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Abstract

This technical report contains proofs for a set of mathematical prop-
erties of a recently proposed discrete time—frequency distribution class.

1 Discrete Time—Frequency Distribution

We begin with some definitions. The discrete time—frequency distribution
(DTFD) in [1] is defined as the time—frequency convolution of the discrete
Wigner—Ville distribution (DWVD) with the discrete kernel:

k) = (WO o) 91°(5 )

n ok k=0,1,...,.N—1
where W (n/2,k/2N) represents the DWVD, v©(n/2, k/2N) represents the
time—frequency kernel, ® represents circular convolution, and the DWVD
is formed from the 2N-point discrete analytic signal [2]. The DTFD over
discrete frequency samples k =0,1,...,2N — 1 is
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Figure 1: Discrete grids in the time—-lag domain for N = 5. (a) Function
KC®(n/2,m) and (b) kernel G(n/2,m) . Open circles represent zero values;
filled circles represent the sample points of the function.

where K©(n/2,m) is the discrete time-lag signal function and G¢(n/2,m)
is the discrete time-lag kernel [1], for n,m = 0,1,...,2N — 1. The time-lag
kernel is zero when 7 is not an integer; that is, GC(n 4+ 1/2,m) = 0.

The time-lag function K%(n/2,m) has a nonuniform discrete grid. We
write KC(n/2,m) as a function of the analytic signal z(n) in two parts.
First, for n/2 an integer,

KC(n,2m) = z(n 4+ m)z(n — m)

2
KCn,2m+1)=0 @)
and second, for n/2 not an integer,
KCmn+ Lom)=0
o (3)

KCn + 5.2m+1) = z(n+m+1)z(n —m)

where Z(n) represents the complex conjugate of z(n). Both sample grids are
illustrated in Fig. 1. The time-lag kernel K€ is diamond shaped because
z(n) =0for N <n<2N —1[2,3].

We can also define the DTFD in the Doppler—frequency domain, as a
function of the Doppler—frequency function K¢ and Doppler—frequency ker-
nel G€ as

1 — jrin
P°(33%) = 1 Do D KOG 5D (G ske ™Y ()
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The Doppler—frequency kernel is a function of the analytic signal,
K o) = 2050 205

where Z(k/2N) is the discrete Fourier transform (DFT) of z(n).

2 Proofs for Properties

We now present proofs for a set of DTFD properties which appeared in [1].

P1) Nonnegative: to prove
“(

pC (%, £ >0

(SIS

when

G(5,m) = h("H™)h("5™) ()

where h(n) is zero when n is not an integer.

Proof: The kernel G is only nonzero when n/2 is an integer and m
is even,

G®(n,2m) = h(n 4+ m)h(n — m) (6)
because both h(n/2) and ¢%(n/2,m) are zero when n/2 is not an
integer. The kernel form in (6) combined with the nonuniform discrete
grid of the time-lag function in (2) and (3), means that the DTFD is
zero at non-integer n/2 values. For n/2 integer values,

Cr k 1 T Lo c —j2mmk/N
oCln, ) = 5o D0 S KC(n— p, 2m)GC(p, 2m)e
p=0 m=0
| NoIN-d
=N Z Zz(n—p—l—m)z(n—p—m)h(p—l—m)
p=0 m=0
. B(p - m)eijmnk/N'

Let a = p+ m, b = p — m and rewrite the preceding equation as

N-1N-1
1 _ .
=N > > 2(2a)2(2b)h(n — 2b)h(n — 2a)e 2R/
a=0 b=0
| NoIN-d
+on 2(2a +1)2(2b + 1)h(n — 2b — 1)h(n — 2a — 1)
a=0 b=0
o—i2n(a=b)k/N
L= 2
=— Z 2(2a)h(n — 2a)e 12T R/N
2N |~
L . 2
+ oN 2(2a + 1)h(n — 2a — 1)e12mak/N
a=0
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Hence the DTFD is nonnegative when the kernel is of the form in (5).

P2) Time marginal: to prove
N-1
2) (% o) = () (7)
k=0
when
GO(3.0) = 3(n). ®)

where 0 represents the Dirac function.

Proof: Expand the DTFD in (7) using (1) but sum the DTFD over
k=01,...,2N —1,

2N—-1

no
T
S
T
5
r

1 .
> o) = 57 KO(22, m)GO (5, m)e b/
k=0 k=0 m=0 p=0
2N—12N—-1 1 2N —1
_ C/2n— C —j k/N
= > Y KOG mGO(Bm) g Y e
m=0 p=0 k=0
2N -1
= K22 0)GC(8,0) (9)
p=0

as Ziif&l exp (—jimk/N) = 2Nd(m). Apply the kernel constraint in
(8) to (9), then

2N—-1

Z pC(n, %) = Kc(n70)

k=0

We can easily show, because of the periodicity of the proposed DTFD

[1], that
2N-1 N—1
Z pc(n7%) =2 pC(n’ 21;\[)
k=0 k=0
and thus
N—1
23" O, ) = [0 (10)
k=0

which concludes the proof.

P3) Frequency marginal: to prove

2N—1 1 5
> 005 o) = o5 126
n=0
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P4)

when

GO (R 7)) = O(K) (11)
where G€ is the Doppler-frequency kernel.
Proof: Using the Doppler—frequency expansion in (4),

2N—-1 2N—-12N—-12N-1

> G = L X KOG I8 e
n=0

n=0 [=0 q=0

2N—-12N-1 2N—1
N2 Z Z ICC W 7Nq gC(% LN Z eJnln/N
n=0
1 2N—1
Z KR 536 (7 o) (12)

as Z a exp(jmin/N) = 2N4(l). Apply the kernel constraint in (11)
to (12), then

2N-1
2N2p%% = K% ax) = Z(55)2(3x) = | Z(3%)

which proves the property.

Time support: to prove, for signal z(n) = 0 for n < ny and n > no,

that
(

p %) =0, for n < 2ny and n > 2no,

|3

when
GC(%,m) =0, for |n| > |m|. (13)

Proof: The DTFD is the DFT of the smoothed time-lag function RC,
where

RC(%ﬂm) - KC(%vm) C:? GC(%vm) (14)

as defined in (1). To satisfy time support, the smoothed time-lag
function R® must have the same time support as K©; that is, if

Kc(g,m) =0, for n < 2ny and n > 2no,
then the property requires that
RC(%,m) =0, for n < 2ny and n > 2na. (15)

When the kernel has the form in (13), a cone-shaped kernel [4], then
RC satisfies (15) because the convolution of K© with the kernel G©
in (14) does not smear nonzero energy components into the the region
n < 2ny and n > 2ny for R®(n/2,m) [4, 5).
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Figure 2: Time support example with N = 5 and z(0) = 0. (a) Time—
lag function K¢(n/2,m), with K€(0,m) = K°(1/2,m) = 0, (b) time-lag
kernel G¢(n/2,m), and (c) smoothed time-lag function R®(n/2,m), where
RC(0,m) = R°(1/2,m) = 0. Open circles represent zero values; filled circles
represent the sample points of the function.

Fig. 2 shows an example of the convolution process in (14) for a signal
where z(0) = 0 and N = 5. Because the kernel satisfies the constraint
in (13), R°(0,m) = 0 and therefore p©(0,k/2N) = 0. In this example
we assumed that n is positive and thus we periodically extended the
kernel from —(N —1) <n < N to 0 <n < 2N — 1, hence the mirror
cone-shape kernel in Fig. 1.

P5) Frequency support: to prove, for signal Z(k/2N) = 0 for k < k; and
k > ko, that

pC(B, ) =0,  fork <k and k> ko,
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P6)

when
G (% o) =0,  for [k| > |I]. (16)

Proof: The DTFED is the inverse DFT of the smoothed Doppler—
frequency function R¢, where

RO, f) = Kk, ) © 6k ) (17

as defined in (4). To satisfy the property, the smoothed Doppler—
frequency function R® must have the same frequency support as K°;
that is, if

KO (%, 4%) =0,  fork <k andk >k
then, the property requires that
RY(&. o) =0,  for k< ki and k > ko. (18)

Similar to the time-support property, R satisfies (18) when the kernel
is of the form in (16) [5].

Instantaneous frequency: to prove,

{arg [Z pC (2, ok eﬂ”k/N] mod 27[} = f(n) (19)

when

G°(%,2) = ad(n) (20)

where a is a positive constant; the discrete instantaneous frequency
f(n) is equal to the central finite difference of the phase of z(n) [6, pp.
463] as

fn) =

Proof: Sum the DTFD over £k =0,1,...,2N — 1 as follows

2N—-1

Z P eJan/N

1 [gp(n D —pn=1) mod 7| . (21)

27 2

1 3 .
TN KC(Z52 m)GC (2, m)eImmhk/N gimk/N
k=0 m=0 p:(]
2N—-12N-1 1 2N—-1 .
- Z KC(%T*p,m)GC(g,m)ﬁ Z ik (m—2)/N
m=0 p=0 =
2N—-1
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as Zii{o—l exp [—jmtk(m — 2)/N] = 2Ndé(m — 2). Because of the con-
straint on the kernel in (20),

KC(?n P Q)GC(% ):aKC(n,2)
=az(n+1)z(n—1)
= aA(n + 1)A(n — 1)ellPr+D=¢(n-1)

using the polar notation z(n) = A(n)exp [jyo(n)]. Thus,

2N—1
g | 3 o ) | =gl 4 ) —pln=1) @2
and because
IN—1 N-1
Z pC(n7 2k J27Tk:/N -9 PC J27TI€/N
k=0 k=0

then

N—-1
1
o {arg [Z pC(Q—”, 2’}”\,) JQ”’“/N] mod 27‘[}

— ﬁ {e(n+1) —p(n—1) mod 27}

= f(n).
thus proving the property in (19).

Group delay: to prove

2N—1
{arg [Z pC (2, e jm/N] mod —271} =7(). (23)

when
G (4%, &) = ad(k). (24)

where a is a positive constant. The discrete group delay function
7(k/2N) is defined as

N [0(k+1)—0(k—1)
T(%):—% 5 mod — 7| .
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Proof: First, expand part of left hand side expression in (23) as follows:

2N—1
C N
> (3, Aele
n=0
1 2N—12N—-12N-1
— m Z ’CC(%v%)QC(L’%)GJMZ—IM/N
n=0 [=0 ¢=0
1 2N—12N-1 2N—1
C k— C l N
=0 ¢=0 n—=0
1 2N—1
C k— C
= 9N K%, 539 (3 5%)
q=0

as Ziﬁal exp [jnt(l —1)n/N] = 2N6(I — 1). Substituting the kernel
constraint (24) into the previous expression, then

_amk+)mk—n&W“”4%4ﬂ

using the polar notation Z(k/2N) = b(k)exp [j0(k)]. Combing the
previous relation with the rest of the expression in (22),

N 2N-1
o {arglz pC (2, e J””/N] mod —27(}
n=0

:_%ﬂmbuyww—n]mw-aﬂ

k
(3x5)

thus proving the property.

P8) Moyal’s Formula: to prove

2

—1N-1 N-1
AN Z > 005, )y (5. 2) = | D w(n)u(n) (25)
n=0 k=0 n=>0
when
9°(%.m)g% (%, m) = 1. (26)

Proof: Rewrite the DTFD inner product in (25) in terms of the
smoothed ambiguity functions S(I/N,m), where
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and the discrete ambiguity function A(l/N,m) is defined as

Summing the DTFD products over £ =0,1,...,2N — 1,
2N—1 2N—1
k= k
> Z pe (5 50y (3 o)
n=0 k=0
2N—1N—12N—-12N—-1

— Z Z Z Z S fjrr(mkfln)/N
4N n=0 k=0 (=0 m=0
—12N-1
Z Z S JT[(’ITLk‘ U'n)/N
=0 m'=0
2N—12N—-12N—-12N-1

L X X Y SilkmS

=0 m=0 I'=0 m’=0

~—

2N—-1 2N—1
. Z ejrm(lfl’)/N Z efjnk(mfm’)/N
n=0 k=0
2N—12N—-1
Z > Sal Lom) (27)
=0 m=0
as
1 2N—-1
- ej?'(n(l—l/)/N _ 5([ . ll)
2N n=0
2N—-1
N Z e—Jﬂk(m m') 5(m_m/).

Because of (26), Sy(&,m)S,(&,m) = Az(&,m)A, (&, m) and there-

fore
—12N—-1 2N—12N-1
Z > (B Py () = > Y Au(dm)Ay(%,m)
n=0 k=0 =0 m=0

Rewriting this expression in terms of the time-lag function K€ as

2N—-1 2N-1

Z Z Aﬂﬂ(%am)‘iy(%vm)
=0 m=0
2N—-12N—-12N-1 2N—-1

4N2 Z Z Z KC —jﬂln/N /Z()Rf(gjm)ejnln’/N

=0 m=0 n=0
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—12N-1 2N—-1

2N—-1
4N2 Z Z KC m) Z _yc(%,m) Z e—im(n—n")/N
n'=0 1=0

m=0 n=0
and because > 720 ! exp[—jnl(n — n')/N] = 2Nd(n — n'),
2N—12N—1

_ % S S KE(Em)KS (2 m

m=0 n=0

= % Z 2 z(n+m)x(n —m)y(n+m)y(n —m)

3
~—

Zan—l—m—f— z(n —m)y(n+m+ 1)y(n —m).

By substituting a = n — m in the preceding equation we now have

—1N-1

Z > w(a+2m)z(a)y(a+2m)y(a)
N

Z Z (a+2m + 1)z(a)y(a + 2m + 1)y(a)
a=0 m=0 o
=N Z(a)y(a) [Z z(a+2m)y(a + 2m)
N

m=0

Thus,

—12N-1

QNZ > 0S5 ) (5, ) =

n=0 k=0

Summing over half the frequency extent £ =0,1,..., N —1 is propor-
tional to summing over the full frequency extent £k =0,1,...,2N —1

—12N-1 2N—-1N-1

POB I CRI TR EED DO WIS

n=0 k=0 n=0 k=0
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therefore
IN—1N—1 N-1 2
AN ST o5 B (5 ) = | D @(n)in)
n=0 k=0 n=0

thus proving the relation in (25).

Signal recovery: to prove,

2 Z pC (2, L e /N = 5(n)z(0)
when
G°(%,m) = d(n). (28)

Proof: Expand as follows:

2N—-1
Q k Jﬂk:n/N
E : P° (5, 9x)

1 2N—-12N—-12N-1
_ ﬁ Z Z Z KC GC( )e Jﬂmk/NeJnlm/N
k=0 m=0 p=0
1 2N—-12N—-1 IN—1
_ C/rn—p C —jn(m—n)k/N
TN KC("52,m)GC(§,m) Y | e IMm
m=0 p=0 k=0
2N—1
= > K9"32n)G%4E,n)

p=0

as Zzﬁal exp [—jt(m —n)k/N] = 2Nd(m —n). Using the kernel con-
straint in (28), and the definition of time-lag signal function K© in
(2) and (3),

2N—-1 .
> P95 )™ = KO(5,n)
k=0
= z(n)z(0)
and as
2N—1 . N-1
Z pC(%’%)eJnkn/N -9 pC(%jﬁ)eJﬁkn/N
k=0 k=0
then
N-1
2> p°(%, g )™ N = 2(n)2(0)
k=0

which concludes the proof.



O’ TOOLE et al.: PROOFS FOR DTFD PROPERTIES 13

References

1]

[4]

J. M. O’ Toole, M. Mesbah, and B. Boashash, “Improved discrete def-
inition of quadratic time—frequency distributions,” IEEE Trans. Signal
Processing, vol. submitted for publication, 2009.

——, “A new discrete analytic signal for reducing aliasing in the dis-
crete Wigner—Ville distribution,” IEEE Trans. Signal Processing, vol. 56,
no. 11, pp. 5427-5434, Nov. 2008.

M. A. Poletti, “The development of a discrete transform for the Wigner
distribution and ambiguity function,” J. Acoust. Soc. Am., vol. 84, no. 1,
pp- 238-252, July 1988.

Y. Zhao, L. E. Atlas, and R. J. Marks II, “The use of cone-shaped kernels
for generalized time—frequency distributions of nonstationary signals,”
IEEE Trans. Acoust., Speech, Signal Processing, vol. 38, no. 7, pp. 1084—
1091, 1990.

T. Claasen and W. Mecklenbrauker, “The Wigner distribution—a tool
for time-frequency signal analysis. Part III: Relations with other time-
frequency signal transformations,” Philips J. Res, vol. 35, pp. 372-389,
1980.

B. Boashash, “Time—frequency signal analysis,” in Advances in Spectrum
Estimation, S. Haykin, Ed. Englewood Cliffs, NJ: Prentice-Hall, 1991,
ch. 9, pp. 418-517.



