 0-0.03 0-0.15 ±0.04 ±0.03 ±0.035

0.65 0-0.07 0-0.03 0-0.2 ±0.04 ±0.025 ±0.025

t U/do

d
/d

o

v
2
/V

o
2

1190 1194 1198 1202 1206 1210 1214 1218

0 -0.04

0.2 -0.02

0.4 0

0.6 0.02

0.8 0.04

1 0.06

1.2 0.08

1.4 0.1

1.6 0.12

1.8 0.14

2 0.16

1190 1194 1198 1202 1206 1210 1214 1218

0 -0.04

0.2 -0.02

0.4 0

0.6 0.02

0.8 0.04

1 0.06

1.2 0.08

1.4 0.1

1.6 0.12

1.8 0.14

2 0.16

Depth

vx
2

vxvz

(A) On a smooth horizontal invert: do = 0.1388 m, Vo = 0.832 m/s, U = 0.903 m/s, Fr = 1.50, So = 0, z/do =

0.762 (Exp. Series 1)
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t U/do

d
/d

o

v
2
/V

o
2

47.5 50 52.5 55 57.5 60 62.5 65 67.5 70 72.5

0 -0.045

0.3 -0.015

0.6 0.015

0.9 0.045

1.2 0.075

1.5 0.105

1.8 0.135

2.1 0.165

2.4 0.195

2.7 0.225

3 0.255

47.5 50 52.5 55 57.5 60 62.5 65 67.5 70 72.5

0 -0.045

0.3 -0.015

0.6 0.015

0.9 0.045

1.2 0.075

1.5 0.105

1.8 0.135

2.1 0.165

2.4 0.195

2.7 0.225

3 0.255

Depth

vx
2

vxvz

(B) Against a steep slope: do = 0.0701 m, Vo = 1.641 m/s, U = 0.034 m/s, Fr = 2.02, So = 0.0145, z/do =

0.653 (Exp. Series 2)

Fig. 5 - Dimensionless instantaneous turbulent stresses vx
2
/Vo

2
and vx×vz/Vo

2
beneath a breaking bore

Turbulent stresses beneath a decelerating surge

In a decelerating surge, the flow field changed very progressively from a positive surge into a

stationary hydraulic jump. The turbulent stress data (Fig. 5B) highlighted some large stress

levels and fluctuations when the ADV sampling volume was in the "wake" of the roller mixing

layer. With increasing time, the levels of shear stresses and shear stress fluctuations tended to

decrease slightly.

A comparative analysis between a decelerating surge and a stationary jump highlighted marked

differences (Fig. 6). Figure 6 presents the vertical distributions of time-averaged turbulent

stresses calculated for the first 2,000 samples beneath the breaking roller (10 s record). The

results are compared with the stationary hydraulic jump data of LIU (2004). Both experiments

were performed with similar flow conditions: a weak hydraulic jump with roller with similar

Froude number and inflow depth. The comparison suggested higher turbulence levels in the

decelerating surge, especially in the lower flow region (z/do < 0.4 to 0.5) (Fig. 6).

v2/Vo
2

z/
d

o

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

vx
2/Vo

2 Present data

vy
2/Vo

2 Present data

vz
2/Vo

2 Present data

vx
2/Vo

2 x/do = 1.83 Liu (2004)

vx
2/Vo

2 x/do = 3.24 Liu (2004)

vx
2/Vo

2 x/do = 4.65 Liu (2004)

Fig. 6 - Dimensionless time-averaged normal stresses in decelerating jump: Fr = 2.02, do = 0.0701 m, x = 5

m, So = 0.0145 - Comparison with stationary hydraulic jump data: Fr = 2.0, do = 0.071 m, x = 0, 0.13 m,

0.23 m and 0.33 m downstream of toe (LIU 2004)
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CONCLUSION

Detailed turbulent measurements wee conducted in hydraulic jumps in translation and

decelerating surges. The turbulent Reynolds stresses were deduced from high-pass filtered data

using the technique of KOCH and CHANSON (2008,2009). The results highlighted large

turbulent stresses and turbulent stress fluctuations beneath the jumps. In a breaking jump, large

turbulent stresses were observed next to the shear zone in a region of high velocity gradients. In

an undular bore, large velocity fluctuations and Reynolds stresses were recorded beneath the

first wave crest and the secondary waves (free-surface undulations).

The present experimental data demonstrated intense turbulent mixing beneath the jump front

and the roller for all experiments. Quantitatively, the levels of turbulent stresses were one to

two orders of magnitude larger than the critical threshold for sediment motion, in terms of both

bed load and suspension. The experiments showed further the complicated transformation of a

hydraulic jump in translation into a stationary hydraulic jump on a steep slope. The entire

process was very slow and the turbulent velocity field in the decelerating surge presented

turbulent characteristics that were closer to those of a stationary hydraulic jump than of a fully-

developed surge, despite a few key differences (Fig. 6).

REFERENCES

BENJAMIN, T.B., and LIGHTHILL, M.J. (1954). "On Cnoidal Waves and Bores." Proc. Royal Soc. of

London, Series A, Math. & Phys. Sc., Vol. 224, No. 1159, pp. 448-460.

BRESSE, J.A. (1860). "Cours de Mécanique Appliquée Professé à l'Ecole des Ponts et Chaussées."

('Course in Applied Mechanics lectured at the Pont-et-Chaussées Engineering School.') Mallet-

Bachelier, Paris, France (in French).

CHANSON, H. (1995). "Flow Characteristics of Undular Hydraulic Jumps. Comparison with Near-

Critical Flows." Report CH45/95, Dept. of Civil Engineering, University of Queensland, Australia,

June, 202 pages.

CHANSON, H. (2008). "Turbulence in Positive Surges and Tidal Bores. Effects of Bed Roughness and

Adverse Bed Slopes." Hydraulic Model Report No. CH68/08, Div. of Civil Engineering, The

University of Queensland, Brisbane, Australia, 121 pages & 5 movie files.

CHANSON, H. (2009a). "Current Knowledge In Hydraulic Jumps And Related Phenomena. A Survey of

Experimental Results." European Journal of Mechanics B/Fluids, Vol. 28, No. 2, pp. 191-210 (DOI:

10.1016/j.euromechflu.2008.06.004 ).

CHANSON, H. (2009b). "Applied Hydrodynamics: An Introduction to Ideal and Real Fluid Flows." CRC

Press, Taylor & Francis Group.

CHANSON, H., and GUALTIERI, C. (2008). "Similitude and Scale Effects of Air Entrainment in

Hydraulic Jumps." Jl of Hyd. Res., IAHR, Vol. 46, No. 1, pp. 35-44.

CUNGE, J.A. (2003). "Undular Bores and Secondary Waves - Experiments and Hybrid Finite-Volume

Modelling." Jl of Hyd. Res., IAHR, Vol. 41, No. 5, pp. 557-558.

HENDERSON, F.M. (1966). "Open Channel Flow." MacMillan Company, New York, USA.

KOCH, C., and CHANSON, H. (2008). "Turbulent Mixing beneath an Undular Bore Front." Journal of

Coastal Research, Vol. 24, No. 4, pp. 999-1007 (DOI: 10.2112/06-0688.1).

KOCH, C., and CHANSON, H. (2009). "Turbulence Measurements in Positive Surges and Bores."

Journal of Hydraulic Research, IAHR, Vol. 47, No. 1, pp. 29-40 (DOI: 10.3826/jhr.2009.2954).

LIGGETT, J.A. (1994). "Fluid Mechanics." McGraw-Hill, New York, USA.

LIU, M. (2004). "Turbulence Structure in Hydraulic Jumps and Vertical Slot Fishways." Ph.D. thesis.,

Dept. of Civil and Env. Eng., University of Alberta, Edmonton, Canada, 313 pages.

LONG, D., RAJARATNAM, N., STEFFLER, P.M., and SMY, P.R. (1991). "Structure of Flow in

Hydraulic Jumps." Jl of Hyd. Research, IAHR, Vol. 29, No. 2, pp. 207-218.

MURZYN, F., and CHANSON, H. (2007). "Free Surface, Bubbly flow and Turbulence Measurements in

Hydraulic Jumps." Report CH63/07, Div. of Civil Engineering, The University of Queensland,

Brisbane, Australia, August, July, 116 pages.

PIQUET, J. (1999). "Turbulent Flows. Models and Physics." Springer, Berlin, Germany, 761 pages.

5052


