
Security and integrity checker for JavaScript

dependencies

Short Paper

April 30, 2017

Abstract

Nowadays, most of web-based software includes heavy usage of exter-
nal dependencies. However, the control over the security aspects of these
dependencies is out of control of the developers, because dependency in-
jectors do not check for the security or integrity. Thus, the software
built on top of insecure dependencies become vulnerable too. We propose
a novel solution by using the PumaScript meta-programming framework
and browser capabilities to generate a safe JavaScript dependency injector
that help in generation of software solutions less vulnerable.

1 Introduction

Internet technologies have grown fast in the last ten years, with JavaScript
becoming one of the hottest hypes in programming languages [1]. The growing
number of frameworks, applications and tools, and particularly the emergence
of NodeJS [2], a server-side JavaScript development environment based on
Google’s V8 Javascript runtime, has created a thriving JavaScript ecosystem.
This has made JavaScript the first option for several developers to start writing
their backend solutions.

Nowadays, most of new web based solutions are created by integrating li-
braries published by third parties for different purposes [3]. However, this
practice is not without risks. In fact, the biggest and most popular publisher
of JavaScript third party libraries, the node-package-module (npm) [4], does
not ensure any security level as it does not perform safety checks on any of the
packages that it publishes. This is a huge problem for the security and integrity
of the systems that use this package manager. Making things worse, most key
libraries do not provide a really high security level, since they do not perform
any safety check [5].

The combination of the JavaScript ecosystem growth and the missed security
checks presents an open door for successful cyber-attacks. For example, during
the attack on the SCM platforms, an estimated of 4.5 millions of WordPress
and Joomla users were hacked by using jQuery, the most popular library in
JavaScript, to inject malicious code in their websites [6].

1

IETFDay, Taller del Grupo de Trabajo de IngenierÝa de Internet/Argentina

46JAIIO - IETFDay - ISSN: á2451-7623 - Página 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/150657058?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Today, a common practice for web solutions is to use content delivery net-
works (CDN). Their purpose is to provide webpages or web content, such as
JavaScript libraries to end-users with high speed and availability, by applying
caching techniques.

Despite the fact that dependencies are a big part of the developed software,
there is no a clear unique solution to prevent attacks on CDNs [7] or to avoid
including a library containing malicious code. This problem is very common and
affects the integrity and security of the systems. It even can be used to produce
DDoS attacks [8] on external systems by using reflection and amplification
techniques [9]. Several dependency injectors, such as RequireJS [10], help with
the task of modularizing and solving dependencies, but they not apply security
checks for third party dependencies.

To make thing worse, outdated dependencies, which leave systems vulnera-
ble to exploits by hackers, are a very common problem [11]. The problem has
been exacerbated in the last ten years due the proliferation of sources of soft-
ware dependencies and the inability to make automated upgrades when security
problems are discovered. Thus, developers have to keep up to date with the lat-
est news about security issues and continually upgrade the security checks in
their software. A solution to this problem would be a tool providing automated
checks and upgrades.

We want to tackle the problem of the lack of dependency injectors with
built-in security checks for third party dependencies. In particular, our goal
is to provide a way to perform security checks for JavaScript libraries used
in web solutions. Thus, we extend PumaScript [12], a framework for code
rewriting using techniques such as meta-programing and code introspection, to
include checks for the integrity of third-party libraries, avoiding malicious code
injection.

2 PumaScript Framework

PumaScript is a JavaScript-based framework where code transformation is achieved
by replacing JavaScript code by semantically similar code included in PumaScript
meta-functions. The process is shown graphically in Figure 1. It produces
JavaScript code semantically equivalent to the original, but with some required
properties, such as better performance or higher security levels.

A PumaScript program is a JavaScript program plus some meta-functions.
Figure 1shows the steps followed to process a PumaScript program to produce
a JavaScript program with the desired properties. In the first step, Esprima
[13] parses the PumaScript program syntax and produces its Abstract Syntax
Tree (AST). This tree is processed in Step 2 to replace calls to meta-functions
by the sub-trees representing them. This steps actually replaces the undesir-
able parts of the JavaScript original program with the meta-functions providing
the required properties. The third step is a simple prune phase, where meta-
functions definitions are erased from the AST. Finally, the resulting AST is
processed by Escodegen [14] to produce standard JavaScript code.

2

IETFDay, Taller del Grupo de Trabajo de IngenierÝa de Internet/Argentina

46JAIIO - IETFDay - ISSN: á2451-7623 - Página 2



Figure 1: PumaScript program execution workflow and high level modules.

3 Methodology Applied to the Proposed Solu-
tion

We propose to use the introspection and rewriting capabilities of PumaScript
to detect and fix this kind of security vulnerabilities. The PumaScript meta-
functions are used to detect security issues as described in the previous section,
allowing developers to use libraries from CDN while avoiding security risks.

Our team developed some “proof of concept” models and iterated on them
in order to discover the better approach. The first iteration included the list of
dependencies and a fixed CDN as parameters. Meta-functions for PumaScript
where hardcoded in the runtime and the user has no ability of configuration.
The second iteration included the parametrization of the CDN, while the meta-
functions were taken from a meta-function database expressed in a JSON format
file. The third and final iteration added integrity checks for external resources as
described in the 2016’s recommendation on Sub-resource Integrity (SRI) [15].
The system proposed then includes the capability of getting the integrity checks
from a PumaScript database and injecting the dependency only if the security
and integrity are confirmed.

3.1 Design of the solution

The design of the concept could be developed, and demonstrated that PumaScript
framework could be used as part of the overall solution.

Given a determined list of security features we want PumaScript to test is
the list of meta-functions we need to include. The PumaScript injector will
look for those in the Meta-function database automatically and adds them in
the application to test.

These days the DDoS attacks are very common, and with those the usage
of CDN to generate one. For this reason that W3C created a new document
with the guide to include resources from third party and avoid the problem by
adding integrity checks. The problem is that still today there is no automated
tool that includes and compares the SHA signatures and is responsibility of the
developer to include these.

To complete the puma injector with the missing features we created a new
iteration that starts from a simple puma.json file that contains the descriptive

3

IETFDay, Taller del Grupo de Trabajo de IngenierÝa de Internet/Argentina

46JAIIO - IETFDay - ISSN: á2451-7623 - Página 3



Figure 2: PumaScript program execution workflow and high level modules.

configuration and delegates the process of dependency loading. Takes all the
information on the dependencies needed, the list of CDN that can be used and
the Meta-functions that need to be applied.

Once taken this the process starts by downloading the raw code of the library,
pass to PumaScript runtime and observe the result. If the dependency was
marked as safe by Puma the process will continue with the integrity checks.

The integrity checks has complementary operations, first it retrieves from a
database the integrity value for the specific library and version. This library
has a white listed list containing dependencies names with the integrity values
for each one.

4 Conclusions and next steps

After testing the design we could demonstrate that the solution is possible to
generate. The design also allow to determine if a third party library does not
comply with the security checks or the integrity checksum before load. This
help to generate safer solutions by detecting security errors on loading avoid-
ing possible security exploits that generate DDoS attacks. Although we found
improvements areas on the PumaScript runtime to improve some parser cases
on big libraries, the POC was consider successful. In near future the job must
continue on extending and improving the injector to resolve as easy as possible
for the developers this problem that today none of the dependencies injectors
can resolve.

4

IETFDay, Taller del Grupo de Trabajo de IngenierÝa de Internet/Argentina

46JAIIO - IETFDay - ISSN: á2451-7623 - Página 4



References

[1] StackOverflow. Survey 2016. http://stackoverflow.com/insights/

survey/2016.

[2] NodeJs Foundation. Nodejs. https://nodejs.org/en/foundation/.

[3] OWASP. Third party management. https://www.owasp.org/index.php/
3rd_Party_Javascript_Management_Cheat_Sheet.

[4] NPM. Npm introduction. https://docs.npmjs.com/getting-started/

what-is-npm.

[5] ZDNET. Js hackers playground. http://www.zdnet.com/article/

an-insecure-mess-how-flawed-javascript-is-turning-web-into-a-hackers-playground/.

[6] AVAST. Wordpress and jommla hacked by
facked libraries. https://blog.avast.com/

wordpress-and-joomla-users-get-hacked-be-aware-of-fake-jquery.

[7] IETF. Rfc cdn. https://tools.ietf.org/html/rfc6770.

[8] OWASP. Denial of service definition. https://www.owasp.org/index.

php/Denial_of_Service.

[9] Fastly. Ddos definitions. https://www.fastly.com/sites/default/

files/Fastly-Bizety%20DDoS%20White%20Paper.pdf.

[10] RequireJS. Requirejs. http://requirejs.org/.

[11] Sajjad Arshad William Robertson Christo Wilson Tobias Lauinger, Ab-
delberi Chaabane and Engin Kirda. Thou shalt not depend on me:
Analysing the use of outdated javascript libraries on the web. http:

//www.ccs.neu.edu/home/arshad/publications/ndss2017jslibs.pdf.

[12] Nestor Navarro Emanuel Ravera Ricardo Medel, Alexis Ferreyra.
Plataforma de meta-programación para javascript. In CONAIISI 2015,
Buenos Aires, Noviembre 2015.

[13] Esprima. Esprima js parser. http://esprima.org/.

[14] Escodegen. Js code generator escodegen. https://github.com/estools/
escodegen.

[15] W3C. Sub-resource integrity best practices. https://www.w3.org/TR/

SRI/.

5

IETFDay, Taller del Grupo de Trabajo de IngenierÝa de Internet/Argentina

46JAIIO - IETFDay - ISSN: á2451-7623 - Página 5

http://stackoverflow.com/insights/survey/2016
http://stackoverflow.com/insights/survey/2016
https://nodejs.org/en/foundation/
https://www.owasp.org/index.php/3rd_Party_Javascript_Management_Cheat_Sheet 
https://www.owasp.org/index.php/3rd_Party_Javascript_Management_Cheat_Sheet 
https://docs.npmjs.com/getting-started/what-is-npm
https://docs.npmjs.com/getting-started/what-is-npm
http://www.zdnet.com/article/an-insecure-mess-how-flawed-javascript-is-turning-web-into-a-hackers-playground/
http://www.zdnet.com/article/an-insecure-mess-how-flawed-javascript-is-turning-web-into-a-hackers-playground/
https://blog.avast.com/wordpress-and-joomla-users-get-hacked-be-aware-of-fake-jquery
https://blog.avast.com/wordpress-and-joomla-users-get-hacked-be-aware-of-fake-jquery
https://tools.ietf.org/html/rfc6770 
https://www.owasp.org/index.php/Denial_of_Service 
https://www.owasp.org/index.php/Denial_of_Service 
https://www.fastly.com/sites/default/files/Fastly-Bizety%20DDoS%20White%20Paper.pdf 
https://www.fastly.com/sites/default/files/Fastly-Bizety%20DDoS%20White%20Paper.pdf 
http://requirejs.org/
http://www.ccs.neu.edu/home/arshad/publications/ndss2017jslibs.pdf
http://www.ccs.neu.edu/home/arshad/publications/ndss2017jslibs.pdf
http://esprima.org/ 
https://github.com/estools/escodegen
https://github.com/estools/escodegen
https://www.w3.org/TR/SRI/
https://www.w3.org/TR/SRI/

	Introduction
	PumaScript Framework
	Methodology Applied to the Proposed Solution
	Design of the solution

	Conclusions and next steps

