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Abstract. The Minimal Resolution Conjecture that was formulated by
A Lorenzini [2] has been shown to hold true for P2, P3 [3] they made use
of Quadrics, here we tackle the P3 case but making use of variant methods
i.e. mainly the method of Horace (mèthode d’Horace) to evaluate sections
of fibres at given points. This was introduced by A Hirschowitz in 1984 in
a letter he wrote to R Hartshorne. For a general set of points P1, . . . , Pm ∈
P3, for a positive integer m, we show that the map H0

(
P3, ΩP3(d + 1)

) −→⊕m
i=1 ΩP3(d + 1)|Pi

is of maximal rank.
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1. Introduction

Let k be an algebraically closed field, Pn be a projective space over k and
R = k[x0, x1, ..., xn] be the homogeneous coordinate ring of Pn. If M =
{P1, P2, ..., Pm} is a general set of m points in Pn, then the ideal, IM of poly-
nomials vanishing at these m points has the minimal resolution attained. In
particular when n = 3, i.e. for P3

The consequence is that the homogeneous ideal IM ⊂ k[X0, X1, X2, X3] has
the expected number

(
1
2
d(d+2)(d+3)−3m

)
+

of minimal generators of degree

d + 1 and the expected number
(

1
2
d(d + 2)(d + 3)− 3m

)
− of minimal relations

of degree d + 1,
where (x)+ = max(x, 0) and (x)− = max(−x, 0).
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2. Preliminary Notes

A guide for some of the symbols used

In general we have the sequences below for transformations:

0
↓

ΩP3(d)
↓

0 −→ OP3(d − 1)⊕3 −→ ΩP3(d + 1) −→ ΩP2(d + 1) −→ 0
↓ ↓ ‖

0 −→ OP2(d) −→ ΩP3 |P2(d + 1) −→ ΩP2(d + 1) −→ 0
↓
0

The sequence for quotients;

0 0
↓ ↓

ΩP2(d)|T l
� D′|T l↓ ↓

OP3(d − 1)⊕3|Wl
� D|Wl

∼= OP2 |Wl
⊕ D′|T l↓ ↓

OP2(d)|Wl
= OP2 |Wl

↓ ↓
0 0

H ′
Ω,3(d+1; r, s, t) ≡ H(ΩP3(d+1), ΩP2(d+1), r, s, t), where r represents fibres

of dim 3, s fibres of dim 2 and t represents 1 dimensional fibre in a quotient
of ΩP2(d)|Q for Q ∈ P2

H ′
�,3(d − 1; u, v, w) ≡ H(OP3(d − 1)⊕3, OP2(d), u, v, w), where u represents

fibres of dim 3, v line bundles and w represents a 2 dimensional fibre in a
quotient of OP3(d − 1)⊕3

|Q for Q ∈ P2

H ′
Ω,3(d + 1; r, s, t) is defined for specific r, s and t as in Lemma 1 while

H ′
Ω,3(d + 1) is the general case i.e. for all non negative integers r, s, t

H ′
�,3(d − 1; u, v, w) is defined for specific u, v and w as in Lemma 2 while

H ′
�,3(d − 1) is the general case i.e. for all non negative integers u, v, w
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3. Main Results

Hypothesis H ′
Ω,3(d + 1; r, s, t). There exists R1, . . . , Rr ∈ P3, S1, . . . , Ss ∈

P2, T1, . . . , Tt ∈ P2 and quotients ΩP2|T�
� D′

|T�
such that the restriction map

(1) is bijective.

H0
(
P3, ΩP3(d + 1)

) −→
r⊕

i=1

ΩP3(d + 1)|Ri
⊕

s⊕

j=1

ΩP2(d + 1)|Sj
⊕ D′

|T�
(1)

Hypothesis H ′
�,3(d − 1; u, v, w). There exists U1, . . . , Uu ∈ P3, V1, . . . , Vv ∈

P2, W1, . . . , Ww ∈ P2 and quotients O⊕3
P3|W�

� D(V )|W�
� OP2|W�

with

dim D(V )|W�
= 2 such that the restriction map (2) is bijective.

H0
(
P3, OP3(d − 1)⊕3

) −→
u⊕

i=1

OP3(d − 1)⊕3
|Ui

⊕
v⊕

j=1

OP2(d)|Vj
⊕ D(V )|W�

(2)

From the above hypotheses we define two lemmas and give their proofs.

Lemma 1. (a) If H ′
Ω,3(d + 1; r, s, t) is true, then we have

2s + t ≤ h0
(
ΩP2(d + 1)

)
= d(d + 2),(3a)

2s + t ≡ h0
(
ΩP3(d + 1)

)
=

1

2
d(d + 2)(d + 3) ≡ d(d − 1) (mod 3),(3b)

r =
1

3

(
h0

(
ΩP3(d + 1)

) − 2s − t
)

(3c)

(b) If d ≥ 0, s ≥ 0, and t ≥ 0 are non negative integers verifying (3a) and
(3b), then the r defined by (3c) satisfies r ≥ 0.

Proof. (a) Suppose H ′
Ω,3(d + 1; r, s, t) is true then we have the following exact

sequences:
γ

0→ H◦(P3, OP3(d−1)⊕3) −→ H◦(P3, ΩP3(d+1)) −→ H◦(P2, ΩP2(d+1)) → 0

↓ inj α ↓ ∼= β ↓ surj

0→ ⊕r
i=1 ΩP3|Ri

→ ⊕r
i=1 ΩP3|Ri

⊕⊕s
i=1 ΩP2|Si

⊕D′
|Tl

→ ⊕s
i=1 ΩP2|Si

⊕D′
|Tl

→ 0

Bijectivity of α and surjectivity of γ impose surjectivity on β thus
2s + t ≤ h0

(
ΩP2(d + 1)

)
(3a)

From α’s bijectivity we have that 3r + 2s + t = h◦(ΩP3(d + 1)) thus
r = 1

3

(
h0

(
ΩP3(d + 1)

) − 2s − t
)

(3c)

From (3c) and since r is a non negative integer then h0
(
ΩP3(d+1)

)−2s−t ≡ 0
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(mod 3)
thus 2s + t ≡ h0

(
ΩP3(d + 1) (mod 3) (3b)

proof for (b),
r as defined by (3c) is bounded below by 1

3
(h0

(
ΩP3(d + 1)

) − d(d + 2)) i.e.
equality on (3a) thus

r ≥ 1
3
(d + 2)(d + 1)d ≥ 0 for all d ≥ 0

Lemma 2. (a) If H ′
�,3(d − 1; u, v, w) is true, then we have

v+w ≤ h0(OP2(d)) and w ≤ h0(ΩP3(d)) (4a)

v + 2w ≡ 0 (mod 3) (4b)

u = 1
3
(h0

(
OP3(d − 1)⊕3 − v − 2w)) (4c)

(b) If d ≥ 1, v ≥ 0, and w ≥ 0 are non negative integers verifying (4a) and
(4b), then the u defined by (4c) satisfies u ≥ 0.

Proof. (a) Suppose H ′
�,3(d−1; u, v, w) is true then we have the following exact

sequences:
γ

0 −→ H◦(P3, ΩP3(d) −→ H◦(P3, OP3(d − 1)⊕3 −→ H◦(P2, OP2(d)) −→ 0

↓ inj α ↓ ∼= β ↓ surj

⊕u
i=1 O⊕3

P3|Ui
⊕D′

|Wl
→ ⊕u

i=1 O⊕3
P3|Ui

⊕⊕v
i=1 OP2|Vi

⊕D|Wl
→ ⊕v

i=1 OP2|Vi
⊕OP2 |Wl

Bijectivity of α and surjectivity of γ impose surjectivity on β thus v + w ≤
h0

(
OP2(d)

)
while w ≤ h0(ΩP3(d)) is true for all d ≥ 0 (4a)

From α’s bijectivity we have that 3u + v + 2w = h◦(OP3(d − 1)⊕3) thus
u = 1

3

(
h0

(
OP3(d − 1)⊕3

) − v − 2w
)

(4c)

From (4c) we have 3u, h0
(
OP3(d − 1)⊕3

)
are ≡ 0 (mod 3) then v + 2w ≡ 0

(mod 3) thus
v + 2w ≡ 0 (mod 3) (4b)

Proof (b)
u as defined by (4c) is bounded below by 1

6
[(d+2)(d+1)d−d(d+1)(d+2)] = 0

due to equality in (4a) thus u ≥0 for all d ≥0

Hypothesis HΩ,3(d + 1). For all s ≥ 0, all 0 ≤ t ≤ 1 and r verifying (3a),
(3b), and (3c), the hypothesis H ′

Ω,3(d + 1; r, s, t) is true.

Hypothesis H�,3(d − 1). For all v ≥ 0, all 0 ≤ w ≤ 1 and u verifying (4a),
(4b), and (4c), the hypothesis H ′

�,3(d − 1; u, v, w) is true.
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Goal. To prove HΩ,3(d + 1) and H�,3(d − 1) for d ≥ 1.

This goal should suffice because we have the following theorem which is the
main part dealing with Maximal Rank property that we mentioned we were
going to show at the beginning.

Theorem 3. Suppose HΩ,3(d + 1) is true. Then for any non negative integer
m, there exists a set S = {P1, P2, . . . , Pm} of m points in P3 such that the
evaluation map

H0
(
P3, ΩP3(d + 1)

) −→
m⊕

i=1

ΩP3|Pi

is of maximal rank.

Proof. Since HΩ,3(d + 1) is true then there exists a non negative integer r,
such that we can find a set R = {P1, P2, . . . , Pr} of r points in P3 such that
the evaluation map

H0
(
P3, ΩP3(d + 1)

) −→
r⊕

i=1

ΩP3|Pi

is bijective. That is r is the critical number of points for truth of HΩ,3(d + 1).

Suppose we have any set S = {P1, P2, . . . , Pm} of m points in P3 where m is
an arbitrary non negative integer.
Then there exists 3 possiblities that

(i) If m < r, i.e. we have less points than the critical number of points, our
map will surject, i.e. since α is bijective and γ surjective then it follows that
β is surjective, i.e.

β
H0

(
P3, ΩP3(d + 1)

)
�

⊕m
i=1 ΩP3|Pi

↘ α ↑ γ

⊕m
i=1 ΩP3|Pi

⊕ ⊕r
i=m+1 ΩP3|Pi

(ii) If m = r, i.e. we have the same number of points as the critical number,
our map will biject, i.e. then since α is bijective and γ the identity then it
follows that β is bijective, i.e.

β
H0

(
P3, ΩP3(d + 1)

) −→ ⊕m
i=1 ΩP3|Pi

↘ α ||γ
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⊕n

i=1 ΩP3|Pi
⊕ ⊕r

i=n+1 ΩP3|Pi

(iii) If m > r, i.e. we have more points than the critical number, our map will
inject, i.e. then since α is bijective and γ injective then it follows that β is
injective.

β
H0

(
P3, ΩP3(d + 1)

)
↪→ ⊕r

i=1 ΩP3|Pi
⊕ ⊕m

i=r+1 ΩP3|Pi

↘ α ↗ γ⊕r
i=1 ΩP3|Pi

Thus we have proved the maximal rank property (injectivity, surjectivity or
bijectivity) for any non negative integer m.

Lemma 4. The Initial Cases
(a)HΩ,3(d + 1) is true when d = 2 and
(b)H�,3(d − 1) is true when d = 1

Proof. (a) d = 2 then h◦(P3, OP3(1)⊕3) ≤ 3r ≤ h◦(P3, ΩP3(3)) i.e. 12 ≤ 3r ≤
20 i.e. 4 ≤ r ≤ 6
and so HΩ,3(d+ 1) follows from truth of; (i)H ′

Ω,3(3; 6, 1, 0), (ii)H ′
Ω,3(3; 5, 2, 1),

(iii)H ′
Ω,3(3; 4, 0, 0)

(i) H ′
�,3(1; 3, 3, 0) implies H ′

Ω,3(3; 6, 1, 0) by lemma 5 i.e.

0 −→ H◦(P3, OP3(1)⊕3) −→ H◦(P3, ΩP3(3)) −→ H◦(P2, ΩP2(3)) −→ 0

↓ ↓ ↓
⊕3

i=1 OP3(1)⊕3
|Ri

⊕⊕6
i=4 OP2(2)|Ri

→ ⊕6
i=1 ΩP3|Ri

⊕ΩP2 |S → ⊕6
i=4 ΩP2|Ri

⊕ΩP2|S
and H ′

�,3(1; 0, 3, 0) implies H ′
�,3(1; 3, 3, 0)as follows;

3 12 9
0 −→ O⊕3

P3 −→ OP3(1)⊕3 −→ OH(1)⊕3 −→ 0
(0, 3, 0) (3, 3, 0) (3, 0, 0) and is true while H ′

�,3(1; 0, 3, 0)
is proved below (b).

(ii) H ′
�,3(1; 3, 1, 1) implies H ′

Ω,3(3; 5, 2, 1) just like in (i)above and again as we

have done above,H ′
�,3(1; 3, 1, 1) can be reduced to H ′

�,0(1; 0, 1, 1) is proved
below (b).

(iii) H ′
�,3(1; 4, 0, 0) implies H ′

Ω,3(3; 4, 4, 0) just like in (i)above and again as

we have done above,H ′
�,3(1; 3, 1, 1) can be reduced to H ′

�,0(1; 1, 0, 0) which is
true.

(b) For H�,3(0) it follows from 3 cases;
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(i)H ′
�,3(0; 1, 0, 0) is true since we have triples of constants being evaluated at

a point,and so the map ρ : H0(P3, O⊕3
P3) −→ O⊕3

P3|P is bijective.

(ii)For H ′
�,3(0; 0, 3, 0) consider the following:

π
0 −→ H0(P3, ΩP3(1)) −→ H0(P3, O⊕3

P3) −→ H0(P2, OP2(1)) −→ 0
‖
0 ↓ φ ↓ ρ

ι⊕3
i=1 OP2(1)|Pi

−→ ⊕3
i=1 OP2(1)|Pi

Since ι is an identity, ρ is bijetive and π is bijective, and φ = ρ ◦ π thus bi-
jective, and H ′

�,3(0; 0, 3, 0) true for 3 general points P1, P2, P3 in P2 i.e. they
generate it.

(iii)H ′
�,3(0; 0, 1, 1) follows from:

0 −→ ker ϕ|W −→ H0(P3, O⊕3
P3) −→ OP2(1)|W ⊕ D′

|W −→ 0

↓ π ↓ φ ‖ ρ

0 −→ OP2(1)|V −→ OP2(1)|V ⊕ OP2(1)|W ⊕ D′
|W −→ OP2(1)|W ⊕ D′

|W −→ 0
π is bijective and ρ an identity hence φ is bijective.

Lemma 5. First Vectorial Method
Suppose d, r, s, t satisfy (3a), (3b), and (3c). Write h0(ΩP2(d + 1)) − 2s− t =
2v + w with v, w non negative integers and 0 ≤ w ≤ 1. Set u = r− v−w. If u
is a non negative integer, then H ′

�,3(d − 1; u, v, w) implies H ′
Ω,3(d + 1; r, s, t).

Proof. If h0(ΩP2(d+1))−2s−t = 0 = 2v+w i.e. 2s+t = h0(ΩP2(d+1))−2s−t
and thus we have

0 0
↑ α ↑

H0(P2, ΩP2(d + 1)) −→ ⊕s
i=1 ΩP2(d + 1)|Si

⊕ D′
|Tl↑ β ↑

H◦(P3, ΩP3(d + 1) −→ ⊕r
i=1 ΩP3(d + 1)|Ri

⊕ ⊕s
i=1 ΩP2|Si

⊕ D′
|Tl↑ γ ↑

H◦(P3, OP3(d − 1)⊕3) −→ ⊕u
i=1 OP3(d − 1)⊕3

|Ui↑ ↑
0 0

suppose γ is bijective (it is Lemma 8) and since α is bijective by proposition
13 then β is bijective.

Next If h0(ΩP2(d + 1)) − 2s − t = 2v + w �= 0 then we have two possibilities
i.e. that 2v + w is an even or odd positive integer.
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Suppose 2v + w is even then v = 1
2
[h0(ΩP2(d + 1))− 2s− t] and w=0 and thus

0 0
↑ α ↑

H0(P2, ΩP2(d+1)) −→ ⊕s
i=1 ΩP2(d+1)|Si

⊕⊕v
i=1 ΩP2(d+1)|Vi

⊕ D′
|Tl↑ β ↑

H◦(P3, ΩP3(d + 1) −→ ⊕r
i=1 ΩP3(d + 1)|Ri

⊕ ⊕s
i=1 ΩP2|Si

⊕ D′
|Tl↑ γ ↑

H◦(P3, OP3(d − 1)⊕3) −→ ⊕u
i=1 OP3(d − 1)⊕3

|Ui
⊕ ⊕v

i=1 OP2(d)|Vi

↑ ↑
0 0

suppose γ is bijective and since α is bijective by proposition 13 (we get bijec-
tivity by specializing the required number of points,v from P3 to P2) then β
is bijective.

So far we have used the méthode d’Horace simple only, see [4], méthode simple.

If 2v + w is odd then we have a quotient so we use lemma 12 and we have

λ : H0(P2, ΩP2(d + 1)) �
⊕s

i=1 ΩP2|Si
⊕ ⊕v

i=1 ΩP2|Vi
⊕ D′

|Tl
setting

L =
⊕s

i=1 ΩP2|Si
⊕⊕v

i=1 ΩP2|Vi
⊕ D′

|Tl
then H0(P2, ΩP2(d + 1)) ↪→ �L ⊕ ΩP2|W

thus

0 0
↑ α ↑

H0(P2, ΩP2(d+1)) −→ ⊕s
i=1 ΩP2(d+1)|Si

⊕⊕v
i=1 ΩP2(d+1)|Vi

⊕D′
|Tl
⊕D|Wl

↑ β ↑
H◦(P3, ΩP3(d + 1) −→ ⊕r

i=1 ΩP3(d + 1)|Ri
⊕ ⊕s

i=1 ΩP2|Si
⊕ D′

|Tl↑ γ ↑
H◦(P3, OP3(d − 1)⊕3) −→ ⊕u

i=1 OP3(d − 1)⊕3
|Ui

⊕ ⊕v
i=1 OP2(d)|Vi

⊕ D|Wl

↑ ↑
0 0

suppose γ is bijective and since α is by proposition 13 (we get bijectivity by
specializing the required number of points,v+1 from P3 to P2) then β is bi-
jective.
Other subcases are: If s=t=0 then h0(ΩP2(d + 1)) = 2v + w and

If 2v + w is even then w = 0 and H ′
�,3(d − 1; u, v, 0) implies

H ′
Ω,3(d; r, 0, 0).

If 2v + w is odd then w = 1 and H ′
�,3(d − 1; u, v, 1) implies

H ′
Ω,3(d; r, 0, 0).

If s �= 0 but t = 0 then we have H ′
�,3(d − 1; u, v, w) implies

H ′
Ω,3(d; r, s, 0).
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Remark 1. Now u,v, and w defined above have to satisfy
(i) v + w ≤ h0(OP2(d)) and
(ii) u is a non negative integer.

(i) we know that 2v+w = d(d+2)−2s−t i.e. 2v+w+w = d(d+2)−2s−t+w
v+w = 1

2
(d(d+2)−2s−t+w) = 1

2
(d2 +2d+w−2s−t) ≤ 1

2
(d2 +2d+d+2) =

1
2
(d + 1)(d + 2) = h0(OP2(d)) i.e. v + w ≤ h0(OP2(d)) since d + 2 ≥ w − 2s− t

for ≤ w ≤ 0, s ≥ 0, 0 ≥ t and d ≥ −1
(ii) u is defined thus u = r − v − w.
u ≥ rmin − (v + w)max

i.e. rmin = 1
3
(1

2
(d + 3)(d + 2)d − 2s − t) = 1

3
(1

2
(d + 3)(d + 2)d − d(d + 2)) =

1
6
(d + 2)(d + 1)d (v + w)max = 1

2
(d + 1)(d + 2)

Thus u ≥ 1
6
(d + 2)(d + 1)d − 1

2
(d + 1)(d + 2) = 1

6
(d + 2)(d + 1)(d − 3) ≥ 0 for

all d ≥ 3
For d = 0 and d = 1, we get less than 3 points in P3 for which the MRC does
not hold thus we do not need these cases. When d = 2 then we have the initial
cases, i.e. lemma 4

Lemma 6. Second Vectorial Method
Suppose d, u, v, w satisfy (4a), (4b), and (4c). Write h0(OP2(d)) − v − w = s,
where s is a non negative integer. Set r = u − s and t = w. If r is a non
negative integer, then H ′

Ω,3(d; r, s, t) implies H ′
�,3(d − 1; u, v, w).

Proof. From the sequences below
The map H0(P2, OP2(d)) −→ ⊕v

i=1 OP2(d)|Vi
⊕OP2(d)|Wl

is surjective by
Lemma 2. To make it bijective, we specilize s points from P3 to P2 and thus
we have α being bijective ( by Proposition 14) (If s = 0, then we already have
bijectivity )
If γ is bijective and α (can always be as we have seen) then by the 3 Lemma
β us bijective thus H ′

Ω,3(d; r, s, t) implies H ′
�,3(d − 1; u, v, w).

0 0
↑ α ↑

H0(P2, OP2(d)) −→ ⊕v
i=1 OP2(d)|Vi

⊕ ⊕s
i=1 OP2(d)|Si

⊕ OP2(d)|Wl

↑ β ↑
H0(P3, OP3(d − 1)⊕3 −→ ⊕u

i=1 OP3(d − 1)⊕3
|Ui

⊕ ⊕v
i=1 OP2(d)|Vi

⊕ D|Wl

↑ γ ↑
H0(P3, ΩP3(d)) −→ ⊕r

i=1 ΩP3(d)|Ui
⊕ ⊕s

i=1 ΩP2(d)|Si
⊕ D′|Tl

↑ ↑
0 0

Remark 2. For H ′
Ω,3(d; r, s, t) to hold the r, s, t defined should satisfy

(i) r ≥ 0 and
(ii) 2s + t ≤ h0(ΩP2(d)) = (d − 1)(d + 1)

(i) s is bounded above by h(OP2(d)) = 1
2
(d + 1)(d + 2) i.e. v + w = 0 and u is

bounded below by 1
3
(1

2
(d + 2)(d + 1)d− (v+ 2w)) v + w = 0 implies v + 2w = 0
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whence r ≥ 1
3
(1

2
(d + 2)(d + 1)d)− 1

2
(d + 1)(d + 2) = (d+2)(d+1)(d−3)

6
i.e r ≥ 0 for

d ≥ 3
For cases where d ≤ 2 see the following:
For d = 1 we have H ′

�,3(0; 1, 0, 0),H ′
�,3(0; 0, 3, 0) and H ′

�,3(0; 0, 1, 1) the initial
cases.
For d = 2 we can use the initial cases to prove bijectivity i.e.
In H ′

�,3(1; u, v, w),there are only 5 possibilities for (u, v, w) i.e.
(a) (4, 0, 0), (3, 3, 0), and (3, 1, 1) are special cases of corollary 11, by lemmas
5, 6 or 7.
(b) (2, 4, 1) and (2, 6, 0) and the initial case H ′

Ω,3(2; 2, 0, 0) implies H ′
�,3(1; u, v, w)

when v = 4, w = 1 and when v = 6, w = 0
(ii) we know s = 1

2
(d + 1)(d + 2)− v −w so 2s = (d + 1)(d + 2)− 2v − 2w but

t = w thus we have 2s + t = (d + 1)(d + 2) − 2v − w.
Question: When is 2s + t ≤ h0(ΩP2(d)?
Answer: When 2s + t = (d + 1)(d + 2) − 2v −w is less than (d− 1)(d + 1) i.e.
when 3d + 3 ≤ 2v + w i.e. w ∈ {0, 1}, d ≥ 0 and v + 1

2
w ≥ 3

2
(d + 1)

Lemma 7. Divisorial Method
Suppose d, u, v, w are non negative integers satisfying the conditions of Lemma
2. Set u′ = u − h0(OP2(d − 1)) = u − 1

2
d(d + 1). If one has u′ ≥ 0, then

H ′
�,3(d − 2; u′, v, w) implies H ′

�,3(d − 1; u, v, w).

Proof. Consider the following strict exact sequence

0 −→ OP3(d − 2)⊕3 −→ OP3(d − 1)⊕3 −→ OH(d − 1)⊕3 −→ 0

The map ρ : H0(H, OH(d − 1)⊕3) −→ ⊕y
i=1 OH(d − 1)⊕3,Yi

is bijective if
y = 1

2
d(d + 2). Thus if γ is bijective then β is bijective see the sequence;
0 0
↑ α ↑

H0(H, OH(d − 1))⊕3 −→ ⊕y
i=1 OH(d − 1)⊕3

|Yi↑ β ↑
H0(P3, OP3(d − 1)⊕3 −→ ⊕u

i=1 OP3(d − 1)⊕3
|Ui

⊕ ⊕v
i=1 OP2(d)|Vi

⊕ D|Wl

↑ γ ↑
H0(P3, OP3(d − 2)⊕3 −→ ⊕u′

i=1 OP3(d − 2)⊕3
|Ui

⊕ ⊕v
i=1 OP2(d − 1)|Vi

⊕ D|Wl

↑ ↑
0 0

Here we specialize y points from P3 to a H ∼= P2 but not containing v and w
then u′ = u − y

Remark 3. Consider the following sequence

1
2
(d + 1)d(d − 1) 1

2
(d + 2)(d + 1)d 3

2
d(d + 1)

0 −→ OP3(d − 2)⊕3 −→ OP3(d − 1)⊕3 −→ OH(d − 1)⊕3 −→ 0
(u′, v, w) (u, v, w) (1

2
d(d + 1), 0, 0)
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u′, v, w defined must be such that
(i) v + w ≤ h0(OP2(d − 1) and so d ≥ 2
(ii)u′ ≥ 0 with 0 ≤ w ≤ 1 and d ≥ 3
i.e. u′ = u − 1

2
d(d + 1) = 1

3
(1

2
(d + 2)(d + 1)d − v − 2w) − 1

2
d(d + 1) =

1
6
(d − 1)(d + 1)d − 2(v + 2w)

Using v +w ≤ 1
2
d(d+ 1) i.e. the upper bound we take equality we end up with

u′ ≥ 1
6
(d − 2)(d)(d + 1) − w thus for u′ ≥ 0, we must have 0 ≤ w ≤ 1 and

d ≥ 3. For d = 2 is an initial case.

Theorem 8. (a) For d ≥ 1, H�,3(d − 1) implies HΩ,3(d + 1)
(b) For d ≥ 2, HΩ,3(d) and H�,3(d − 2) imply H�,3(d − 1)

Proof. (a) follows from lemma 4 and remark 1
(b) we shall prove it by 4 arguments
(i) If HΩ,3(d) and H�,3(d − 2) are both false then (b) is an initial case and
thus is true.
(ii) If HΩ,3(d) is true but H�,3(d − 2) false then (b) holds by lemma 6 and
remark 2 for d ≥ 1.
(iii) If H�,3(d − 2) is true but HΩ,3(d) false then (b) holds by lemma 7 and
remark 3 with d ≥ 2
(iv)If HΩ,3(d) and H�,3(d−2) are both true then (b) is true is true by lemma
6 and remark 2 for d ≥ 1 or by lemma 7 and remark 3 for d ≥ 2

We have now attained the Goal we set ourselves before Theorem 3.

Lemma 9. For any integer d ≥ 1, the hypothesis H ′
�,3(d − 1; h0(OP3(d −

1)), 0, 0) is true.

Proof. H ′
�,3(d−1; h0(OP3(d−1)), 0, 0) is a special case of H�,3(d−1) and thus

is true as long as the number of points u in P3 that we require for the truth of
H ′

�,3(d−1; h0(OP3(d−1)), 0, 0) are u = 1
3
h0(OP3(d−1)⊕3 = h0(OP3(d−1)

Lemma 10. The hypothesis H ′
�,3(0; 0, 3, 0) and H ′

�,3(0; 0, 1, 1) are true.

Proof. Follow from lemma 4

A consequence of these last two lemmas is the following statement.

Corollary 11. Let d ≥ 1 be an integer. Then H ′
�,3(d−1; u, v, w) holds in the

following cases:

a. u = h0(OP3(d − 1)), v = 0, w = 0.
b. u = h0(OP3(d − 1)) − 1, v = 3, w = 0.
c. u = h0(OP3(d − 1)) − 1, v = 1, w = 1.

Proof. we use lemmas 7,8 and 9 i.e.
(a) follows from Lemma 9, set u = h0(OP3(d − 1))
(b) If d=1 then it is true by lemma 10, if d ≥ 1 and use lemma 7 to reduce it
to lemma 9
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(c) If d=1 then it is true by lemma 10, if d ≥ 1 and use lemma 7 to reduce it
to lemma 9.

Lemma 12. The differential méthode d’Horace [1]
Suppose we are given a surjective morphism of vector spaces,

λ : H◦(P2, ΩP2(d + 1)) � L
and suppose there exists a point Z ′ in P2 such that

H◦(P2, ΩP2(d + 1)) ↪→ L ⊕ ΩP2(d + 1)|Z ′ and
Suppose also that H1(P3, OP3(d − 1)⊕3) = 0. Then there exists a quotient
OP3(d−1)3

|Z ′ −→ D with kernel contained in ΩP2(d)|Z ′ of dimension dim(D) =

rank(ΩP3(d + 1)) − dim(ker λ) having the following property.
Let μ : H◦(P3, ΩP3(d + 1)) −→ M

be a morphism of vector spaces then there exists Z in P3 such that if
H◦(P3, OP3(d − 1)⊕3) −→ M ⊕ D is of maximal rank then
H◦(P3, ΩP3(d + 1)) −→ M ⊕ L ⊕ ΩP3(d + 1)|Z is also of maximal rank.

Proposition 13. For all d ≥ 1, there exists P1, . . . , Pp, Q ∈ P2 and a quotient
ΩP2 ,Q � D′,Q such that the map H0(P2, ΩP2(d + 1)) −→ ⊕p

i=1 ΩP2|Pi
⊕ D|Q

is of maximal rank.

Proof. Follows from truth of MRC for P2 for p general points in P2 and a
point Q in P2 for which we have a quotient.

Proposition 14. For all d ≥ 1, there exists M1, . . . , Mm, N ∈ P2 and a quo-
tient OP2 ,N ⊕D′,N � D′,N such that the map H0(P2, OP2(d)) −→ ⊕m

i=1 OP2|Mi
⊕

OP2|N is of bijective.

Proof. Follows from truth of MRC for P2 m general set of points in P2 and a
point N in P2 for which we have a quotient.

Remark 4. The Geometric methods used always work for P3 but for higher
dimensional projective spaces one would have to use other methods in addition.
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Hirschowitz who keeps following my work and since he is behind all these. I
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