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Abstract

Under the constraint of using only a single gallery im-
age per person, this paper proposes a fast multi-class pat-
tern classification approach to 2D face recognition robust
to changes in pose, illumination, and expression (PIE). This
work has three main contributions: (1) we propose a rep-
resentative face space method to extract robust features,
(2) we apply a learning method to weight features in pairs,
(3) we combine the feature pairs into a feature chain in order
to find the weights for all features. The approach is evalu-
ated for face recognition under PIE changes on three public
databases. Results show that the method performs consid-
erably better than several other appearance-based methods
and can reliably recognise faces at large pose angles without
the need for fragile pose estimation pre-processing. More-
over, computational load is low (comparable to standard
eigenface methods), which is a critical factor in wide-area
surveillance applications.

1 Introduction

Most recent research on face recognition has been fo-
cused on diminishing the impact of nuisance factors such
as changes in pose, illumination, and expression (PIE). Var-
ious methods have been proposed to handle certain kinds of
face image variation successfully, but drawbacks still restrict
their application.

Approaches in [2, 6] attempt to construct face specific
models to describe changes in lighting or pose for certain
faces. However, to construct a specific model (subspace)
for each person, these methods need to take multiple im-
ages per person under controlled conditions. This leads to
expensive image capture processes, poor scalability of the
face model, and restrictions on applications where only one
gallery image is available per person. Other researchers di-
vide the range of variation into several subranges (e.g., low,
medium, and high pose angles) and construct multiple face
spaces to describe face variations lying in the corresponding
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subrange [13]. These approaches require us to register sev-
eral images representing different variations per person into
the corresponding variation models so that matching can be
done in each interval individually. Again, acquiring multi-
ple images per person under specific conditions is often very
difficult or even practically impossible.

In this paper we propose an appearance based approach
for reliable face recognition under PIE variations using a
single gallery image. In order to extract meaningful fea-
tures, we develop a representative face space method to en-
hance feature representativeness by space rotation. This is
combined with a technique for finding the optimal weights
within feature pairs. We then construct a feature chain to
combine all of the feature pairs. We call this approach Rep-
resentative Feature Chain (RFC).

It is worth noting that complexity of the proposed method
is similar to standard Principal Component Analysis (PCA),
while achieving considerably better performance as demon-
strated on several public databases. Compared to other re-
cent approaches for dealing with pose variations [4, 5], RFC
is by design a relatively low-complexity technique and is
hence more suitable for real-time surveillance applications.

We continue the paper as follows. The representative face
space is described in Section 2. Feature weighting and fea-
ture chain construction are described in Section 3. In Sec-
tion 4 we first discuss the effect of space rotation on dis-
crimination power, followed by performance comparisons
against several recent face recognition methods. The main
findings and areas for future work are given in Section 5.

2 Representative face space
For appearance based face representation and recogni-

tion, many decomposition approaches have been proposed
to reduce face space dimensionality, such as PCA, Linear
Discriminant Analysis (LDA), Evolutionary Pursuit (EP),
Independent Component Analysis (ICA), and their kernel
counterparts. PCA minimises the mean square error for face
representation, making the spectrum maximally compacted
with greatest concentration of energy in the leading eigen-
vectors. LDA finds the optimum projection that maximises
between-class differences and simultaneously minimises the
within-class variation. Because LDA depends significantly
on how the within-class scatter captures reliable variations
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for a specific class, it tends to overfit to training data [9].
EP and ICA overcome the drawbacks of PCA and LDA by
pairwise axis rotation transformations to find the best pro-
jection axis according to certain criteria. Experiments on
face recognition show that recognition performance is sig-
nificantly improved after such face space rotation is used in
conjunction with processing such as whitening [10]. How-
ever, due to the huge number of combinations of axis pairs
and rotation angles, computationally intensive methods such
as genetic algorithms are required to search for the solution.

Adopting the idea of rotation, we propose the following
method. Let us assume we have an offline training set (sep-
arate from the gallery set), which is used solely for the con-
struction of the representative subspace. Furthermore, every
face image from the training set is represented in the eigen-
face subspace by an m-dimensional feature vector sj,k with
k = 0, 1, ..., Kj denoting the k-th sample of the class Sj . We
then choose one sample (generally the normally lit frontal
neutral expression image) in each class as a reference de-
noted by sj,0. A referenced within-class covariance matrix
is then constructed by:

Dw =
∑N

j=1

∑Kj

k=1
(sj,k − sj,0) (1)

Cw = DwDT
w ,

where N is the number of classes. Applying eigen-
decomposition on Cw we have:

Cwui = λiui. (2)

where i ∈ [1, m]. All the eigenvectors ui are combined
into one matrix to obtain the square rotation matrix U . The
within-class rotation captures the within-class variations
corresponding to a certain reference class sample. Given the
original vector sj,k, a rotated version is then obtained with:

s̃j,k = UT sj,k (3)

3 Pairwise weighting and feature chain

After extracting features, we need to assign optimal
weights to all the features due to the observation that not
all features have the same importance in recognition. While
various methods have been developed to improve PCA and
LDA by whitening [9, 10] to compensate for the overweight-
ing of the leading features, normal whitening may exces-
sively enhance minor features, which leads to over-fitting to
the training data. It is difficult to assign appropriate weights
to all features in a high dimensional space at the same time.
We thus propose a learning method to weight features pair-
wise.

For any feature pair [a, r] from the m dimensional space,
we assign weight η[a,r] ∈ [0, 1] to feature a, and weight√

1 − η2
[a,r]

to feature r. We define the difference of two

face images Ij,k and Ij′k′ lying in the subspace (plane)

defined by features a and r as the projection of the Eu-
clidean distance of their transformed vectors onto this plane:

D
[a,r]

jk,j′k′ =

√
η2
[a,r]

( s̃j,k,a − s̃j′,k′,a)2

+ (1− η2
[a,r]

)( s̃j,k,r − s̃j′,k′,r)2
(4)

where s̃j,k,a and s̃j,k,r represents the a-th and the r-th el-
ement of the vector s̃j,k. We then define a continuous cost
function Λ to search the one dimensional space to determine
the optimal value for η[a,r] as follows:

Λ
(
η[a,r]

)
=

∑N

j=1

∑Kj

k=1

∑
n

(
D

[a,r]
jk,j0

D
[a,r]
jk,n0

)
(5)

∀n ∈ D
[a,r]
jk,n0

< D
[a,r]
jk,j0

, n ∈ [1, · · · , N ]

where D
[a,r]
jk,j0

is the within-class difference between the sam-
ple Ij,k and its corresponding reference image Ij,0 in class
Sj . Note that the condition D

[a,r]
jk,n0

< D
[a,r]
jk,j0

is only true when
there is a misclassification error. The optimal weight for fea-
ture pair [a, r] is found with:

η[a,r] = arg min
η̂[a,r]

Λ
(
η̂[a,r]

)
. (6)

We assign the weight
√

1 − η2
[a,r]

to feature r so that

η2
[a,r]

+ (
√

1 − η2
[a,r]

)2 = 1. This ensures that Eqn. (4) is com-

parable across different feature pairs. We empirically found
that the shape of most Λ curves tends to be approximately
concave, and hence elected to use a golden section search [8]
for the minimisation.

We now construct a feature chain to combine all of the
features by assigning appropriate weights for each pair,
as follows. First, a reference feature r is chosen from
the m available features. Second, feature pair weighting
is found for feature r paired with each of the remaining
m− 1 features. Consequently, we have a set of η values:
(η[1,r], η[2,r], · · · , η[r−1,r], η[r+1,r], · · · , η[m,r]).

The weights wi associated to each feature pair [i, r] must
satisfy the following constraints to ensure that the weight
fr finally assigned to the reference feature r by each pair is
consistent inside the chain, that is:

fr = w1

√
1-η2

[1,r]
= w2

√
1-η2

[2,r]
= · · · = wm

√
1-η2

[m,r]
(7)

In addition, for the whole feature chain, the weight fi as-
signed to each feature must follow:∑m

i=1
f2

i = 1, (8)

wi · η[i,r] = fi, (i 6= r). (9)

From the above three equations, we have:

fr =

√
1/

(
1+

η2
[1,r]

1-η2
[1,r]

+
η2
[2,r]

1-η2
[2,r]

+ · · · +
η2
[m,r]

1-η2
[m,r]

)
, (10)

wi =
1√

1 − η2
[i,r]

· fr, (i 6= r). (11)



4 Empirical evaluation
In this section we first study some of the effects of the

Representative Face Space (Section 4.1), followed by a per-
formance comparison of the proposed RFC method against
five other techniques (Section 4.2).

4.1 Effects of representative face space

Figure 1 shows the spectral analysis of the covariance of
features [9] derived by PCA, LDA, and our RFC on the pose
subset of the FERET database [11]. The face space is con-
structed by applying PCA on 603 images of 67 people with
each person having 9 different poses. The top 120 eigen
features are selected which accounts for 95% of the overall
covariance. The x-axis is the feature number (index) from 1
to 120 and the y-axis is the log scale of the relative magni-
tude of the covariance of the feature over the total covariance
of face images.

The features are sorted in descending order of relative
magnitude. Generally, the higher the feature number is, the
higher the frequency it spans in the spectrum. We can see
from this figure that features extracted by PCA capture most
of the variation in face space in the first 10 features, with
relative magnitudes larger than 0.01. But the high frequency
features of PCA with feature numbers ranging from 62 to
120, have relative magnitude much smaller than 0.001. Be-
cause noise in the training samples used to construct the face
space normally appears in the higher frequencies, these fea-
tures with small relative magnitude will have low signal to
noise ratio (SNR).

LDA abstracts features that capture minor covariance
having only 2 features with value larger than 0.01 and 41
features with value less than 0.001. Most of the features of
LDA have small SNR which may help explain why LDA
tends to overfit to the noise in the training data. Thus, many
researchers improve LDA by applying a cut off frequency to
the features [9] to increase the average feature SNR.

118 out of 120 features in our proposed RFC have a rel-
ative magnitude value greater than 0.001 with better SNR.
The spectral magnitude of representative space is always
the largest of the three spectra except for the first two fea-
tures. That is because the first two features of the RFC space
mainly models within-class covariance, whilst the top two
leading features of PCA capture both within- and between-

Figure 1. Relative magnitude of feature covariance.

class covariance. In summary, discriminative features ex-
tracted by representative space have a higher SNR than PCA
and LDA, we thus conjecture that classifiers built on these
features may have better generalization ability.

4.2 Performance Comparison

In this section we evaluate the performance of the RFC
method on three publicly available databases, Asian Face
Database [1], a subset of PIE [14] and FERET [11],
against the following five techniques: PCA, LDA, Synthe-
sis+PCA [12], Pose-Robust Features [12] and Eigen Light-
Fields [7]. For all trials, we divide the corresponding data set
into three equal-sized disjoint partitions with different sub-
jects. We then choose images from one of the partitions for
training and the remaining two partitions for testing. In each
case the training set is used to construct the representative
space and weight feature pairs. The test set contains images
of unseen subjects. For testing, we only register one neutral
normally lit frontal image per subject as gallery and use the
remainder of the images as probe. All of the results are the
average of three-fold cross validation using three different
partitions of the datasets.

The Asian Face Database contains 103 persons with each
person 17 images including 1 normal face, and 16 images
with PIE variations as listed in Table 1. All images are
aligned according to their eye positions.

As can be seen from Table 1, PCA and LDA are con-
siderably outperformed by RFC — an average of 60% and
80.9% correct recognition vs 93%, respectively. RFC al-
ways performs the best among three methods on all varia-
tions. The largest difference occurs on illumination changes,
where RFC is more than three times better than PCA, due to
PCA’s sensitivity to within-class changes. All three meth-
ods are relatively more sensitive to expression changes due
to the fact that different people express the same expression
somewhat differently to others, which makes the expression
changes harder to model. However, RFC is still far better
than PCA and LDA on expression changes with more than
21 percentage points higher in accuracy.

The lowest recognition rate of 80.3% for RFC is for
expression changes with closed eyes, which also affects
PCA and LDA substantially as they achieve only 50.7% and
54.9%, respectively. The reason is that the alignment of face
images relies heavily on the eyes – with the eyes closed, the
alignment is less accurate, leading to differences in scale.
Overall, RFC is far more robust to PIE variations than PCA
and LDA with relatively little change in accuracy across all
three variations.

For comparison with the Synthesis+PCA and Pose-
Robust Features methods, the pose variation subsets of the
PIE (204 images) and FERET (1800 images) databases were
used. For each person, the frontal face image was the gallery
image and the remaining images were the probe images. All
the images were horizontally scaled and aligned according
to their eye positions. This normalization is an approxima-



Table 1. Accuracy on the Asian Face database
Variation Method Database subset AverageType 1 2 3 4

Illumination
PCA 16.9 39.4 26.8 32.4 28.9
LDA 73.2 94.4 91.5 95.8 88.7
RFC 95.8 98.6 95.8 99.1 97.3

Pose 1
PCA 84.5 77.5 62.0 74.6 74.7
LDA 93.0 87.3 74.6 88.7 85.9
RFC 95.8 93.1 87.3 91.6 92.0

Pose 2
PCA 83.1 70.4 60.6 69.0 70.8
LDA 88.7 77.5 73.2 81.7 80.3
RFC 94.4 95.8 88.7 95.3 93.6

Expression
PCA 80.3 67.6 64.8 50.7 65.9
LDA 88.7 69.0 62.0 54.9 68.7
RFC 95.8 90.1 93.2 80.3 89.9

Table 2. Accuracy on the PIE database

Pose PCA LDA Synthesis Pose-Robust RFC+ PCA Features
-22.5◦ 30.2 62.3 60.0 83.3 92.5
+22.5◦ 13.2 37.7 56.0 80.6 88.7

Table 3. Accuracy on the FERET database.

Pose PCA LDA Synthesis Pose-Robust RFC+ PCA Features
−60◦ 23.3 62.4 - - 75.2
−40◦ 36.8 71.4 - - 84.2
−25◦ 53.4 78.2 50.0 85.6 90.2
−15◦ 79.7 84.2 71.0 88.2 94.0
+15◦ 66.1 85.7 67.4 88.1 93.2
+25◦ 46.6 81.2 42.0 66.8 92.5
+40◦ 35.3 75.9 - - 89.5
+60◦ 28.6 69.2 - - 75.9

Table 4. Average accuracy on the FERET database

Method PCA LDA Eigen RFCLight-Fields
Average Accuracy 40.6 76.0 75.0 88.5

tion of the 3-point normalization used in [7].
Tables 2 and 3 show the results obtained on the PIE and

FERET databases, respectively. The RFC method remark-
ably outperforms the other four methods on both databases
under all pose angles. This effect is more significant for
poses with angles greater than ±40◦.

Table 4 shows the comparison with the Eigen Light-
Fields [7] method. For consistency with the results pre-
sented in [7], we report the average recognition accuracy
across all poses, using each pose angle individually for
gallery images. The result of standard PCA method in our
test is 40.6%, comparable to 39.4% in [7], which implies
that our image normalization is a close approximation of the
3 point normalization. It can be seen that RFC performs
considerably better than Eigen Light-Fields. We note that
in RFC we do not need to determine the pose angles of the
images, while in the Eigen Light-Fields method camera in-
trinsics and relative orientation of the camera to the object
should be acquired beforehand. This is often difficult or im-
possible in some situations.

5 Conclusions and Future Work
In this paper we have proposed a novel appearance-based

method, dubbed Representative Feature Chain (RFC), for
face recognition robust to changes in pose, illumination, and
expression (PIE). RFC consists of three main steps: (1) ref-
erenced within-class space rotation to enhance feature rep-
resentativeness; (2) assignment of optimal weights to fea-
tures in pairs; and (3) feature chaining to find the weights
of all features. Comparisons on three public databases
with PIE variations show that RFC outperforms three recent
appearance-based recognition methods: Synthesis+PCA,
Pose-Robust Features, and Eigen Light-Fields. However,
being a holistic method, RFC is still sensitive to geomet-
ric transformations such as scale change and translation; we
note that the technique presented in [3] can be adopted to
overcome these drawbacks.
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