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Abstract—We describe a project to trial and develop enhanced
surveillance technologies for public safety. A key technology is
robust recognition of faces from low-resolution CCTV footage
where there may be as few as 12 pixels between the eyes.
Current commercial face recognition systems require 60-90 pixels
between the eyes as well as tightly controlled image capture
conditions. Our group has thus concentrated on fundamental
face recognition issues such as robustness to low resolution and
image capture conditions as required for uncontrolled CCTV
surveillance. In this paper, we propose a fast multi-class pattern
classification approach to enhance PCA and FLD methods for
2D face recognition under changes in pose, illumination, and
expression. The method first finds the optimal weights of features
pairwise and constructs a feature chain in order to determine
the weights for all features. Computational load of the proposed
approach is extremely low by design, in order to facilitate usage
in automated surveillance. The method is evaluated on PIE,
FERET, and Asian Face databases, with the results showing
that the method performs remarkably well compared to several
benchmark appearance-based methods. Moreover, the method
can reliably recognise faces with large pose angles from just one
gallery image.

Index Terms—surveillance, mass transport, CCTV, face recog-
nition, security

I. INTRODUCTION

For isolated crimes such as assault and robbery, it is well-

known that video surveillance is highly effective in helping

to find and successfully prosecute the perpetrators. Moreover,

electronic surveillance has been shown to act as a significant

deterrent to crime. Cost is mitigated by recording most of the

camera feeds without any human monitoring — if an event is

reported to security, the relevant video is manually extracted

and reviewed.

However, in recent times the game has changed due to the

human and political cost of successful terrorist attacks on soft

targets such as mass transport systems. Traditional forensic

analysis of recorded video after the event is simply not an

adequate response from government and large business. This

seachange in the security sector is due to the fact that in

the case of suicide attacks there is simply no possibility of

prosecution after the event, so simply recording surveillance

video provides no terrorism deterrent. Video of successful

attacks may indeed add impact to the political message of the

perpetrators by highlighting the failure of Western governments

to protect their populace. A pressing need is emerging to detect

events and persons of interest using video surveillance before

such harmful actions can occur. This means that cameras must

be monitored at all times.

The problem is that human monitoring of surveillance

systems requires a large number of personnel, resulting in

high ongoing costs and questionable reliability due to the

attention span of humans decreasing rapidly when performing

such tedious tasks. A solution may be found in advanced

surveillance systems employing computer monitoring of all

video feeds, delivering the alerts to human responders for

triage. Indeed such systems may assist in maintaining the high

level of vigilance required over many years to detect the rare

events associated with terrorism — a well-designed computer

system is never caught off-guard.

In 2006, NICTA was awarded a research grant to conduct

long term trials of Intelligent CCTV (ICCTV) technologies in

important and sensitive public spaces such as major ports and

railway stations [1]. One such advanced technology is a system

that projects all the CCTV video feeds on to a 3D model of the

environment providing rapid situational assessment facilitating

a rapid response to situations arising as shown in Figure 1.

The trial will highlight operational and capability deficiencies

in current ICCTV systems and will focus NICTA’s research on

capability gaps. The project is thus a vertically integrated col-

laboration of researchers, vendors, and user agencies aimed at

delivering advances in computer vision and pattern recognition

for human activity recognition.

The potential of intelligent security systems is huge and this

fact is just starting to be recognised by the industry.

I can see in the next 20 years everything will become
automated. Once the camera is sophisticated enough, it
will profile people that we don’t really need human beings
apart from to check it out and analyse it

— Angus Hamilton, Director, Corporate Security, Shangri-

La Hotels and Resorts, former assistant commissioner of Hong

Kong Police [2].

Fig. 1. Immersive 3D Visual Presentation of Camera View and 3D model
of the railway platform.
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Fig. 2. Examples of typical face pose under surveillance conditions.

One of the “test-beds” we are using for our advanced

surveillance field trials is a railway station in Brisbane (Aus-

tralia), which provides us with implementation and installation

issues that can be expected to arise in similar mass-transport

facilities. Capturing the camera feeds in a real-world situation

can be problematic, as there must be no disruption in oper-

ational capability of existing security systems. The optimal

approach would be to simply use IP camera feeds. However,

in many existing surveillance systems the cameras are analog

and often their streams are fed to relatively old analog or digital

recording equipment. Limitations of such systems may include

low resolution, recording only a few frames per second, non-

uniform time delay between frames, and proprietary codecs.

To avoid disruption while at the same time obtaining video

streams which are more suitable for an intelligent surveillance

system, it is useful to tap directly into the analog video feeds

and process them via dedicated analog-to-digital video matrix

switches.

A key technology being developed within our group for

prevention of crime and terrorism is the reliable detection of

“persons of interest” through face recognition. While automatic

face recognition of cooperative subjects has achieved good re-

sults in controlled applications such as passport control, CCTV

conditions are considerably more challenging. Examples of

real life CCTV conditions captured at the railway station are

shown in Figure 2.

Nuisance factors such as varying pose, illumination, and

expression (PIE) can greatly affect recognition performance.

According to Phillips et al. head pose is believed to be

the hardest factor to model [3]. In mass transport systems,

surveillance cameras are often mounted in the ceiling in places

such as railway platforms and passenger trains. Since the

subjects are generally not posing for the camera, it is rare to

obtain a true frontal face image. As it is infeasible to consider

remounting all the cameras (in our case more than 6000) to im-

prove face recognition performance, any practical recognition

system must have highly effective pose compensation.

A further complication is that in many practical situations

there is generally only have one frontal gallery image of each

person of interest (e.g. a passport photograph or a mugshot).

In addition to robustness and accuracy, scalability and fast

performance are of prime importance for surveillance. A face

recognition system should be able to handle large volumes of

people (e.g. peak hour at a railway station), possibly processing

hundreds of video streams. While it is possible to setup

elaborate parallel computation machines, there are always cost

considerations limiting the number of CPUs available for

processing. In this context, a face recognition algorithm should

be able to run in real-time or better, which necessarily limits

complexity.

We note that while true 3D based approaches in theory

allow face matching at various poses, current 3D sensing

hardware has too many limitations [4] including cost and

range. Moreover unlike 2D recognition, 3D technology cannot

be retrofitted to existing surveillance systems.

Certainly 2D recognition presents much greater technical

challenges due to difficulties presented by illumination and

shadow effects as was famously noted by the great Leonardo

da Vinci (1452-1519):

After painting comes Sculpture, a very noble art, but one
that does not in the execution require the same supreme
ingenuity as the art of painting, since in two most impor-
tant and difficult particulars, in foreshortening and in light
and shade, for which the painter has to invent a process,
sculpture is helped by nature.

We continue the paper as follows. An overview of previ-

ous work on robust face recognition is given in Section II.

We propose a new robust face recognition method, dubbed

Chained Weighted Feature Pairs, in Section III. An empirical

evaluation of our method on three public face databases is

given in Section IV. We draw our conclusions and describe

future directions for the project in Section V.

II. PREVIOUS APPROACHES

For dealing with illumination variation, two main ap-

proaches have been proposed. One is to represent images with

features that are less sensitive to illumination change [5], [6]

such as the edge maps of the image. Another approach is to

construct a low dimensional linear subspace for images of

faces taken under different lighting conditions [7], [8]. The

former approach suffers from the fact that features generated

from shadows are related to illumination change and may

have an impact on recognition, while the latter is based on an

assumption that images of a convex Lambertian object under

variable illumination form a convex cone in the space of all

possible images [8]. Note that around 3 to 9 gallery images are

needed to construct the convex cone. However, it is hard for

these methods to deal with cast shadows due to the fact that

the surface of human faces is not truly Lambertian reflected

nor convex.

To deal with expression changes, Black et al. [9] suggested

that images be morphed to be the same expression as the

one used for training. But not all images can be morphed

correctly, for example an image with closed eyes cannot be

morphed to a neutral image because of the lack of texture

inside the eyes. Liu et al. [10] proposed using optical flow

for face recognition with expression variations. However, it

is hard to learn the local motions within the feature space to

determine the expression changes of each face, since the way

one person express a certain emotion is normally somewhat

different from another. Martinez proposed a weighting scheme



to deal with facial expressions in [11]. An image is divided

into several local areas and those that are less sensitive to

expression change are chosen and weighted accordingly.

Pose variability is usually considered to be the most chal-

lenging problem. There are three main approaches developed

for 2D based pose invariant face recognition. Wiskott et al.

proposed Elastic Bunch Graph Matching [12], while Sankaran

and Asari [13] proposed multiple-view templates to represent

faces with different poses. Multiple view approaches require

several gallery images per person under controlled viewing

conditions to identify the face, which prevents its application

when only one gallery image per person is available. Face

synthesis methods have emerged in an attempt to overcome this

issue. In [14], Gao et al. constructed a Face-Specific Subspace

by synthesising novel views from a single image. In [15]

a method for direct synthesis of face model parameters is

proposed. In [16], an Active Appearance Model (AAM) based

face synthesis method is applied for face recognition subject

to relatively small pose variations. A recurring problem with

AAM based synthesis and multi-view methods is the need to

reliably locate facial features to determine the pose angle for

pose compensation — this turns out to be difficult task in its

own right.

The above methods can handle certain kinds of face image

variation successfully, but drawbacks still restrict their appli-

cation. It may be risky to rely heavily on choosing invariant

features [5], [11], [12], [6], such as using edge maps of the im-

age or choosing expression insensitive regions. This is because

features insensitive to one variation may be highly sensitive

to other variations and it is very difficult to abstract features

that are completely immune to all kinds of variation [17].

Some approaches attempt to construct face specific models

to describe possible variations under changes in lighting or

pose [7], [14], [8]. Such methods require multiple images per

person taken under controlled conditions to construct a specific

subspace for each person for the face representation. This leads

to expensive image capture processes, poor scalability of the

face model, and does not permit applications where only one

gallery image is available per person.

Other approaches divide the range of variation into several

subranges (e.g., low, medium, and high pose angles) and

construct multiple face spaces to describe face variations lying

in the corresponding subrange [13]. These approaches require

us to register several images representing different variations

per person into the corresponding variation models so that

matching can be done in each interval individually. Once again,

acquiring multiple images per person under specific conditions

is often very difficult, if not impossible, in practice.

III. CHAINED WEIGHTED FEATURE PAIRS

We propose an appearance based approach for reliable

face recognition under pose, illumination, and expression

changes. We develop a learning method for finding the optimal

weights within feature pairs, which are then placed in a

chain in order to obtain the weights for all features. From a

classifier combination point of view, a classifier using each

feature pair can be considered as a base classifier and the

feature chain is equivalent to the combined classifier. We

call this approach Chained Weighted Feature Pairs (CWFP).

The technique is used to enhance both Principal Component

Analysis (PCA) and Fisher’s Linear Discriminant (FLD) based

techniques (benchmark methods), yielding ‘PCA+CWFP’ and

‘FLD+CWFP’ methods.

It must be noted that compared to other recent approaches

for dealing with pose variations (e.g. [18], [19], [20]) we have

deliberately developed a low-complexity technique in order

to facilitate usage in real-time video surveillance. In such

situations there is often a glut of video data (e.g., at a mass

transit centre there are multiple video streams covering many

people) coupled with constrained processing power (due to

cost limitations). The complexity of the proposed method is

similar to standard PCA, while achieving considerably better

performance as demonstrated on several public databases.

Researchers have previously developed various methods

to improve PCA or FLD by whitening [21], [22], [23] to

compensate for the overweighting of the leading features,

based on the observation that not all features have the same

importance in recognition. However, normal whitening may

excessively enhance minor features which leads to over-fitting

to the training data. It is difficult to assign appropriate weights

to all features in the high dimensional space at the same time.

We thus design a learning method to weight features pairwise.

Consider two features a and r from the m dimensional

space. We assign weight ηa,r ∈ [0, 1] to feature a, and weight
p

1 − η2
a,r to feature r (the choice is explained later). Now we

define the difference of two face images Ij,k and Ij′k′ lying

in the subspace defined by features a and r as the Euclidean

distance of their transformed vectors s̃j,k and s̃j′,k′ in rotated

face space as follows:

djk,j′k′ = ||M(ηa,r\ ) ˜sj,k − M(ηa,r\ ) ˜sj′,k′ | |2 (1)

where M(ηa,r) is an m × m square matrix with elements

Ma,a = ηa,r and Mr,r =
p

1 − η2
a,r, with all other elements

being zeros. We define a continuous cost function Λ to search

the one dimensional space to determine the optimal value for

ηa,r as follows:

Λ\(ηa,r) =
∑N

j=1

∑Kj

k=1

∑
n

(
djk,j0

djk,n0

)
(2)

∀n ∈ djk,n0 < djk,j0, n ∈ [1 · · · N ]

where djk,j0 is the within-class difference between the sample

Ij,k and its corresponding reference image Ij,0 in class Sj .

Note that the condition djk,n0 < djk,j0 is only true when there

is a misclassification error. The optimal weight for feature pairs

a and b is found with:

ηa,r = arg min
bηa,r

Λ\(̂ηa,r) (3)

We assign the weight
p

1 − η2
a,r to feature r so that

η2
a,r +

`p

1 − η2
a,r

´2
= 1. This ensures that Eqn. (1) is com-

parable across different feature pairs.



We empirically found that the shape of most Λ curves

tends to be approximately concave, and hence elected to use

a straightforward golden section search [24] for the minimisa-

tion.

At this stage we have the optimal weights for using a pair

of features for classification. We now find the weights for

all features, as follows. First, a reference feature r is chosen

from the m available features. Second, feature pair weighting

is found for feature r paired with each of the remaining

m − 1 features. Consequently, we have a set of η values:

(η1,r, η2,r, · · · , ηr−1,r, ηr+1,r, · · · , ηm,r). The weights of

all features are found in a chain, by updating each feature’s

weight in relation to the reference feature and updating the

weights of the preceding features in the chain. The weights

for each feature present in the chain must satisfy the following

constraints:

wa

wr

=
ηa,r√

1 − η2
a,r

(4)

∑
i∈Ψ

w2

i = 1 (5)

where wr is the weight for the reference feature, wa is

the weight for an arbitrary feature (excluding the reference

feature r) and Ψ is the set of features present in the chain.

The constraints ensure that the ratio between weights of an

arbitrary feature and the reference feature is equivalent to the

ratio of the weights in the corresponding feature pair.

As an example, let us assume there are only two features in

the chain, wr and wf . Following constraints (4) and (5) leads

to wr =
q

1 − η2
f,r and wf = ηf,r. If a feature g is added to

the chain, the following weights are obtained:

wr =
1√

η2

f,r

1−η2

f,r

∗
η2

g,r

1−η2
g,r

+ 1

(6)

wf =
ηf,r√

1 − η2

f,r

∗
1√

η2

f,r

1−η2

f,r

∗
η2

g,r

1−η2
g,r

+ 1

(7)

wg =
ηg,r√

1 − η2
g,r

∗
1√

η2

f,r

1−η2

f,r

∗
η2

g,r

1−η2
g,r

+ 1

(8)

(9)

When dealing with face data, we have found that the following

approximate relationship tends to occur:

wf

wg

≃
ηf,g√

1 − η2

f,g

(10)

which suggests that the weight ratio between two arbitrary

features and the ratio of the weights in the corresponding

feature pair is approximately maintained.

Fig. 3. Sample images from the Asian Face Database.

IV. EVALUATION

As we are currently in the process of creating a suit-

able dataset for face classification in CCTV conditions (part

of a separately funded project), here we compare the per-

formance (in terms of recognition accuracy) of the CWFP

method on three publicly available databases: Asian Face

Database [25], PIE [26], and FERET [27]. The perfor-

mance is compared against five techniques: standard PCA

and FLD (on all databases), Synthesis+PCA [28] (on PIE

and FERET databases), Pose-Robust Features [28] (on PIE

and FERET databases), and Eigen Light-Fields [29] (on the

FERET database). In the Synthesis+PCA method, an Active

Appearance Model (AAM) [30] is fit to a given non-frontal

face, followed by transformation of the AAM’s parameters to

represent the frontal view. The frontal face is then synthesised

and fed to a standard PCA based recognition system. In the

Pose-Robust Features method, the synthesis step is skipped

and the transformed AAM parameters are used directly for

recognition [28].

For all trials, we divide the corresponding data set into three

equal-sized disjoint partitions with different subjects. We then

choose images from one of the partitions for training and the

remaining two partitions for testing. In each case the training

set is used to construct the face space and weight feature pairs.

The test set contains images of unseen subjects. For testing, we

only register one neutral normally lit frontal image per subject

as gallery and use the remainder of the images as probe. All

the results are the average of three-fold cross validation using

three different partitions of the datasets.

Figure 3 shows some images from the Asian Face Database,

which contains 103 persons. Each person has 17 images

including 1 normal face, 4 illumination variations, 8 pose

variations (each about 15 degrees), and 4 expression variations.

All images are grayscale of size of 125 × 125 pixels and

are aligned according to their eye positions. We only use one



normal image (top-left in Figure 3) in the test dataset as the

gallery image and use the remainder as the probe images.

Table I shows the results on the Asian Face Database.

Here, PCA+CWFP performs better than PCA by a consid-

erable margin — an average of 77.6% correct recognition vs

60%, respectively. The largest difference occurs for illumina-

tion changes, where PCA+CWFP is about three times better

than PCA, due to PCA’s sensitivity to within-class changes.

Pose variations have less influence on PCA than illumination

variations, with an average accuracy of 72.7% compared to

80.3% for PCA+CWFP. The performance of FLD is somewhat

improved, with an average accuracy of 82.7% for FLD+CWFP

and 80.9% for FLD.

FLD+CWFP performs slightly better than FLD in pose and

expression variations, while FLD is a little better under lighting

changes. All four methods are sensitive to expression changes

with relatively lower accuracy. We conjecture that this is due

to different people expressing the same expression somewhat

differently to others, which makes expression changes harder

to model.

The worst recognition rate of 60.6% for FLD+CWFP is for

expression change with eyes closed (the 4th one in the last row

in Figure 3), which also affects PCA and FLD substantially as

they achieve only 50.3% and 54.9% respectively. The reason

is that the alignment of face images relies heavily on the eyes

– with the eyes closed, the alignment is less accurate, leading

to differences in scale.

Overall, CWFP can noticeably improve the performance of

both PCA and FLD. FLD+CWFP is more robust to illumina-

tion, expression, and pose variations than other methods with

relatively little change in accuracy across all three variations.

For comparison with the Synthesis+PCA and Pose-Robust

Features methods, the pose variation subsets of the PIE and

FERET databases are used. On the PIE database, three poses

are used: ±22.5◦ and 0◦. On the FERET database, nine poses

are used: ±60◦, ±40◦, ±25◦, ±15◦ and 0◦ (i.e. the ‘b’ subset).

For each person, the frontal face image was the gallery image

and the remaining images were the probe images. All the

images were horizontally scaled and aligned according to their

eye positions. This normalisation is an approximation of the

3-point normalisation used in [29].

Tables II and III show the results1 obtained on the PIE

and FERET databases, respectively. The CWFP method re-

markably improves the performance of PCA – on the PIE and

FERET databases the average improvement is approximately

25 and 21 percentage points, respectively. It also increases

the average accuracy of FLD by approximately 43 and 10

percentage points, respectively. This effect is more significant

for poses with angles greater than ±40◦. Out of of the six

methods, FLD+CWFP is the best performer across all pose

angles.

Table IV shows the comparison with the Eigen Light-

Fields [29] method. For consistency with the results presented

in [29], we report the average recognition accuracy across all

1Our results for PCA is somewhat different from [28] as our PCA space is
constructed from sample images in the PIE database (which were not used as
gallery or probe images), while the PCA space in [28] was constructed from
the Asian Face database.

TABLE I
RECOGNITION ACCURACY ON THE ASIAN FACE DATABASE

Variation
Method

Database subset
Average

Type 1 2 3 4

Illumination

PCA 16.9 39.4 26.8 32.4 28.9
PCA+CWFP 80.3 90.1 66.2 85.9 80.6
FLD 73.2 94.4 91.5 95.8 88.7
FLD+CWFP 70.4 93.0 88.7 97.2 87.3

Pose 1

PCA 84.5 77.5 62.0 74.6 74.7
PCA+CWFP 90.1 81.7 69.0 84.5 81.3
FLD 93.0 87.3 74.6 88.7 85.9
FLD+CWFP 93.1 87.3 80.3 90.1 87.7

Pose 2

PCA 83.1 70.4 60.6 69.0 70.8
PCA+CWFP 85.9 78.9 73.2 78.9 79.2
FLD 88.7 77.5 73.2 81.7 80.3
FLD+CWFP 88.7 78.9 76.1 87.3 82.7

Expression

PCA 80.3 67.6 64.8 50.7 65.9
PCA+CWFP 85.9 74.6 66.2 49.3 69.0
FLD 88.7 69.0 62.0 54.9 68.7
FLD+CWFP 91.5 71.8 67.6 60.6 72.9

TABLE II
RECOGNITION ACCURACY ON THE PIE DATABASE. RESULTS FOR

SYNTHESIS+PCA AND POSE-ROBUST FEATURES ARE FROM [28].

Pose PCA FLD
Synthesis Pose-Robust PCA+ FLD+
+ PCA Features CWFP CWFP

-22.5◦ 30.2 62.3 60.0 83.3 67.9 94.3
-22.5◦ 13.2 37.7 56.0 80.6 24.5 90.6

TABLE III
RECOGNITION ACCURACY ON THE FERET DATABASE. RESULTS FOR

SYNTHESIS+PCA AND POSE-ROBUST FEATURES ARE FROM [28].

Pose PCA FLD
Synthesis Pose-Robust PCA+ FLD+
+ PCA Features CWFP CWFP

−60◦ 23.3 62.4 - - 45.9 75.9
−40◦ 36.8 71.4 - - 56.4 85.0

−25◦ 53.4 78.2 50.0 85.6 75.9 88.0
−15◦ 79.7 84.2 71.0 88.2 81.2 91.0

+15◦ 66.1 85.7 67.4 88.1 80.5 92.5
+25◦ 46.6 81.2 42.0 66.8 76.7 91.0

+40◦ 35.3 75.9 - - 66.2 86.5
+60◦ 28.6 69.2 - - 55.6 77.4

TABLE IV
RECOGNITION ACCURACY ON THE THE FERET DATABASE. RESULTS FOR

EIGEN LIGHT-FIELDS ARE FROM [29].

Method PCA FLD
Eigen PCA+ FLD+

Light-Fields CWFP CWFP

Avg. Accuracy 40.6 76.0 75.0 69.2 86.3

poses, using each pose angle separately for gallery images.

The result of standard PCA method in our test is 40.6%,

comparable to 39.4% in [29], which implies that our image

normalisation is a close approximation of the 3 point normali-

sation. From Table IV, we observe that when CWFP is applied,

the accuracy of PCA and FLD increases by approximately 29

and 10 percentage points, respectively. Moreover, FLD+CWFP

outperforms Eigen Light-Fields remarkably. We note that in

CWFP we do not need to determine the pose angles of the

images, while in Eigen Light-Fields method camera intrinsics

and relative orientation of the camera to the object should be

acquired beforehand. This is often difficult or impossible in

some situations.



V. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper we have proposed a fast appearance-based

method, dubbed Chained Weighted Feature Pairs (CWFP), for

robust face recognition in conditions that can be present in

surveillance applications (i.e. changes in pose, illumination,

and expression). CWFP consists of two main steps: (1) feature

pair weighting to assign optimal weights to features; and

(2) a feature chain construction to combine feature pairs in

order to find the weights for all features. The method was

designed to be of low-complexity in order to facilitate use in

real-time surveillance applications. Empirical comparisons on

three publicly available databases show that CWFP can signif-

icantly improve the recognition performance of both PCA and

FLD. Moreover, FLD+CWFP provides considerably improved

recognition performance against three recent appearance-based

recognition methods: Synthesis+PCA, Pose-Robust Features,

and Eigen Light-Fields. However, being a holistic method,

CWFP is still sensitive to geometric transformations such

as scale changes and translation; we note that the technique

presented in [31] can be adopted to overcome these drawbacks.

The natural next step in our surveillance project is extended

trials of the proposed algorithm with real-life surveillance data

from mass transport public spaces, which we are currently in

the process of collecting. Prior to being able to collect the data,

we encountered several non-technical issues. Privacy laws or

policies at the national, state, municipal or organisational level

may prevent surveillance footage being used for research even

if the video is already being used for security monitoring – the

primary purpose of the data collection is the main issue here.

Moreover, without careful consultation and/or explanation,

privacy groups as well as the general public can become

uncomfortable with security research. Plaques and warning

signs indicating that surveillance recordings are being gathered

for research purposes may allow people to consciously avoid

monitored areas, possibly invalidating results. Nevertheless, it

is our experience that it is possible to negotiate a satisfying

legal framework within which real-life trials of intelligent

surveillance systems can proceed.
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