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Abstract

This article first provides an overview of important coneeijot the field of information fusion, followed by a review of
milestones in audio-visual person identification and veatibn. Several recent adaptive and non-adaptive techaiqu
for reaching the verification decision (i.e., to accept gecethe claimant), based on speech and face informatien, ar
then evaluated in clean and noisy audio conditions on a camghatabase; it is shown that in clean conditions most of
the non-adaptive approaches provide similar performanderanoisy conditions most exhibit a severe deterioration i
performance; it is also shown that current adaptive appresare either inadequate or utilize restrictive assumptio

A new category of classifiers is then introduced, where thegsiten boundary is fixed but constructed to take into account
how the distributions of opinions are likely to change duea@sy conditions; compared to a previously proposed adapti
approach, the proposed classifiers do not make a direct gsisumrabout the type of noise that causes the mismatch
between training and testing conditions.
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1 Introduction Humans utilize information fusion every day; some exam-

) ] o o __ples are: use of both eyes, seeing and touching the same
A biometric verification (or authentication) system vesfieobject, or seeing and hearing a person talk (which improves
the identity of a claimant based on measures such as jielligibility in noisy situations [63]). Several spesi®f
person’s face, voice, iris or fingerprints. Apart from vargo snakes combine infrared information with visual informa-
forms of access control (e.g. border control, access ta-inf@on [35, 44].
mation), verification systems can also be useful in forensic
work (where the task is whether a given biometric sampldiis section is a review of the most important and com-
belongs to a given suspect) and law enforcement applioasn approaches to information fusion. In literature infor-
tions [2, 47, 80]. Recently there has been a lot of intemation fusion is often divided into several categories:-sen
est in multi-modal verification systems [9, 11, 24]; in sucbor data level fusion, feature level fusion, score fusiod an
systems biometric information from two or more sources @ecision fusion [32, 35, 58]. However, it is more intuitive t
utilized. classify it into three main categoriepre-mapping fusion

) _ o _ ) ) ) midst-mapping fusioandpost-mapping fusigras shown in

The aim of this article is to first provide a review of imporfig. 1. Inpre-mapping fusiorinformation is combined be-
tant concepts in the field of information fusion, which theyre any use of classifiers or experts:nmdst-mapping fu-
leads to a review of literature pertaining to audio-visu&tp sjon, information is combined during mapping from sensor-
son identification and verification (Sections 2 and 3, respefata/feature space into opinion/decision space, whjpesi-
tively). In the second part of the article we evaluate sdvefaapping fusioninformation is combined after mapping from
recent non-adaptive and adaptive techniques for reachiisghsor-data/feature space into opinion/decision spae (h
the verification decision (using speech and face informge mapping is accomplished by an ensemble of experts or
tion) in noisy audio conditions on a common database (Sefassifiers; while a classifier provides a hard decisionxan e
tions 4 and 5). We show that current adaptive approachgst provides an opinion (e.g. in the [0,1] interval) on each
are either inadequate or utilize restrictive assumptiofgpssible decision).
A new category of post-classifiers (which utilize outputs
from modality expertsis then introduced in Section 6,In pre-mapping fusionthere are two main sub-categories:
where the decision boundary is fixed but constructed to tad@nsor data level fusion and feature level fusion.pst-
into account the effects of noisy conditions; this approactapping fusionthere are also two main sub-categories: de-
has the advantage of being simpler than adaptive techniqgcis®n fusion and opinion fusion. It must be noted that in
and able to handle noisy conditions which a previously preeme literature (e.g. [32, 35, 73]) the term “decision fu-
posed adaptation technique cannot. sion” also encompasses opinion fusion; however, since each

) ) ) _expert provides an opinion and not a decision, sub-typing
The reader may also be interested in the following articlgginion fusion under “decision fusion” is incorrect.

which cover other important aspects in biometrics (such as

front-end signal processing, hiding biometric data, prjva Silsbee and Bovik [63] refer tore-mapping fusioandpost-
and security issues): [12, 36, 78, 80]. mapping fusion as pre-categorical integration and
post-categorical integratiorrespectively; Wark [77] refers
to pre-mapping fusioras input levelor early fusionand
post-mapping fusioasclassifier levebr late fusion Ross

2 Overview of Information Fusion : ~1C . :
and Jain [58] refer t@pinion fusionasscore fusion

Broadly speaking, the terinformation fusiorencompasses

any area which deals with utilizing a combination of differ,l Order to aid understanding, the following description of
%ﬁlon methods is presented in the general context of class

ent sources of information, either to generate one repres e :
tational format, or to reach a decision. This includes: cojl- ntification. Wherever necessary, comments are included

- L : : lucidate a fusion approach in terms of the verification
sensus building, team decision theory, committee machlné) eucid : ! ; .
integration of multiple sensors, multi-modal data fusior?gpl'ca.t'o?{ ]:!'r1||s s%ec]yon Iegdsf onto the review of |m||e-
combination of multiple experts/classifiers, distributigt  20n€S i the field of information fusion in audio-visual-per
tection and distributed decision making. Pioneering pubﬁOn recognition (Section 3).

cations can be traced back to the early 1980s [8, 48, 66, 67].

When looking from the point of decision making, there ad.1 Pre-mapping Fusion: Sensor Data Level

several motivations for using information fusion: In sensor data level fusion [32], the raw data from sensors
e Utilizing complementary information (e.g. audio ané# combined. Depending on the application, there are two
video) can reduce error rates. main methods to accomplish this: weighted summation and

e Use of multiple sensors (i.e., redundancy) can increg§Saic construction. For example, weighted summation
reliability. can be employed to combine visual and infra-red images

e Cost of implementation can be reduced by using sé
eral cheap sensors rather than one expensive sen

e Sensors can be physically separated, allowing the
quisition of information from different points of view.

(to one image, or, in the form of an average operation, to

mbine the data from two microphones (to reduce the ef-
ects of noise); it must be emphasized that the data must
st be commensurate, which can be accomplished by map-
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Figure 1: Non-exhaustive tree of fusion types

ping to a common interval. Mosaic construction can be eid:3  Midst-Mapping Fusion

ployed to create one image out of images provided by s

. : : pmpared to other fusion techniques presented in this pa-
eral cameras, where each camera is observing a dlﬁe%/ b i : L ; i
part of the same object [35]. §r{,nm|dst mapping fusion is a relatively new and more com

plex concept; here several information streams are predess
concurrently while mapping from feature space into opin-
. . ion/decision space. Midst-mapping fusion can be used for
2.2 Pre-mapping Fusion: Feature Level exploitation of temporal synergies between the streargs (e.

In feature level fusion, features extracted from data préPeech signal and video of lip movements), with the ability
vided by several sensors (or from one sensor but using df-avoid problems present in vector concatenation (such as
ferent feature extraction techniques [50]) are combinéd.the “curse of dimensionality” and the requirement of match-
the features are commensurate, the combination can beiag-frame rates). Examples of this type of fusion are ex-
complished by a weighted summation (e.g. features égnded Hidden Markov Models (adapted to handle multiple
tracted from data provided by two microphones). If the featreams of data [9, 10, 51, 53]), which have been shown
tures are not commensurate, feature vector concatenatigaful for text-dependent person verification [9, 45, 76].
can be employed [4, 32, 43, 58], where a new feature vec-

tor can be constructed by concatenating two or more feature

vectors (e.g. to combine audio and visual features). 2.4 Post-Mapping Fusion: Decision Fusion

There are three downsides to the feature vector concatefigd€cision fusion [32, 35], each classifier in an ensemble
tion approach. The first is that there is no explicit contr8f classifiers provides a hard decision. The classifiers can
over how much each vector contributes to the final de@€ Of the same type but working with different features (e.g.
sion. The second downside is that the separate feature Wtdio and video data), non-homogeneous classifiers work-
tors must be available at the same frame rate (i.e., the f&§ With the same features, or a hybrid of the previous two
ture extraction must be synchronous), which is a probldP€S: The decisions can be combined by majority voting,
when combining speech and visual feature veétofEhe combination of ranked lists, or using AND & OR operators.

third downside is the dimensionality of the resulting fea-, . _ . . : i .
ture vector, which can lead to the “curse of dimensionalit .he inspiration behind the use of non-homogeneous classi

iers with the same features stems from the belief that each

problem [23]. Due to the above problems, in many castassifier (due to different internal representation) may b
the post-mapping fusion approach is preferred (descrlb% od” at (recognizing a particular setpof classes v)vhileybe-

in Sections 2.4 and 2.5). ing “bad” at recognizing a different set of classes; thus a
IFor example, speech feature vectors are usually extractedage of COMbination of classifiers may overcome the “bad” proper-

100 per second [49], while visual features are constrainethb video ties of each classifier [33, 42].
camera’s frame rate (25 fps in the PAL standard and 30 fpserN(RSC
standard [68]).




2.4.1 Majority Voting must be noted that while the term non-homogeneous usu-

. . ; y implies a different expert structure, it is sufficiermatr f
oty ot 128,250, conserius 23010 Balof expers o b comsdred o homoeneous f ey
the same decision. For a two class classification task, g{g using different features (e.g. audio and video feajures

number of classifiers must be odd and greater than two trodlfferent features extracted from one modality [50]).

prevent ties). In ranked list combination fusion (which doesn’t require th
mapping step) the rank itself could be considered to indicat
the opinion of the classifier. However, compared to opinion

2.4.2 Ranked List Combination fusion, some information regarding the “goodness” of each

In ranked list combination [3, 33, 54], each classifier pr@0Ssible decision is lost.

vides a ranked list of class labels, with the top entry in’eliceb

) 2 7 0pinions can be combined using weighted summation or
ing the most preferred class and the bottom entry 'nd'cat'ﬂ@ighted product approaches (d%scrit?ed in Sections 2.5.1

the least preferred class. The ranked lists can then be caily
bined via various means [33], possibly taking into accoulril(t)n
the reliability and discrimination ability of each classifi W '
The decision is then usually reached by selecting the tg
entry in the combined ranked list.

2.5.2, respectively) before using a classificatiorecrit
such as the MAX operator (which selects the class
ith the highest opinion), to reach a decision. Alterndyive
Bost-classifier (Section 2.5.3) can be used to directghrea

a decision. In the former approach, each expert can be con-
sidered to be an elaborate discriminant function, working

) on its own section of the feature space [23].
2.4.3 AND Fusion

In AND fusion [44, 72], a decision is reached only when aiﬁhe inherent advantage of weighted summation and product

the classifiers agree. As such, this type of fusion is qu tésion over feature vector concatenation and decisiommfusi
restrictive. For multi-class problems no decision may B that the opinions from each expert can be weighted. The

reached, thus it is mainly useful in situations where oH\éeights can be selected to reflect the reliability and diseri

would like to detect the presence of an event/object, wiffflion ability of each expert; thus when fusing opinions
’ )m a speech and a face expert, it is possible to decrease

a low false acceptance bias (in a person verification s Q) - =T -
nario, where we would like to detect the presence of a tri{i¢ contribution of the speech expert when working in low

claimant, this translates to a high False Rejection Rat&jFRUdio SNR conditions (this type of fusion is knowreaap-
and low False Acceptance Rate (FAR)) tive fusior). The weights can also be optimized to satisfy a
' given criterion (e.g. to obtain EER performance).

2.4.4 ORFusion 2.5.1 Weighted Summation Fusion
In OR fusion [44, 72], a decision is made as soon as one . hted tion. th - di .
of the classifiers makes a decision. In comparison to Al\lﬁwe'g ed summation, the opinions regarding claem

X ; D o & experts are combined using:
fusion, this type of fusion is very relaxed, providing mul-
tiple possible decisions in multi-class problems. Since in Ng
most multi-class problems this is undesirable, OR fusion is fi = wioi )
mainly useful where one would like to detect the presence =1
of an event/object with a low false rejection bias (in a pewhereo; ; is the opinion from the-th expert andy; is the
son verification scenario, where we would like to detect tlterresponding weight in th§, 1] interval, with the con-

presence of a true claimant, this translates to a low FRR @?Fbintzg\fﬁ w; = 1. When all the weights are equal,
high FAR). Eqgn. (1) reduces to an arithmetic mean operation. The

weighted summation approach is also knowhrasar opin-
ion pool[6] andsum rule[5, 42].
2.5 Post-Mapping Fusion: Opinion Fusion

In opinion fusion [32, 35, 58, 73] (also referred to as score ] )

fusion), an ensemble of experts provides an opinion on e#ch-2 Weighted Product Fusion

possible decision. Since non-homogeneous experts carrhe opinions can be interpreted as posterior probabiities
used (e.g. where one expert provides its opinion in termsthé Bayesian framework [14]. Assuming the experts are in-
distances while another in terms of a likelihood measuregpendent, the opinions regarding clagseom N experts
the opinions are usually required to be commensurate ban be combined using a product rule:

fore further processing. This can be accomplished by map- Ng

ping the output of each expert to tf@ 1] intervaf, where 5 =1 ows )

0 indicates the lowest opinion aricthe highest opinion. It T

2The mapping can be performed via a sigmoid; see Sectionamdee 10 account for varying discrimination ability and reliabyl
information. of each expert, the above method is modified by introducing




weighting: It can be seen that Eqn. (4) is a form of a linear discriminant

Ng function[23], indicating that the procedure of weightedsu
fi =11 (0i )" (3) mation followed by thresholding creates a linear decision
i=1 boundary inNg-dimensional space. Thus in the verifica-

The weighted product approach is also knowrdaggrith-  tion application, weighted summation fusion is equivalent
mic opinion poo[6] andproduct rule[5, 42]. There are two to a post-classifier which uses a linear decision boundary to
downsides to weighted product fusion: the first is that ogeparate the true claimant and impostor classes.

expert can have a large influence over the fused opinion -

for example, an opinion close to zero from one expert sets

the fused opinion also close to zero. The second downsfl®§ Hybrid Fusion

is that the independence assumption is only strictly valid

when each expert is using independent features. For certain.applicatiqns, it may be necessary to com'bine
various fusion techniques due to practical considerations

For example, Hong and Jain [34] used a fingerprint expert
2513 Post-Classifier and a frontal face expert; a hybrid fusion scheme involv-
) o o ing a ranked list and opinion fusion was used: opinions of
Since the opinions produced by the experts indicate the-lifne face expert for the top identities were combined with
lihood” of a particular class, the opinions can be considerghe opinions of the fingerprint expert for the correspond-
as features in “likelihood space”. The opinions fraWk ing identities using a form of the product approach. This
experts regardingVc classes form &V Nc-dimensional hybrid approach was used to take into account the relative
opinion vector, which is used by a classifier to make tk@mputational complexity of the fingerprint expert (i.éet

final decision. We shall refer to such a classifier g®at- fingerprint expert was significantly slower than the face ex-
classifief. It must be noted that the opinions do not necesert).

sarily have to be commensurate, as it is the post-classifier’
job to provide adequate mapping from the “likelihood space”

to class label space. 3 Milestones in Audio-Visual Person Recog-

The obvious downside of this approach is that the resul- nition
tant dimensionality of the opinion vector is dependent on ) ) ) )
the number of experts as well as the number of class&Bis section provides an overview of the most important
which can be quite large in some applications. Howevépntributionsin the field of audio-visual person recogmiti
in a verification application, the dimensionality of the ipi it is assumed that the reader is familiar with the concepts
ion vector is usua”y On|y dependent on the number of e&[esented n _Sectlon 2 We Conce.ntrat'elon the verification
perts [11]. Each expert provides only one opinion, indicd@isk while briefly touching on the identification task. Al-
ing the likelihood that a given claimant is the true claimaftost all of the work reviewed here used different databases
(thus a low opinion suggests that the claimant is an imp@g#id/or different experimental setup (e.g. experts andperf
tor, while a high opinion suggests that the claimant is tfeéance measures), thus any direct comparison between the
true claimant). The post-classifier then provides a degisidumerical results would be meaningless. Numerical figures
boundary inN z-dimensional space, separating the impogte only shown in the first few cases to demonstrate that us-
tor and true claimant clas<es ing fusion increases performance. Moreover, no thorough
description of the various experts used is provided, as it is
beyond the scope of this section.
254 n?gﬁg:wa;r? dali?)sotfclzlgggill‘?é?%ﬁpg a\(/:\:]eégsyhted Sum'The review is _split into_ two areas: non-adaptive (Sectio_n
3.1) and adaptive (Section 3.2) approaches. In non-adaptiv
In a normal verification application, there are only two skapproaches, the contribution of each expert is priorly fixed
(i.e., true claimants and impostors) and each expert pesvigh adaptive approaches, the contribution of at least one ex-
only one opinion (i.e., high opinion suggests a true claimagkrt is varied according to its reliability and discrimiiat
while a low opinion suggests an impostor). Once the fusggijiry in the presence of some environmental condition;

score is obtained using the weighted summation appro o ;
the accept/reject decision can be reached as follows: gi\é Qgégg]fvlﬁért]ht?]g%r&tgigugﬁ%?;%sﬁ: ri?jh expert can be de

a threshold;, the claim is accepted wheh> ¢ (i.e., true
claimant); the claim is rejected wheih< ¢ (i.e., impostor).
Eqgn. (1) can thus be modified to:

F)=wTé—t 4
wherew” = [w; ]f\fl ando” = [o; ]f\fﬁ the decision is ac- Fusion of audio and visual information has been applied to
cordingly modified to: the claim is accepted whi(z) > 0; automatic person recognition in pioneering papers by Chi-
the claim is rejected wheR'(0) < 0. belushiet al. [19] in 1993 and Brunellet al. [13, 14] in

1995.
3In the identification scenario, the described post-classisia natural
extension of the approach presented in [7]. In the verificaticenario it Chibelushiet al. [19] combined information from speech
has been implemented by Ben-Yaccettal. [11] as a binary classifier.  and still face profile images using a form of weighted sum-
4see Fig. 6 for example decision boundaries.

3.1 Non-Adaptive Approaches




mation fusion: (however, no results were provided for using more than six
f=wi01 + w202 () images). The results suggest that using a video sequence
whereo; ando, are the opinions from the speech and fags the face, rather than one image, provides superior perfor
profile experts, respectively, with corresponding weights mance. In further work, Kittleet al. [42] provided theo-
andw,. Each opinion reflects the likelihood that a givepetical foundations for common fusion approaches such as
frgtngﬁgtcllz itmhgnttr lijseacr:aimqggétg're\'fvﬁikleog rﬂghnf&nﬁg%gsi% summation and product methods. However, the authors
; : ’ : ; o note that the underlying assumptions can be “unrealis-
gests that the clalmar?t IS th? true cla|mant)..S|nce there E Experimental results for combining the opinions from
constraints on the weight3 [, w; = 1 andvi : w; > 0), three experts (two face experts (frontal and profile) and a
Eqn. (5) reduces to: text-dependent speech expert) showed that the summation
f=wio1 + (1 —w1)oz (6) approach outperformed the product approach.

The verification decision was reached via thresholding th@ettin [43] investigated the combination of speech and (vi
fused opinionf. When using the speech expert alone (i.&ual) lip information using feature vector concatenation.

wy = 1), an Equal Error Rate (EER) of 3.4% was achievegyder to match the frame rates of both feature sets, speech
while when using the face profile expert alone (ie;, = information was extracted at 30 fps instead of the usual 100
0), an EER of 3.0% was obtained. Using an optimal weigf¥s. |n text-dependent configuration, the fusion process re
and threshold (in the EER sense) the EER was reducedfted in a minor performance improvement, however, in
1.5%. text-independent configuration, the performance sligiey
Brunelli et al. [13] combined the opinions from a face exCreased; this suggests that feature vector concatenation i

pert (which utilized geometric features obtained fromistathis case is unreliable.

I)r:)onéﬁlciaacpeplgggﬁ:s) and a speech expert using the weigh %ﬂrlin et al. [39, 40] used a form of weighted summa-

tion fusion to combine the opinions of two experts: a text-
f=(01)" x (02)171) (7) dependent speech expert and a text-dependent lip expert.
Using an optimal weight, fusion led to better performance

When the speech expert was used alone (we.= 1), an &I%an using the underlying experts alone.

identification rate of 51% was obtained, while when the fa

expert was used alone (i.es; = 0), an identification rate aApdeljaoued [1] proposed to use a Bayesian post-classifier
of 92% was achieved. Using an optimal weight, the identt reach the verification decision. Formally, the decision

fication rate increased to 95%. rule is expressed as:

In [14], two speech experts (for static and delta features) Cvif TIE ploilAi true) > T8 p(oil A, jmp)

and three face experts (for the eye, nose and mouth areas 5= O otherwise ®)
2

the face) were used for person identification. The weighted
product approach was used to fuse the opinions, with tlvbereC; andC, are true claimant and impostor classes,
weights found automatically via a heuristic approach. Thespectively N is the number of experts, whilg, trye and
static and dynamic feature experts obtained an identifica;imp are, for thei-th expert, the parametric models of
tion rate of 77% and 71%, respectively. Combining thte distribution of opinions for true claimant and impostor
two speech experts increased the identification rate to 88%ims, respectivefy Due to precision issues in a computa-
The eye, nose and mouth experts obtained an identificatimmal implementation, it is more convenient to use a sum-
rate of 80%, 77% and 83%, respectively. Combining tmeation rather than a series of multiplications. Sihae(-)
three facial experts increased the identification rate 4 91is a monotonically increasing function, the decision raa c
When all five experts were used, the identification rate ihe modified to:
creased to 98%. | { Crif 3277 log ploil A true) > ik log p(0i]A, imp)
Class=

Dieckmannet al. [21] used three experts (frontal face ex- C, otherwise

pert, dynamic lip image expert and text-dependent speech ] )
expert). A hybrid fusion scheme involving majority vot-T0 allow adjustment of FAR and FRR, the above decision
ing and opinion fusion was utilized; two of the experts hd§l€ is in practice modified by introducing a threshold:

to agree on the decision and the combined opinion had to cyif SSVE e _s Ve A Y S
exceed a pre-set threshold. The hybrid fusion scheme priass— { L =i logploil rue) = 2= o8Pl imp)

vided better performance than using the underlying experts Cs otherwise

alone. . (10)
Abdeljaoued used three experts and showed that use of the

Kittler et al. [41] used one frontal face expert which proabove classifier (with Beta distributions) provided lower e
vided one opinion for one face image. Multiple images odr rates than when using the experts alone.

one person were used to generate multiple opinions, which ) ) )
were then fused by various means, including averagingB&n-Yacoubet al. [11] investigated the use of several bi-
special case of weighted summation fusion). It was shoR@ry classifiers for opinion fusion using a post-classifier.
#hat error rat_es Vtvercej rg?uce({ bthp ]Eto 400/.0 anfq th.at p(""_-r’l_n o_urexperi_m_entg we utilize Gaussian Mixture Models to eldbe
ormance gains tenaed 10 saturate arter using 1ive Imagesgipution of opinions; see Section 4.2 for more inforioat




The investigated classifiers were: Support Vector Machipgor confidence. Since there are constraints on the weights
(SVM), Bayesian classifier (using Beta distributions@:?_1 w; = 1 andVi : w; > 0), the weight for the lip ex-
Fisher’s Linear Discriminant, Decision Tree and Multi Laygerﬁsl — w;.

Perceptron (MLP). Three experts were used: a frontal face

expert and two speech based experts (text-dependent \&fadk et al. assumed that the standard error gives relative
text-independent). It was found that the SVM classifier (uigidication of the discrimination ability of an expert. The
ing a polynomial kernel) and the Bayesian classifier press variation there is in the opinions for known true and
vided the best results. impostor claims, the lower the standard error; thus a low

) ) ) ) _ » standard error indicates better performance.
Verlinde [73] also investigated various binary classifiiens

opinion fusion as well as the majority voting and AND &MJulti-Stream Hidden Markov Models (MS-HMMSs) (a form
OR fusion methods (which fall in the decision fusion catf midst-mapping fusion) were evaluated for the task of
egory). Three experts were used: frontal face expert, fadeat-dependent audio-visual person identification in [76]
profile expert and a text-independent speech expert. In Titee audio stream was comprised of a sequence of vectors
case of decision fusion, each expert acted like a classifientaining Mel Frequency Cepstral Coefficients (MFCCs)
and provided a hard decision rather than an opinion. T8] and their deltas [64], while the video stream was com-
investigated classifiers were: Decision Tree, MLP, Logistprised of a sequence of feature vectors describing lip con-
Regression (LR) based classifier, Bayesian classifier usingrs. Due to the nature of the MS-HMM implementation
Gaussian distributions, Fisher's Linear Discriminant sad the frame rate of the video features had to match the frame
ious forms of thek-Nearest Neighbour classifier. Verlindgate of the audio features (accomplished by up-sampling).
found that the LR based classifier (which created a linéaxperiments on a small audio-visual database showed that
decision surface) provided the lowest overall error rates far high SNRs the performance was comparable to that of
well as being the easiest to train. Verlinde also attemptad audio-only HMM system (which outperformedthe video-
to develop a piece-wise linear classifier but obtained pawtly HMM system), while at low SNRs the multi-stream
results. system obtained significantly better performance than the
) ) audio-only system and exceeded the performance of the
Wark et al. [74] used the weighted summation approach {@deo-only system. No comparison was given against a sys-
combine the opinions of a speech expert and a lip expgiin utilizing pre-mapping or post-mapping fusion (e.g- uti
(both text-independent). The performance of the speech pxng two separate experts and opinion fusion).
pert was deliberately decreased by adding varying amounts
of white noise to speech data (where the SNR varied frdengio [9] addressed several limitations of previous MS-
50 to 10 dB). Experimental results showed that althougtMM systems, allowing the two streams to be temporar-
the performance of the system was always better than ig-desynchronized (since related events in the streams may
ing the speech expert alone, it significantly decreasedsaart and/or end at different points, e.g. lip movement can
the noise level increased. Depending on the values of gtart before speech is heard) and have different frame rates
weights (which were priorly selected), the performance (thus up-sampling is no longer required). Experiments on
high noise levels was actually worse than using the lip ex-small audio-visual database (using two feature streams
pert alone (a condition referred to aatastrophic fusion similar to the audio and video streams described for [76],
[77]). The authors proposed a statistically inspired mdthabove) showed that while at a relatively high SNR the per-
of priorly selecting weights (described below) which rdormance was worse than a text-independentaudio-only sys-
sulted in good performance in clean conditions and nevem, the performance was better at lower SNRs; moreover,
fell below the performance of the lip expert in noisy corthe proposed system had higher performance (and was more
ditions; however, the performance in noisy conditions wagbust) than a text-dependent HMM system based on fea-
shown not to be optimal and no results were reported foire vector concatenation.
SNR levels below 10 dB; moreover, the performance (for
each noise level) was found using only 30 true claimant tests
and 210 impostor tests. 3.2 Adaptive Approaches

The weight for the speech expert was found as follows: Wark et al. [75] extended the work presented in [74] (see
& above) by proposing a heuristic method to adjust the weights

W= (11) Experimental results showed that although the performance
12 significantly decreased as the noise level increased, it was
where . 5 always better than using the speech expert alone. However,
% true | Tiimp in high noise levels, equal weights (non-adaptive) were
G={- + (12) . . .
Nirue  Nimp shown to provide better performance. A major disadvan-

where, for thei-th expert,¢; is the standard error [17] oftage of the method is that the calculation of the weights in-
the difference between sample means, .. andy; i, of Vvolved finding the opinion of the speech expert for all pos-
0p|n|0ns for true and |mpostor ClalmS, respecuvei%/true S'ble C|aImS (|e, fOI’ a” perSOHS enrO”ed n the SyStem),

and o2 are the corresponding variances, wWhitg, . thus limiting the approach to systems with a small number

and ]\}l::; is the number of opinions for true and imposOf clients due to practical considerations (i.e., time tate

tor claims, respectively. Warkt al. referred to¢; as a verify a claim). Moreover, similar experimental limitatie



were present as described for [74] (above). wherea andb describe the shape of the sigmoid. The values
o of a andb are manually selected so thg{apis close to one

In further work [77], Wark proposed another heuristic techor clean training utterances and close to zero for training

nique of weight adjustment (described below). In a texjtterances artificially corrupted with noise (thus this @da

dependent configuration, the system provided performanggon method is dependent on the noise type that caused the
which was always better than using the lip expert along@jsmatch).

However, in a text-independent configuration, the perfor-
mance in low SNR conditions was worse than using the liygt us assume that the face expertis the first expert and that
expert alone. the speech expertis the second expert. Given a prior weight
ws prior fOr the speech expert (which is found on clean data
The weight for the speech expert was found as follows: [to achieve, for example, EER performance]), the adapted
{ G } { . } weight for the speech expert is found using:
w1 =

13
C1+¢2 (13
where—2_ was found using Eqn. (12) during training an&ince we are using a two modal system the corresponding

K1 + K2 W2 = gmapWsy prior 17

C1+¢2 . . f
M M weight for the face expert is found usingy; = 1 — wso.
Ky = MU00)istrue = M(0s)isimp (14) We shall refer to this weight adjustment method asrttie
Hi,true match detectiomethod.

was found during testing. Wark referred g as the poste-
. . . s 2
rior confidence. For thieth expert,M(o:)i true = w

o

is the one dimensional squared Mahalanobis distance [513] Performance of Non-Adaptive Approaches
between opinion; and the model of opinions for true claims. ~ IN Noisy Audio Conditions
Here, u; true ando? are the mean and variance of opin-

1,true

ions for true claims, respectively: they are found durin'@ this section we eva_luate the performance of fgature.v_ec-
training. tor concatenation fusion and several non-adaptive opinion
fusion methods (weighted summation fusion, Bayesian and
Similarly, M(0:);imp = (o—gip)z is the one dimensionaISVM post-classifiers), for combinirjg fac_:e and speech infor-
' T P L mation under the presence of audio noise.
squared Mahalanobis distance between opimiocand the
model of opinions for impostor claims. Herg; ;,, and

Uv?,imp are the mean and variance of opinions for impostar{ vidTIMIT Audio-Visual Database

claims, respectively; they are found during training. i
The VidTIMIT database [60], created by the authors, is

Under clean conditions, the distance between a given oginmprised of video and corresponding audio recordings of

ion for a true claim and the model of opinions for true clain#3 people (19 female and 24 male), reciting short sentences

should be small. Similarly, the distance between a givealected from the NTIMIT corpus [37]. It was recorded in

opinion for a true claim and the model of opinions for im3 sessions, with a mean delay of 7 days between Session 1

postor claims should be large. Vice versa applies for a givend 2, and 6 days between Session 2 and 3.

opinion for an impostor claim; hence under clean condi- ] )

tions, «; should be large. Wark used empirical evidence tdrere are 10 sentences per person. The first six sentences

argue that under noisy conditions, the distances should 8 assigned to Session 1. The next two sentences are as-
crease, hence; should decrease. signed to Session 2 with the remaining two to Session 3.

] . The first two sentences for all persons are the same, with
We recently proposed [60] a weight adjustment method witighremaining eight generally different for each persore Th

is summarized as follows. Every time a speech utterance{gan duration of each sentence is 4.25 seconds, or approx-
recorded, it is usually preceded by a short segment Whiﬁkﬂately 106 video frames.

contains only ambient noise. From each training utterance,

Mel Frequency Cepstral Coefficients (MFCCs) [49, 56] frofhe recording was done in a noisy office environment us-
the noise segment are used to construct a global noise Ggyig proadcast quality digital video camera. The video of
sian Mixture Model (GMM) Angise G|ver11Va test speech Ut-gach nerson is stored as a sequence of JPEG images with a
terance N,,ise MFCC feature vectorgyz; }, '€, represent- resolution of 512« 384 pixels (columns< rows); the cor-

ing the noise segment, are used to estimate the utteranggsponding audio is stored as a mono, 16 bit, 32 kHz WAV
quality by measuring the mismatch frokp,ise as follows:  file.

1 noise
q= log p(Zi| Angi (15)
Nnoise ; noisd 4.2 Speech Expert

The larger the difference between the training and testimge speech expert is comprised of two main components:

conditions, the lowey is going to be.q is then mapped to speech feature extraction and a Gaussian Mixture Model

the [0, 1] interval using a sigmoid: (GMM) opinion generator. The speech signal is analyzed
1 on a frame by frame basis, with a typical frame length of

gmap = m (16)



20 ms and a frame advance of 10 ms. For each frame, a Biie parameters\| for each client model are then found by
dimensional feature vector is extracted, comprised of Mesing the client’s training data and adapting the UBM using
Frequency Cepstral Coefficients (MFCC), which reflect tlaeform of Maximuma Posterioriadaptation [27, 57].
instantaneous Fourier spectrum [49, 56], their correspond

ing deltas (which represent transitional spectral informa

tion) [64] and Maximum Auto-Correlation Values (whict4.3 Face Expert

represent pitch and voicing information) [79]. Cepstral&maE

subtraction was applied to MFCCs [25, 56]. The seque Iae face expertis similar to the speech expert; the main dif-
! glenceis in the feature extraction method. Here we use the

of feature vectors is then processed by a parametric Vo s . >
Activity Detector (VAD) [38, 31], WhiCﬁ/ rerewves featureckﬂojgmmon Principal Component Analysis (PCA) technique

vectors that are considered to represent silence or bagdl (8lS0 known as eigenfaces), which is holistic in nature
ground noise at is, one face image yields one feature veétor)

The distribution of feature vectors for each person is mo?efore facial feature extraction can occur, the face must

eled by a GMM. Given a claim for persaffs identity and ISt be located [18]. Furthermore, to account for varying

a set of feature vector§ = {7,}", supporting the claim distances to the camera, a geometrical normalization must
- i i=1 ’

the average log-likelihood of the claimant being the trfi€ Performed. To find the face, we use template matching

claimant is found with: with several prototype faces of varying dimensiridsing
N the distance between the eyes as a size measure, an affine
\4 . . . . .
L(X|Ao) = —— S logp(@lAc) ag) transformation is used [29] to adjust the size of the image,
Ny = resulting in the distance between the eyes to be the same for

each person. Finally@ x 56 pixel (columnsx rows) face
Ne window, containing the eyes and the nose (the most invari-
ZN) — N(F S 19) antface areato ch_anges in the expression and hair style) is
P(E) 2y M@ iy 2) @9 extracted from the image.

where

Jj=1

A= {mj,ﬁjyilj}j-vfl (20) PCA based feature extraction is performed as follows. A
. . . given size normalized face image is represented by a matrix
E’ere?CG'S the param.etetrhsfetor_cllhetnftC,GNg is the n”.m' containing grey level pixel values; the matrix is then con-
erot aussiansy; 1S the weight for iaussia (W'_ verted to a face vectof, by concatenating all the columns;
constralntszjj1 m; =1andVj:m; >0). N3 X)is aD-dimensional feature vectat, is then obtained by:
amulti-variate Gaussian function with medand diagonal =0T (7-1,) (24)

covariance matri2: whereU containsD eigenvectors (corresponding to tlhe
———exp _—l(f -T2~z -p| (21) largest eigenvalues) of the training data covariance matri
(2m) =z |32 2 and4, is the mean of training face vectors. In our experi-
whereD is the dimensionality of’. Given the average log-ments we use training images from all clients (i.e. exclud-
likelihood of the claimant being an impostar( x| ), an ing impostors) findU and,; moreover,D = 20. Prelim-
opinion on the claim is found using: inary experiments showed that whil2 = 30 obtained op-
O(X|Ac, Ag) = L(X|Ae) — L(X|Az) (22) fimal face verification, the performance was not improved
I L . further with the use of fusion; since in this paper we wish
The verification decision is reached as follows: given ashfg, eyaluate how noisy audio conditions degrade fusion per-
old ¢, the claim is accepted whe@(X|Ac, \z) >t and formance, we deliberately detuned the face expert so that

rejected wherO (X |A¢, ) < t. The opinion reflects the fsjon had a positive effect on performance in clean condi-
likelihood that a given claimant is the true claimant (i.eons.

a low opinion suggests that the claimant is an impostor,
while a high opinion suggests that the claimant is the true
claimant). In mono-modal systems, the opinion can be thrgsh Mapping Opinions to the [0,1] Interval
olded to achieve the final verification decision. '

N(@; i, %) =

The experiments reported throughout this paper utilize the
following method (inspired by [39]) of mapping the output

4.2.1 Estimation of Model Parameters (Training) of each expert to th@), 1] interval.
First, a Universal Background Model (UBM) is trained usthe original opinion of expert, o, orig, is mapped to the

ing the Expectation Maximization (EM) algorithm [20, 23] @7 1] interval using a sigmoid:
as itis a good representation of the general population [57] 1

it is also used to find the average log-likelihood of the % = T explem(0r o)l (25)
claimant being an impostor, i.e.: P Til93,0rig
L(X[Ag) = L(X[Aubm) (23) 8Non-holistic (local) face features can also be effectiveed with the
GMM opinion generator [16, 61, 62].
6We use the termparameter seandmodelinterchangeably. 9A “mother” prototype face was constructed by averaging nadipu

"We used 20 iterations of EM algorithm; Reynolds [55] suggéisat extracted and size normalized faces from clients (non-stgus) in the
the EM algorithm generally converges in 10 to 15 iterationih further VIdTIMIT database; prototype faces of various sizes wemstwicted by
iterations resulting in only very minor improvements. applying an affine transform to the “mother” prototype face.



where subject to constraints:

%4 orig —2:% — 20i) (26) ary = 0 (30)
where, for expert, u; ando; are thé mean and the standard o € O]V 1)
deviation of original opinions for true claims, respective Where,j” = [ y; |, andC is a large positive value (e.g.
Assuming that the original opinions for true and impostd000); C'is utilized to allow training with non-separable
claims follow Gaussian distributions(o, orig; i, %) and data. The parameténsﬁfound afterc_x has been found [15].
N (0, origi ki — 401, 3:2) respectively, approximately 95% ofThe'kerneI' funcyorK(c_i, €) usually implements a dot prod-
the values lie in theu; —20; , ; +20:] andu: —60: , i —20;] UCt in @ high dimensional spac&” (whereh > Npg),
intervals, respectively [23] (see also Fig. 2). Eqn. (26pmaWhich can improve separability of the data [59]; note that
the opinions to thé—2, 2] interval, which corresponds tothe data isnot explicitly projected into high dimensional
the approximately linear portion of the sigmoid in Eqn. (_25?pace. Popular kernels used for pattern recognition prob-

Ti (Oi,orig) =

The sigmoid is necessary to take care of situations where he's are [15]: . -
assumptions do not hold entirely. K{de = dé& (32)
K(de = (@dTe+1y (33)
- L= o,
4.5 Support Vector Machine Post-Classifier K(d.e) = exp(=Z5lld =€) (34)

The Support Vector Machine (SVM) [70] has been prevEdn: (32) is a dot product, which is referred to as the lin-
ously used by Ben-Yacoutt al. [11] as a post-classifier. 63" kérnel, Ean. (33) is a-th degree polynomial, while
While an in-depth description of SVM is beyond the sco%‘rg 834). IS a G?ur?swkm kerlnel (whereepresents the stan-
of this section, important points are summarized: for mofad deviation of the kernel).

detail, the reader is referred to [15]. The experiments reported in this section utilize the SVM

The SVM is based on the principle of Structural Risk Mi gngine developed by Joachims [38]. In a verification system
imization (SRM) as opposed to Empirical Risk Minimizal!€r€ IS generally more training data for the impostor class
tion (ERM) used in classical learning approaches Unoth"m the true claimant class; thus a misclassification on the
ERM, without testing on a separate data set, it is unknofiP2Stor class (i.e., a FA error) has less contribution toiva
which decision surface would have a good generalizatifilf EER than a misclassification on the true claimant class
capability. For the case of the SVM, the decision surface Ha§ & FR errorgi Hence Sta”qarduft\élwl Fra'ln'nglg. WT.'Ch n
to satisfy a requirement which is thought to obtain the beSf NON-S€parable case minimizestotal misclassiiication.
generalization capability. For example, let us assume Yf&e (Subject to SRM constraints), is not compatible with
have a set of training vectors belonging to two complete e EETt.Cr'te]['on' Fortungttely, ‘Jc;a(]ih'mi. SVM engine al-
separable classes and we seek a linear decision surface'fift SE€'NY Of an appropriaté cost of making an error on €i-
separates the classes. Let us define the teamginas the L€l class; while this does not explicitly guarantee tregni
sum of distances from the decision surface (in the space i EEtR'EtE%QOStthan bg tuned manually until performance
plied by the employed kernel, see below) to the two clos&s?Se 10 IS obtained.

points from the two classes (one point from each class); we

interpret the meaning of the margin as a measure of g(—:é1—6 )

eralization capability. Thus using the SRM principle, th@-© Experiments

optimal decision surface has the maximorargin The experiments were done on the VidTIMIT database (see

The SVM is inherentl binarv classifier. Let d finSection 4.1); the speech and frontal face experts are de-

a s%tS contsainine ]% >c/)a}nionav)écctgrsssl\fe-'dim%ng?ongl) Scribed in Sections 4.2 and 4.3, respectively. For the $peec

belonging to twogcla‘gse?s labeled a% andE+1 indicating expert, best results on clean test daisere obtained with

impostor and true claimant classes respectively: 32-Gaussian client models. For the face expert, best sesult
were obtained with one-Gaussian client models.

s:{(ai,yi)wi ERNE,yie{—l,—i-l}}]_\:V @7 . o .
) ) =1 Session 1 was used as the training data. To find the per-
The SVM uses the following function to map a given vect@srmance, Sessions 2 and 3 were used for obtaining expert
to its label space (i.e~ 1 or +1): opinions of known impostor and true claims. Four utter-
Ny ances, each from eight fixed persons (four male and four fe-
f(6) = sign (Z iy K (05,0) + b> (28) male), were used for simulating impostor accesses against
=1 the remaining 35 persons. For each of the remaining 35
where vectorss; with correspondingy; > 0 are known as persons, their four utterances were used separately as true

-

support vectorghence the name of the classifieR(d, &) claims. In total, there were 1120 impostor and 140 true

is a symmetric kernel function, subject to Mercer's cond#aims.
. T ANy L . ) ) )
tion [15, 70]. &~ = [}, is found by minimizing (via | e first set of experiments, speech signals were cor-

quadratic programming): rupted by additive white Gaussian noise, with the resulting
Ny Ny

Ny
— Z a; + % Z Z a;ajyiy; K (8, ;) (29) 10By clean datawe mean original data which has not been artificially
=1

i=1j=1 corrupted with noise.



SNR varying from 12 to -8 dB; SNR of -8 dB was choweighted summation case the parametersiaendt). In
sen as the end point as preliminary experiments showsedulti-expertadaptivesystem, the weights are automati-
that at this SNR the EER of the speech expert was clasgly tuned in an attempt to account the current reliability
to chance level. In the second set of experiments, speetbne or more experts (as in the system proposed by Wark
signals were corrupted speech signals were corrupted[BY]). Tuning the threshold to obtain EER performance is
adding “operations-room” noise from the NOISEX-92 coequivalent to modifying one of the parameters of the post-
pus [71]; the “operations-room” noise contains backgrousthssifier, which is in effeciurther adaptatiorof the post-
speech as well as machinery sounds. Again, the resultolgssifier after observing the effect that the weights have o
SNR varied from 12 to -8 dB. the distribution off [Eqn. (1)] for true and impostor claims.

) _ _ Since this cannot be accomplished in real life, it is a fallac
Performance of the fOIlOWIng Conflguratlons was foun% report the performance inoisy conditiongn terms of

speech expert alone, face expert alone, feature vector GeRR for anadaptivemulti-expert system.
catenation, weighted summation fusion (equivalent to &pos

classifier with a linear decision boundary), the Bayesid@aking into account the above argumentation and to keep
post-classifier and the SVM post-classifier. For the latt#€ presentation of results consistent between non-agapti
three approaches, the face expert provided the first opinfjifl adaptive systems, the results in this paper are reported

(01) while the speech expert provided the second opini the following manner. The post-classifier is tuned for
(02) when forming the opinion vectar= [o; o2 |7 R performance on clean test data (analogous to the popu-

lar practice of using the posterior threshold in singleaxp
The parameters for weighted summation fusion were fou temsth[ZZ, 26]);t p(tja(fogmanceflfll_ (ilelaé‘ a”dTnEo'Sé/ ‘%9”%"
via an exhaustive search procedure. For the Bayesian pHefs S then reported in terms of Total Error (TE), define
classifier, two Gaussians were used to model the distribu- TE = FAR + FRR (35)

tion of opinion vectors (one Gaussian each for true claimapt o e the post-classifier parameters are fixed (in non- adap-

and impostor distributions); multiple Gaussians for ea : iad (i ;
distribution, i.e. GMMs, were also evaluated but did n%e systems), or automatically varied (in adaptive sysgem

. h i lecti f for cl
provide performance advantages. For the SVM post- cl e note that posterior selection of parameters (for clean

i . ] ita) puts an optimistic bias on the results; however, since
sifier, the linear kernel [see Eqn. (32)] was used; other kgt \ish to evaluate how noisy audio conditions degrade fu-

nels were also evaluated but did not provide performanggy, performance, we would like to have an optimal starting
advantages. point

As described in Section 2.2, the basic idea of the fealigg ¢, ance of the face and speech experts is shown in Fig.
vector concatenation is to concatenate the speech and rformance of the four multi-modal systems is shown in
feature vectors to form a new feature vector. However, B€." "4 or white noise. and in Fig. 5 for “operations-room”
fore concatenation can be done, the frame rates from i Figures 6 and 7 show the distribution of opinion vec-
speech and face feature extractors must match. Recall B?fin clean and noisy (SNR = -8 dB) conditions (white
the frame rate for speech features is 100 fps while the stdiiise) vespectively, with the decision boundaries used by
dard frame rate for video is 25 fps (using off the shelf co e three post-classifier approaches

mercial PAL video cameras). A straightforward approac '

to match the frame rates is to artificially increase the video
frame rate and generate the missing frames by copying orj
inal frames. It is also possible to decrease the frame ra
of the speech features, but this would result in less spedch.1 Effect of Noisy Conditions on Distribution
inform'ation being available, decreasing .performance.[4_3] of Opinion Vectors

Thus n the experiments repo_r'gepl in this section, the 'Bor convenience, let us refer to the distribution of opin-
formation loss is avoided by utilizing the former approachn vectors for true claims and impostor claims as the true

of artificially increasing the video frame rate. As done by _. . > L X
the speech expert, the feature vectors resulting from weatga'mam and impostor opinion distributions, respecgvel

vector concatenation were processed by the VAD (Sectifg can be observed in Figs. 6 and 7, the main effect of noisy

4.2). Best results on clean data were obtained with oR@nditions is the movement of the mean of the true claim
Gaussian client models. opinion distribution towards the; axis. This movement

The equivalency described in Section 2.5.4 has several @n be explained by analyzing Eqn. (22). Let us suppose a

Discussion

A : laim h n made; in clean conditi will
plications on the measurement of performance of multi- ¢ claim has been made; in clean conditians|c)

systems. In speech based verification systems, the E E'gh while£(X|)z;) will be low, causing, (the opinion

; e speech expert) to be high. When the speech expert
Error Rate (EER) is often used as a measure of expec % ; : ; : ; X
performance [22, 26]. In a single expert configuration thﬁ rocessing noisy speech signals, there is a mismaich be

; ; ; een training and testing conditions, causing the feature
e:]mouhntsFtol sel'ictlng the ap;{propz:?;%?qstenorlthreEhD[I: gtors to dri?t away fromg the feature space gescribed by
that the False Acceptance Rate is equal to the . G
Rejection Rate (FRR); in a multi-expert scenario this tifaq true claimant modeh(); this in turn causes(x|ro)

- : : . decrease. IL(x|\5) decreases by the same amount as
lates to selecting appropriate posterior parameters fm-o%éX\Ac) thenOQ(is|reCI?atively unchar¥ged' however a8
lon mapping (Section 4.4) and for the post-classifier (in tis a goc;d representation of the general’populatio'n it usu-



ally covers a wide area of the feature space (see Sectiors containing background noise and speech. As stated
4.2). Thus while the feature vectors may have drifted awpyeviously, best results were obtained with one-Gaussian
from the space described by the true claimant model, thaient models (compared to 32-Gaussian client models for
may still be “inside” the space described by the anti-clietite speech-only expert), suggesting that when more Gaus-
model, causing:(X|z) to decrease by a smaller amounsians were used, they were used for modeling the non- dis-
which in turn causes; to decrease. criminatory information; moreover, since one-Gaussian
) ] models are inherently less precise than 32-Gaussian mod-
Let us now suppose that several impostor claims have beg) we would expect them to be more robust to changes

made; in clean conditionsx|Ac) will be low while £(X|)5) in distribution of feature vectors; indeed the results ss4g
will be high, causing. to be low. The true claimant modekhat this is occurring.

does not represent the impostor feature space, indicating
thatz(x|A¢) should be consistently low for impostor claims

in noisy conditions. As mentioned aboweg; usually covers . :
a wide area of the feature space, thusv%ven though the éa— Performan.ce of A‘?"'?‘p“"e Approaches in
tures have drifted due to mismatched conditions, the may NOisy Audio Conditions

still be “inside” the space described by the anti-client lpd
this indicates that(x|)) should remain relatively high in
noisy conditions, which in turn indicates that the impost
opinion distribution should change relatively little due t
noisy conditions.

In this section we evaluate the performance of several adap-
gye opinion fusion methods described in Section 3.2, ngmel
weighted summation fusion with Wark’s weight selection
and themismatch detectioweight adjustment method.

While Figs. 6 and 7 show the effects of corrupting speedi€ €xperimental setup is similar to the one described in
signals with additive white Gaussian noise, we have o ection 4.6. Based on manual observation of plots of speech

imilar eff ith the P " noise. Slgnals frc_)m the VidTIMI_T databaséygise Was set to 30
served similar effects with the “operations-room” noise for the mismatch detection method [see Eqn. (15)]. One

Gaussian for\pgise Was sufficient in preliminary experi-
ments. The sigmoid parametersandb [in Eqn. (16)] were
obtained by observing howin Eqgn. (15) decreased as the
In clean conditions, the weighted summation approach, SSNR was lowered (using white Gaussian noise) on utter-
and Bayesian post-classifiers obtain performance betiar thnces in Session 1 (i.e., training utterances). The resulti
either the face or speech expert. However, in high noise leue of gmap in Eqn. (16) was close to one for clean ut-
els (SNR = -8 dB), all have performance worse than the faegances and close to zero for utterances with an SNR of
expert; this is expected since in all cases the decision me¢hdB.

anism uses fixed parameters.

4.7.2 Effect of Noisy Conditions on Performance

Performance of the adaptive systems is shown in Fig. 8 for
All three approaches exhibit similar performance upto a SWRite noise, and in Fig. 9 for “operations-room” noise.
of 8 dB. As the SNR decreases further, the weighted sum-
mation approach s significantly more affected than the SVM
and Bayesian post-classifiers. The differences in perf&-1 Discussion
mance in noisy conditions can be attributed to the decisign | . . .
boundaries used by each approach, shown in Figs. 6 and*#/K's weight selection approach assumes that under noisy

it can be seen that the weighted summation approach h ions,

decision boundary which results in the most mis- classifidd2Stor claim and the corresponding model of opinions for
Impostor claims will decrease [see Eqn. (14)]. However, the

tions of true claimant opinion vectors in noisy condmons.impostor distribution changed relatively little due to s
The performance of the feature concatenation fusion &¢nditions (as discussed in Section 4.7.1), thus Wark’s pos
proach is relatively more robust than the three post-diassi terior confidencesx() for impostor claims changed rela-
approaches. However, for most SNRs the performancdily little as the SNR was lowered. However, Wark’s ap-
worse than the face expert, suggesting that while in tffigoach appears to be more robust than the fixed weighted
case feature concatenation fusion is relatively robuséo summation approach; this is not due to the posterior confi-
effects of noise, it is not optimal. The relatively poor peflences £), but due to the decision boundary being steeper
formance in clean conditions can be attributed to the VAYom the start (thus being able to partially take into acdoun
the entire speech signal was classified as containing spe&éhmovement of opinion vectors due to noisy conditions);
instead of only the speech segments, thus providing a sigiife nature of decision boundary was largely determined by
icant amount of irrelevant (non-discriminatory) inforrizat  the prior confidencegj found with Eqn. (12).

when modeling and calculating opinions. Unlike the featu

vectors obtained from the speech signal (which could cdr2" tﬂe cda_lse of white r;]oize_, whe(;] _thehmisma:]chddetection
tain either background noise or speech) each facial featfg9nt & JUSthmeth metfo IS use |nt| edwelg_ te summﬁ-
vector contained valid face information; since the spee%%n approach, the performance gently deteriorates as the

and facial vectors were concatenated to form one featca R IS lowered, becoming slightly worse than the perfor-

vector, the VAD could not distinguish between feature vef1ance of the face expert at an SNR of -4 dB. For the case

of “operations-room” noise, the mismatch detection method



shows its limitation of being dependent on the noise typ@1.1 Structural Constraints and Training

g]ned ?/:/%c;rmg]b\l,\elzat% %%Té?g rti% F% Ogiiﬁﬁsﬁggmbggigg'r%s: described in Section 4.7.1, the main effect of noisy con-
P ' ditions is the movement of opinion vectors for true claims

sulting in performance very similar to the fixed (non- ada| sward theo, axis. We would like to obtain a decision

tive) approach. boundary which minimizes the increase of errors due to this
movement. Structurally, this requirement translates te-a d

) ) cision boundary that is as steep as possible; moreover, to

6 Structurally Noise Resistant keep consistency with the experiments done in Sections 4

Post-Classifiers and 5, the classifier should be trained for EER performance.

o _ _ This in turn translates to the following constraints on tae p
Partly inspired by the SVM implementation of the SRMameters of the PL classifier:

principle (see Section 4.5) and by the movement of opinion

vectors due to presence of noise (see Section 4.7.1) a struc- . . . -

turally noise resistant piece-wise linear (PL) post-dess 1+ Bothlines mustexistin valid 2D opinion space (where
is developed (Section 6.1). As the name suggests, the de- the opinion from each expertis in the [0,1] interval)
cision boundary used by the post-classifier is designed so indicating that their intersect is constrained to exist in
that the contribution of errors from the movement of opin-  valid 2D opinion space.

ion vectors is minimized; this is in comparison to standard 2. Gradients for both lines need to be as large as possible
post-classifier approaches, where the decision boundary is (S0 the decision boundary that is as steep as possible).
selected to optimize performance on clean data, with lit- 3. The EER criterion must be satisfied.

tle or no regard to how the distributions of opinions may

change due to noisy conditions. The Bayesian classifi§f; \, — {1, c; mo,co} be the set of PL classifier pa-
presented in Section 3.1 is modified to introduce a similalmeters. Given an initial solution, described in Section
structural constraint (Section 6.2). The performance ef t6.1.2, the downhill simplex optimization method [46, 52]
two proposed post-classifiers is evaluated in Section 6.3 can be used to find the final parameters. The following func-
tion is minimized:

e(Arr) = €1(ApL) + €2(ApL) + €3(ApL) (43)

where e (ApL) throughes(\)p. (defined below) represent
"Wnstraints 1-3 described above, respectively.

6.1 Piece-Wise Linear Post-Classifier

Let us describe the PL post-classifier as a discriminantfu
tion composed of two linear discriminant functions:

a(G) if o2 > 02,int e1(der) = M+ (44)
9(0) = { ’ (36) 0j.int]  1f 0j.int < 00r0;ime > 1
b(o) otherwise wherey; = 45)
0 otherwise

whered = [ 01 02 | is a two-dimensional opinion vector,
a(@) = mio1 —o2+c1 37)
b(a) = mgoo01 — 02 +C2 (38)

andog . is the threshold for selecting whether to ugé) ea(e) = ’L

or b(d); Figure 10 shows an example of the decision bound- my

ary. The verification decision is reached as follows: thgq finally

claim is accepted when(d) < 0 (i.e. true claimant) and FAR  FRR

rejected whery (o) > 0 (i.e. impostor). es(AeL) = ‘100% ~ 100%

whereo; ;¢ andos i, are found using Eqns. (41) and (42),
respectively,

(46)

1
+o
m2

47

The first segment of the decision boundary can be described
by a(d) = 0, which reduces Eqn. (37) to:

02 = mio01 +cC1 (39)

6.1.2 |Initial Solution of PL Parameters

: : I The initial solution forAp, (required by the downhill sim-
If we assume;, is a function ofo1, Eqn. (39) is simply the plex optimization) is based on the impostor opinion distri-

description of a line [65], where:; is the gradient and, buti L ;
. : el : Py ution. Let us assume that the distribution can be described
is the value at which the line intercepts theaxis. Similar bﬁaa 2D Gaussian function with a diagonal covariance ma-

argument can be applied to the description of the secqfd [see Eqn.(21)], indicating that it can be charactedize
segment of the decision boundary. Given, c;,ms and y {11, j12, 01,0+ wherey; ando; is the mean and stan-
c2, We can T'nEvai"*' as follows. TrTne two lines intersect a ard deviation in th@gth dimension, respectively. Under the
a single poin®i,,; = [ 01,int 02,ine | ; Moreover, when the Gaussian assumption, 95% of the values forjitredimen-

two lines intersecta(0in:) = b(0int) = 0. Hence sion lie in theu; — 20, u; + 20;] interval. Let us use this
02,int = M101 int + €1 = M201,int + C2 (40) property to define three points in 2D opinion space (shown
which leads to: graphically in Fig. 11):
OLint = €1 —¢c2 @y BP=(z1,m)= (p1, p2 +202) (48)
ma —mq Py=(z2,y2) = (}L1+20'1COS[%] , ,ug—i—chgsin[%] )(49)

02,int = M2 (ﬂ) +c2 (42) Ps=(x3,y3)= (114201, p2) (50)
m2 —mg



Thus the gradientrf;) and the interceptc{) for the first Due to the nature of the decision boundary, the performance

line can be found using: of the modified Bayesian post-classifier is slightly worse
¥2 — 11 than the PL post-classifier; however, unlike the PL post-
= T (1) classifier proposed here, the modified Bayesian post-tikssi

o = yi—mim (52) s easily extendable to three or more experts.
Similarly, the gradients2) and the interceptcf) for the
second line can be found using:

R 7 Conclusions and Future Work

mz = (53)
T3 — T2 This paper first provided an overview of important concepts
2 = Y2 mad2 54 in the field of information fusion, followed by a review of
The initial solution for real data is shown in Fig. 14. milestones in audio-visual person identification and verifi

cation. Several recent adaptive and non-adaptive techgeiqu
for reaching the verification decision (i.e, whether to gutce
6.2 Modified Bayesian Post-Classifier or reject the claimant), based on speech and face informa-
] ) o tion, were evaluated in clean and noisy audio conditions
In Fig. 6 it can be seen that the decision boundary magl¢ a common database; it was shown that in clean condi-
by the Bayesian post-classifier (described in Section 34bhs most of the non-adaptive approaches provide similar

envelops the true claimant opinion distribution. The down- ; ; i i .
ward movement of the vectors due to noisy conditions (d erformance and in noisy conditions most exhibit deterio

cussed in Section 4.7.1) crosses the boundary and is téon in performance; moreover, it was shown that current
main cause of the error increases. If the decision bound@RpPtive approaches are either inadequate or utilizégestr
was forced to envelop the distribution of opinion vectofd/® assumptions. A new category of classifiers was then

for impostor claims, the error increase would be reduceftroduced, where the decision boundary is fixed but con-
this can be accomplished by modifying the decision ruséructed to take into account how the distributions of opin-
described in (10) to use only the impostor likelihood (i.eigns are likely to change due to noisy conditions; compared

log p(0i| i true) = 0 Y 3): to a previously proposed adaptive approach, the proposed
_ N classifiers do not make a direct assumption about the type
G ff —2i=1logp(oilA;imp) >t of noise that causes the mismatch between training and test-
chosen class- . i
) ing conditions.
Cy otherwise
(55) o e )
whereC, andC, are the true claimant and impostor class Future work will include a modification of the feature vec

€% concatenation approach, so that only audio vectors clas
sified as speech (by the Voice Activity Detector) are con-

Compared to the piece-wise linear classifier presentedcffenated with corresponding face vectors; this should aid
Section 6.1, the modified Bayesian classifier avoids heuffSignificantly reducing the amount of irrelevant (non-dis

tics and is easily extendable to three or more experts. ~ cfiminative) information that is currently being used dur-
ing modeling and likelihood calculation (leading to thearel

tively poor performance of feature vector concatenation ap
proach in clean conditions).

respectively.

6.3 Experiments and Discussion

The performance of the proposed PL and modified Bayesian
post-classifiers is evaluated; the experimental setupes $|
same as described in Section 4.6, with the results for white Acknowledgments

noise shown in Fig. 12 and for “operations-room” noise ifine injtial version of this paper was written while the first
Fig. 13. Figures 14 and 15 show the distribution of opiniof)thor was a student at Griffith University, Australia; revi
vectors in clean and noisy (SNR = -8 dB) conditions (Whit§on was performed at the IDIAP Research Institute, Switzer
noise), respectively, with the decision boundaries used [B\q, with thanks to support by the Swiss National Science
the proposed approaches. Foundation through the National Center of Competence in

search (NCCR) on Interactive Multimodal Information

As can be observed, the decision boundary used by themnagement(lMZ). The authors also thank the anonymous

post-classifier effectively takes into account the movetmen . . ; i
of opinion vectors due to noisy conditions. Comparing Fi [eviewers, Samy Bengio and Alexei Pozdnoukhov for help

8 and 12 it can be seen that the proposed PL post—classgﬁr'éFuggeSt'ons'
has similar performance to the adaptive weighted summa-

tion approach, with the advantage of having a fixed (non-

adaptive) structure; moreover, unlike the mismatch detec-

tion weight update algorithm used in the adaptive approach,

the PL post-classifier does not make a direct assumption

about the type of noise that caused the mismatch between

training and testing conditions.
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in Section 4.4.
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Ejgure 13: Performance of structurally noise resistant fu-

Figure 10: Example decision boundary of the PL classifi . X . .
Sion techniques in the presence of operations-room noise.
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Figure 14: Decision boundaries used by structurally noise
resistant fusion approaches and the distribution of opinio
vectors for true and impostor claims (clean speech).
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Figure 15: As per Fig. 14, but using noisy speech (cor-
rupted with white noise, SNR = -8 dB).



