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Abstract

The large shape variability and partial occlusions chal-
lenge most object detection and tracking methods for non-
rigid targets such as pedestrians. Single camera tracking is
limited in the scope of its applications because of the lim-
ited field of view (FOV) of a camera. This initiates the need
for a multiple-camera system for completely monitoring and
tracking a target, especially in the presence of occlusion.
When the object is viewed with multiple cameras, there is
a fair chance that it is not occluded simultaneously in all
the cameras. In this paper, we developed a method for the
fusion of tracks obtained from two cameras placed at two
different positions. First, the object to be tracked is identi-
fied on the basis of shape information measured by MPEG-
7 ART shape descriptor. After this, single camera tracking
is performed by the unscented Kalman filter approach and
finally the tracks from the two cameras are fused. A sen-
sor network model is proposed to deal with the situations in
which the target moves out of the field of view of a camera
and reenters after sometime. Experimental results obtained
demonstrate the effectiveness of our proposed scheme for
tracking objects under occlusion.

1. Introduction

In recent years, automated processing of surveillance
video has gained a lot of attention. Over the past several
years, a significant number of papers have reported progress
on detecting and tracking humans. However, because of the
inherent complexity of the task, problems are still far from
being solved, even with the use of a single static camera.
Video based tracking can be regarded as the problem of ex-
tracting the information about a moving object from a se-

quence of image frames taken over time. It is the act of
searching for a target within a scene and following its posi-
tion, frame by frame.

The tracking problem can be treated in a number of ways
depending on the type of features to be tracked. The contour
of the target object can be used as one of the features to be
tracked. The contour can be modelled as curves. Again, the
prior knowledge of the object dynamics can be used to en-
hance the tracking performance. Moreover, stochastic dy-
namic models are required to describe the likely motion and
appearance of the target. Stochastic dynamic models along
with the input image sequence contains all the information
about the position, orientation and velocity of the object.
This information can be termed as the state of an object.
After this, suitable algorithms are used to keep updating the
state by making use of the probability function. The perfor-
mance of a tracking system is affected by many factors like
noise, variations in the background and foreground intensi-
ties, occlusion etc. Overall, efficient tracking of an object is
quite a challenging problem in Computer Vision.

Single camera tracking is suited only for certain local en-
vironments and even simple surveillance tasks demand the
use of multiple cameras [1]. A single camera cannot pro-
vide adequate coverage of the environment due to its limited
field of view. So, it is desirable to have multiple cameras
to provide robustness against occlusion. Multiple cameras
provide a more complete history of the motion of a target in
an environment. Most of the current surveillance applica-
tions still treat multiple cameras as a set of single cameras
i.e., there is no additional information gained from the use
of multiple cameras. But, multiple cameras provide more
complete history of a person’s actions in an environment.

In multiple cameras based tracking, one important point
is to establish a correspondence between different views [2].
Single camera tracking is a correspondence problem from
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frame to frame over time. But, tracking with multiple cam-
eras is a correspondence problem between tracks of an ob-
ject seen from different view points at the same time in-
stant. Multiple-camera tracking involves tracking with a
single camera at a lower level and then combining the tracks
obtained from each of the cameras to get the final track of
the object [10].

Multiple camera tracking has not received much atten-
tion in the field of computer vision until very recently. Ut-
sumi et al. proposed a feature matching approach in which
the color or other features of the objects are matched to
establish tracking [9]. Kelly et al. proposed an approach
based on 3D environment, where each camera is calibrated
for tracking [6]. Some approaches try to establish time cor-
respondence between non-overlapping fields of view [5].

In this paper, we proposed a method to identify moving
objects in a scene based on shape information. We used
MPEG-7 Angular Radial Transformation shape descriptor
for this purpose. Next, an unscented Kalman filter (UKF)-
based track fusion algorithm is developed for tracking tar-
gets in a nonlinear multi-sensor system. In a multi-sensor
system where each sensor processes its own measurements
and keeps its tracks separately, a question is how to decide
whether tracks coming from different sensors represent the
same target. This is a track-to-track associating problem.
When tracks are decided to be from the same target, then
the next problem is how to combine (fuse) the track esti-
mates together. This is a track fusion problem. Track fusion
is an important part in multi-sensor fusion. In our system,
state fusion method is employed to solve this problem. In
this, a group of unscented Kalman filters are used to obtain
individual sensor-based state vector and variance estimates.
Based on the online estimates of the state variances with
each sensor, an optimum weight factor is obtained for each
state. We now describe this proposed scheme in more detail
in the section to follow.

2. Proposed Method

As shown in Figure 1, we used MPEG-7 Angular Radial
Shape descriptor to distinguish different objects in a scene
on the basis of shape information. The shape dissimilar-
ity measure between the object and the stored shapes in the
knowledge base is used to select an object in a scene. Next,
we used the B-spline technique to get mathematical repre-
sentation of the object to be tracked. We used two cam-
eras (simplest case of multiple camera tracking) to track the
object and subsequently fused the tracks obtained from the
trackers associated with each of the cameras to obtain a fi-
nal track. Tracking relies on predicting the next state of an
object, based on the present state. In our approach with two
cameras, the present states of the object, as given by the
individual trackers, are fused. The resulting fused state is
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Figure 1. Proposed scheme for the overall
system.

provided to all the trackers for predicting their next state.
The fusion of the data collected from different trackers re-
quires the determination of the accuracy of their respec-
tive tracks so that they can be fused in a weighted manner.
The state estimate of the object predicted by the occluded
camera contains more error than that predicted by the non-
occluded camera. Making no distinction between the infor-
mation given by different trackers could lead to filter insta-
bilities and erroneous estimates especially when one of the
trackers is malfunctioning (possibly due to occlusion in its
camera). This may even lead to a result which is worse than
that with a single camera. In our proposed method, the fu-
sion process is such that the fused estimate is more biased
by accurate state estimates and almost unaffected by inac-
curate ones. The responsiveness of the fusion process to the
state estimates from each of the trackers can be adjusted by
the error covariance matrix. The state estimate given by the
tracker, the trace of whose corresponding error covariance
matrix has smaller value, is given more weightage and vice
versa. Our work is aimed towards obtaining a framework
for dealing with the situations in which the target moves out
of the FOV of one of the cameras for a certain period of
time. When this happens, the tracker associated with that
camera keeps updating the state. This results in tracking er-
ror since the tracker generates an estimate of the state even
though it has lost track of the target. If this erroneous in-



formation is fused with the information from other trackers,
the performance of the tracking system degrades. Though
fusion is performed in such a way that less weightage is
given to the state estimate predicted by erroneous tracker,
its effect is not avoided to the full extent.

As shown in Figure 2, the fusion algorithm is present at
a base station. In this model, communication between the
base station and each of the sensor nodes is bidirectional.
Further, mutual communication is not allowed between the
individual sensor nodes. The base station is used to keep
track of the information about the cameras in which the ob-
ject is visible, and in which, it is not visible, at each time
instant. Moreover, each camera can determine whether the
object is visible in the other camera. The sensor nodes com-
municate this information to the base station. When the
base station comes to know that the object is out of the FOV
of a camera, it stops using the information obtained from
the corresponding sensor node since it will be erroneous.
Whenever an object moves out of the FOV of a camera and
again reenters, the updating filter of the camera should be
reinitialized with the current state of the object. This task is
accomplished by the base or central station.
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Figure 2. Object tracking method

2.1. Object identification based on MPEG
- 7 ART shape descriptor

In our proposed method, MPEG-7 region based shape
descriptor is used to find the dissimilarity (in shape) be-
tween moving object in a scene and the stored shapes in
the knowledge base. If the shape dissimilarity lies below
a particular threshold, then the object can be identified on
the basis of the shape information. The region-based shape
descriptor expresses pixel distribution within a 2-D object
region; it can describe complex objects consisting of multi-
ple disconnected regions as well as simple objects with or
without holes [3]. Consequently, an ART based descriptor
was recently adopted by MPEG-7. Conceptually, the de-
scriptor works by decomposing the shape into a number of
orthogonal 2-D basis functions (complex-valued), defined

by the Angular Radial Transform (ART) [7]. The normal-
ized and quantized magnitudes of the ART coefficients are
used to describe the shape.

From each shape, a set of ART coefficients Fnm is
extracted, using the following formula:

Fnm = < Vnm(ρ, θ), f(ρ, θ) >
i.e.,

Fnm =
∫ 2π

0

∫ 1

0

V ∗
nm(ρ, θ), f(ρ, θ)ρdρdθ (1)

where f(ρ, θ) is an image function in polar coordinates and
Vnm is the ART basis function that are separable along the
angular and radial directions, that is,

Vnm(ρ, θ) =
1
2π

exp(jmθ)Rn(ρ) (2)

Rn(ρ) =
{

1 if n = 0
2 cos(πnρ) if n �= 0 (3)

Descriptor representation

The ART descriptor is defined as a set of normalized
magnitudes of complex ART coefficients. Twelve angu-
lar and three radial functions are used (n < 3,m < 12).
For scale normalization, ART coefficients are divided by
the magnitude of ART coefficient of order n = 0,m = 0.
Therefore, discarding the normalized ART co-efficient of
order n = 0,m = 0, which is unity, we have 35 coefficients
in all. To keep the descriptor size to a minimum, quantiza-
tion is applied to each coefficient using four bits per coeffi-
cient. Hence, the default region-based shape descriptor has
total 140 bits.

Shape similarity measurement by ART shape descriptor

The distance (or dissimilarity) between two shapes de-
scribed by the ART descriptor is calculated using an L − 1
norm, for example, by summing up the absolute differences
between ART coefficients of equivalent order (L = 2).

Dissimilarity =
∑

i

‖ Md[i] − Mq[i] ‖ (4)

Here, the subscript d and q represent image in the
database and query image, respectively and M is the array
of ART descriptor values.

2.2. Video based tracking with shape rep-
resentation by B-spline technique

The first step of the proposed tracking system is to obtain
a representation of the shape of the object as a curve. B-
spline representation [4] is one of the most frequently used



methods for this purpose. A probability function can be
obtained by using stochastic dynamic models to describe
the likely motion of the object and this gives information
about the initial state of the object. The tracking algorithm
has to update the state at each time instant. For updating
of the target state, the unscented Kalman filter approach is
used in our method.

Unscented Kalman filter

The unscented Kalman filter is a recursive Minimum
Mean Square Error (MMSE) estimator [8]. The UKF in-
corporates the latest observations into a prior updating rou-
tine. The UKF does not approximate the process and ob-
servation models rather approximate the distributions of the
state random variable. In the UKF, the state distribution
is represented by a Gaussian random variable (GRV), and
is specified using a minimal set of chosen sample points.
These sample points completely capture the true mean and
covariance of the GRV. When propagated through the true
nonlinear system, they capture the posterior mean and co-
variance accurately to the second order for any nonlinearity,
with errors only introduced in the third orders and more.
The process described above is called Unscented Transfor-
mation (UT), which is a method for calculating the statistics
of a random variable that undergoes a nonlinear function.
The unscented Kalman filter algorithm is able to accurately
predict the state and co-variance of a system and is easier to
implement. In this method, a small number of carefully cho-
sen sample points are propagated at each time step. These
sample points provide compact parameterizations of the un-
derlying distribution. This is more robust than the tracking
algorithms based on Kalman filter.

2.3. Object tracking with multiple cameras

In our proposed method, single camera tracking is per-
formed first to implement the multiple-camera tracking sys-
tem. In this method, low-level tracking is performed at each
of the cameras using the unscented Kalman filter algorithm.
Then, a fusion algorithm is employed to fuse the individ-
ual tracks and yield the final system track. To take advan-
tage of multiple cameras, it is necessary to establish corre-
spondence between different views. This problem is termed
as the consistent labeling problem in multiple cameras. In
this, all views of the same object is given the same label.
The correct instant where the correspondence is to be estab-
lished is the instant when a new view is seen. In a multiple-
camera tracking system, at each time instant, the object to
be tracked may be visible in some of the cameras and not
visible in the others. So, the tracking system has to find out
the set of cameras in which the object is visible, at each time
instant. To accomplish this task, the concept of field of view
(FOV) lines is used.

Concept of FOV lines

The field of view lines are the edges of the footprint of a
camera as seen in other cameras. The computation of these
lines is required to find correspondence between different
views and tracks. It also provides information about the set
of cameras in which that object will be visible for each new
view. A view-event is a time instant when an object en-
ters or leaves the field of view of a camera during tracking.
Ambiguity in labeling of an object arises when an object
enters the FOV of a camera. So, the boundaries of FOV of
a camera are very important in consistent labeling problem.
The cameras are assumed to have overlapping FOVs but it
is allowed for two cameras FOVs not to overlap with each
other, as long as they are linked with cameras in between.
This is a reasonable assumption since, if an object disap-
pears completely from all the cameras and then reappears
in a camera; it will be treated as a new object. Figure 3
shows the FOV lines of two cameras C1 and C2. The FOV
of a camera is a rectangular pyramid in space with tip at the
center of projection of the camera and its four sides passing
through the lines on the image plane. Let S denotes one of
the above mentioned lines. A portion of the FOV line of a
camera is seen in another camera if they have overlapping
FOVs. If Li,S is an FOV line of Ci from side S, then Li,S

j

is the FOV line of side S of Ci in Cj . In Figure 3, there are
three objects in the ground plane covered by the fields of
view of two cameras C1 and C2. Object 3 is visible in both
cameras whereas Object 1 is visible in C1 only and Object
2 is visible in C2 only. A portion of the FOV lines of C2

are visible in C1 and a portion of the FOV lines of C1 are
visible in C2. The camera C1 should have the information
about whether an object visible in C1 is also visible in C2

or not. This information can be obtained with the help of
FOV lines as described in the following section.

Figure 3. Field of View Lines of two cameras



Consistent labelling of objects

Let the object seen in Ci be denoted as Oi
k. This is the

local label of the view of the object given by the single-
camera tracking module. Oi denotes the set of all objects
visible in Ci. For example, Oi = {Oi

1, O
i
3} means object

1 and object 3 are currently visible in Ci. The location of
a view is given by a single point (x, y) that is (xi

k, yi
k) =

P (Oi
k), where P (.) denotes the location of the object.

The labeling task is to establish equivalences of the form
Oi

m → Oj
n, where Oi

m is the object with label m in cam-
era Ci and Oj

n is the object with label n in camera Cj . If
the FOV lines are known, each line Li,S

j divides the image
into two parts, the part which is inside the FOV of Ci and
the other which is outside. The function Li,S

j (x, y) returns

greater than 0 if the point (x, y) lies on the side of Li,S
j that

should be visible in Ci and less than 0 if it should not be
visible in Ci and equal to 0 if it is on the line.

Now, we can determine whether the current object Oi
k

in Ci will be visible in another camera or not. The set of
cameras C in which the current new view will be visible is
given by

Ci(k) = {j/Lj,s
i (P (Oi

k)) > 0∀{x/Lj,x
i ∃Ci}} (5)

If C = Φ(empty set), the view at (x, y) in Ci is that of a
new object that is not currently seen in any other camera. If
C is not empty, at least one of the existing views must cor-
respond to the current view. The camera in which the cor-
responding object will be found is a member of C. This is a
generalized method for the case of multiple objects tracking
with multiple cameras. This can be easily extended to sin-
gle object tracking, since, in this simple case, it is sufficient
to determine whether an object is visible in each camera, at
each time instant.

2.4. Track fusion algorithm

This is the final step of our proposed system. Once the
tracking is performed at each of the cameras, the individual
tracks are to be fused/combined to obtain the final system
track. In this step, a sensor model can be used to fuse the
tracking results from each camera. Each camera and its as-
sociated tracker can be treated as the constituents of a sensor
node and a fusion algorithm can be developed to fuse the in-
formation from each sensor node. As shown in Figure 2, the
central node possesses the fusion algorithm to combine the
tracks obtained from each sensor node.

Theoretically, the best tracking performance can be
achieved by fusing the measurements from the sensors di-
rectly. But, direct fusion has one major disadvantage. It
requires large volumes of raw data to be processed for long
distances on the network. This is not feasible for a network

with a large number of sensors. The cost of communications
increases with the number of sensors in the system. Hence,
we have employed a hierarchical structure. In this structure,
the fusion system has no direct access to the sensor data.
The sensor data are processed locally to form sensor tracks
and finally these are fused to give system tracks. Track fu-
sion is needed to associate the sensor tracks. This associ-
ation generates an improved target estimate in the scene.
In general, the concept of track fusion is technically more
complex than measurement fusion. The state estimates of
sensor tracks cannot be treated like sensor measurements.
Moreover, these estimates can not be fused with a central-
ized tracking algorithm. This is because while sensor mea-
surement errors are independent across sensors, the errors
in target state estimates associated with the tracker’s out-
puts are correlated with one another.

Architectures for track fusion algorithm

There are two processing architectures for track fusion
algorithm. These two architectures are described below.

• Sensor-to-sensor track fusion:

In this method, the state estimates from different sen-
sor tracks are (propagated to a common time) associ-
ated and fused to obtain the state estimate for the sys-
tem track. As shown in Figure 4, the previous state
estimate of the system track is not used in this process.
With this architecture, there is no requirement to deal
with the problem of correlated estimation errors. As
it is a memory less operation, the errors in track state
estimation fusion are not propagated in time. But, as
the past processing results are discarded, this approach
is less efficient.

SENSOR 1 TRACKS

SENSOR 2 TRACKS

SYSTEM TRACKS

Figure 4. Sensor to sensor track fusion.

• Sensor-to-system track fusion:

In this approach, whenever a set of sensor tracks are re-
ceived, the state estimates of the system tracks are ex-
trapolated to the time of sensor tracks and fused with
the newly received sensor tracks. This process is re-
peated when another set of sensor tracks is received.



This architecture has to deal with the problem of cor-
related estimation errors. In Figure 5, the sensor tracks
in A and the system tracks in B, all depend on C and
hence, the errors in A and B will be correlated. Also,
any errors in system tracks due to past processing er-
rors in fusion will affect future fusion performance.

SENSOR 2 TRACKS

SENSOR 1 TRACKS

SYSTEM TRACKS

C

A

B

Figure 5. Sensor to System track fusion.

Some technical issues in track fusion algorithm

The inputs to track fusion are the sensor tracks formed
from local measurements and are represented by position
and velocity estimates and their error covariance matrices.
Consider two tracks i and j with state estimates and error
covariance matrices X̂i and X̂j , Pi and Pj respectively. The
estimate fusion problem is to find out the best fused estimate
X̂ and error covariance matrix P . If it is sensor to sensor
fusion architecture, the two tracks may be sensor tracks and
if it is sensor to system fusion architecture, they may be a
system track and a sensor track.

The fused estimate can be expressed as a linear combina-
tion of the track estimates i.e. X̂ = Ax̂i + Bx̂j . The matri-
ces A and B are chosen to optimize some criterion like the
minimum variance. Two algorithms, namely, basic convex
combination and linear combination with cross covariance,
are available for linearly combining the track estimates de-
pending on whether the cross covariance between the track
estimates is considered.

• Basic convex combination:

In this, the cross co-variance between the two track
state estimates can be ignored. Corresponding to this
condition, the fusion algorithm is given as

x̂ = Pj(Pi + Pj)−1x̂i + Pi(Pi + Pj)−1x̂j

= P (P−1
i x̂i + P−1

j x̂j) (6)

P = Pi − Pi(Pi + Pj)−1Pi

= Pi(Pi + Pj)−1Pj = (P−1
i + P−1

j )−1 (7)

One advantage of this algorithm is that it is simple to
implement. In the case of sensor to sensor track fu-
sion, this algorithm will be almost optimal if there is
no process noise. But, if sensor to system track fusion
is employed or if there is process noise, this algorithm
is only suboptimal.

• Linear combination with cross covariance:

In this case, the cross covariance between the two
states cannot be ignored. Accordingly, the fusion al-
gorithm is represented as

x̂ = x̂i+(Pi−Pij)(Pi+Pj−Pij−Pji)−1(x̂j−x̂i) (8)

P = P̂j+(Pi−Pij)(Pi+Pj−Pij−Pji)−1(Pj−Pi) (9)

The cross covariances Pij and Pji can be computed
from the observation matrices and the Kalman filter
gains. The advantage of this algorithm is that it is ro-
bust to common process noise. The main disadvan-
tage is that more amount of information is needed to
compute the cross covariance. The method used to in-
tegrate the information passed by the sensors depends
on whether the sensors provide competitive informa-
tion or complementary information. In the first case,
each sensor provides identical information. This re-
dundancy of the sensor readings helps in improving
the reliability of the network. Also, the noise in the
signals can be detected and removed. The basic prin-
ciple is that the noise in different sensor signals tend to
be uncorrelated while the signals of interest are corre-
lated. So, if the information from the sensors is com-
bined in an effective manner, the noise can be reduced
significantly, giving comparatively good results. The
method of complementary information integration is
implemented only when partial information is avail-
able from each sensor. In case of our proposed fu-
sion process, the information provided by the cam-
eras comes under competitive information since all the
cameras give the information about the track of the ob-
ject in the scene.

3. Experimental results

First, we showed that the object of interest can be located
in the scene based on the shape information. As shown
in Figure 6, after determining moving objects in the scene,
shape information of the objects are derived on the basis of
MPEG-7 ART shape descriptor and shape similarity mea-
sure (with predefined threshold) is used to compare the ob-
served shape with the stored one. After detecting the ob-
ject of interest in the scene, the object can be tracked in the
subsequent frames. The black strip shown in the images



is used to create an artificial occlusion for experimentation.
First, we have performed face tracking and vehicle tracking
against a cluttered background with a single camera. After
this, the same experiment is performed with two cameras.
Figure 7 shows the results for these two cases.

Figure 6. Object identification.

It is evident that in frame number 24, the object is oc-
cluded and the single camera lost its track. But in case of
two cameras tracking, even though the object is occluded
in one of the cameras, the other camera provided true infor-
mation and finally the fusion algorithm used it to correct the
track of the occluded camera.

4. Conclusion

In this paper, we have proposed an algorithm for iden-
tification of moving object based on MPEG-7 ART shape
descriptor. Finally, we have developed a method for video
based tracking with multiple cameras and subsequently
demonstrated that multiple camera based tracking enhances
the tracking performance as compared to the single cam-
era tracking, especially in the presence of occlusion. One
important aspect of the proposed system is the allocation
of weights to the track estimates obtained from each of the
cameras. If the track estimates generated by each of the
cameras are not weighted properly during the process of fu-
sion, it may lead to degradation of the performance. Single
camera tracking is adequate in ideal cases with simple back-
ground and minor occlusion. So, there is no need to bear the
complexity of using multiple cameras in these cases. Future
work includes implementation of the base station model and
development of a background motion compensation model.

5. Acknowledgement

This project is supported by a grant from the Australian
Government Department of the Prime Minister and Cabinet.
NICTA is funded by the Australian Government’s Backing
Australia’s Ability initiative, in part through the Australian
Research Council.

References

[1] K. Chan, R. Saha, and Y. Bar-Shalom. On optimol track-
to-track fusion. IEEE Transaction on Aerospace Electronic
Systems, 33(4):1271–1276, 1997.

[2] C. Y. Chong, S. Mori, W. H. Barker, and K. C. Chang. Ar-
chitectures and algorithms for track association and fusion.
IEEE AES Systems magazine, pages 5–13, January 2000.

[3] B. Erol and F. Kossentini. Local motion descriptors. Proc.
IEEE Workshop on Multimedia Signal Processing, pages
467–472, 2001.

[4] A. K. Jain. Fundamentals of Digital Image Processing.
Prentice Hall, Englewood Cliffs, 1989, ISBN 0133361659.

[5] O. Javed, Z. Rasheed, K. Shafique, and M. Shah. Tracking
across multiple cameras with disjoint views. Proc. Ninth
IEEE International Conf. Computer Vision, pages 952–957,
October 2003.

[6] P. Kelly, A. Katkere, D. Kuramura, S. Moezzi, S.Chatterjee,
and R. Jain. An architecture for multiple perspective inter-
active video. Proc. ACM Multimedia, pages 201–212, 1995.

[7] B. S. Manjunath, P. Salembier, and T. Sikora. Intoduction to
MPEG-7, Multimedia Content Description Interface. John
Wiley and Sons Ltd., England, 2002.

[8] D. Ponsa, A. Lopez, J. Serrat, F. Lumbreras, and T. Graf.
Multiple vehicle 3D tracking using an unscented kalman fil-
ter. Proc. eighth International IEEE Conf. Intelligent Trans-
portation Systems, pages 1108–1113, September 2005.

[9] A. Utsumi and J. Ohya. Multiple camera based human track-
ing using non synchronous observations. Proc. Asian Conf.
Computer Vision, pages 1034–1039, January 2000.

[10] H. Yang and J. Zhang. An unscented kalm an filter-based
multisensor track fusion algorithm. Proc. International
Conf. Instrumentation and Measurement Technology, pages
527–530, May 2005.



Figure 7. Comparison of tracking performance: Single vs Two cameras tracking.


