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ABSTRACT

In this paper we introduce the DCT-mod2 facial feature extrac-

tion technique which utilizes polynomial coefficients derived from

2-D DCT coefficients of spatially neighbouring blocks. We eval-

uate its robustness and performance against three popular feature

sets for use in an identity verification system subject to illumi-

nation changes. Results on the multi-session VidTIMIT database

suggest that the proposed feature set is the most robust, followed

by (in order of robustness and performance): 2-D Gabor wavelets,

2-D DCT coefficients and PCA (eigenface) derived features. More-

over, compared to Gabor wavelets, the DCT-mod2 feature set is

over 80 times quicker to compute.

1. INTRODUCTION

A face authentication system verifies the claimed identity (a 2 class

task) based on images (or a video sequence) of the claimant’s face.

This is in contrast to an identification system, which attempts to

find the identity of a given person out of a pool of N people. Past

research on face based systems has concentrated on the identifica-

tion aspect even though the verification task has the greatest appli-

cation potential [1]. This is demonstrated in security applications

(eg. access control), where the claimant has good reason to co-

operate with the system, as well as in forensic applications where

the task is mostly evaluation of each suspect separately rather than

choosing one from many persons.

While identification and verification systems share feature ex-

traction techniques and in many cases a large part of the classi-

fier structure, there is no guarantee that an approach used in the

identification scenario would work equally well in the verification

scenario.

There are many approaches to face based systems - ranging

from the ubiquitous Principal Component Analysis (PCA)

approach (also known as eigenfaces) [2], Dynamic Link Architec-

ture (also known as elastic graph matching) [3], Artificial Neural

Networks [4], to pseudo-2D Hidden Markov Models (HMM) [5].

These systems differ in terms of the feature extraction proce-

dure and/or the classification technique used. For example, in [2]

PCA is used for feature extraction and a nearest neighbour clas-

sifier is utilized for recognition. In [3], biologically inspired 2-D

Gabor wavelets [6] are used for feature extraction, while the

Dynamic Link Architecture is part of the classifier. In [5], fea-

tures are derived using the 2-D Discrete Cosine Transform (DCT)

and the pseudo-2D HMM is the classifier.

PCA derived features have been shown to be sensitive to

changes in the illumination direction [7] causing rapid degrada-

tion in verification performance. A study by Zhang et al. [8] has

shown a system employing 2-D Gabor wavelet derived features to

be robust to changes in the illumination direction. However, a dif-

ferent study by Adini et al. [9] shows that the 2-D Gabor wavelet

derived features are indeed sensitive to the illumination direction.

Belhumeur et al. [7] proposed robust features based on

Fisher’s Linear Discriminant. However, to achieve robustness,

Belhumeur’s system required face images with varying illumina-

tion for training purposes.

As will be shown, 2-D DCT based features are also sensitive to

changes in the illumination direction. In this paper we introduce

four new techniques, which are significantly less affected by an

illumination change: DCT-delta, DCT-mod, DCT-mod-delta and

DCT-mod2. We will show that the DCT-mod2 method, which uti-

lizes polynomial coefficients derived from 2-D DCT coefficients

of spatially neighbouring blocks, is the most suitable. We then

compare the robustness and performance of the DCT-mod2 method

against two popular feature extraction techniques: eigenfaces (PCA)

and 2-D Gabor wavelets.

The rest of the paper is organized as follows. In Section 2

we briefly review the 2-D DCT feature extraction technique and

describe the proposed feature extraction methods. In Section 3 we

describe a Gaussian Mixture Model (GMM) classifier which shall

be used as the basis for experiments. In Section 4 we describe

the VidTIMIT audio-visual database. The performance of feature

extraction techniques is compared in Section 5. The results are

discussed and conclusions drawn in Section 6.

To keep consistency with traditional matrix notation, pixel lo-

cations (and image sizes) are described using the row(s) first, fol-

lowed by the column(s).

2. FEATURE EXTRACTION

2.1. 2-D Discrete Cosine Transform (DCT)

Here the given face image is analyzed on a block by block basis.

Given an image block f(y; x), where y; x = 0; 1; :::; N � 1, we

decompose it in terms of orthogonal 2-D DCT basis functions (see

Fig. 1). The result is an N � N matrix C(v; u) containing DCT

coefficients:

C(v; u) = �(v)�(u)
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The coefficients are ordered according to a zig-zag pattern, reflect-

ing the amount of information stored [10] (see Fig. 2). For block
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located at (b; a), the DCT feature vector is composed of:
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where 

(b;a)

n

denotes the n-th DCT coefficient and M is the num-
ber of retained coefficients.

2.2. DCT-delta

In speech based systems, features based on polynomial coefficients

(also known as deltas), representing transitional spectral informa-

tion, have been successfully used to reduce the effects of back-

ground noise and channel mismatch [11].

For images, we define the n-th horizontal delta coefficient for

block located at (b; a) as a 1st order orthogonal polynomial coef-

ficient:
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Similarly, we define the n-th vertical delta coefficient as:
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where h is a 2K + 1 dimensional symmetric window vector. In

this work we shall use K = 1 and a rectangular window.

Let us assume that we have three horizontally consecutive

blocks X;Y and Z. Each block is composed of two components:

facial information and additive noise - eg. X = I

X

+ I

N

. More-

over, let us also suppose that all of the blocks are corrupted with

the same noise (a reasonable assumption if the blocks are small

and are close or overlapping). To find the deltas for block Y , we

apply Eqn. (5) to obtain (ignoring the denominator):
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ie. the noise component is removed.

By combining the horizontal and vertical delta coefficients an

overall delta feature vector is formed. Hence, given that we ex-

tract M DCT coefficients from each block, the delta vector is

2M dimensional. We shall term this feature extraction method

as DCT-delta. We interpret these delta coefficients as transitional

spatial information (somewhat akin to edges).

2.3. DCT-mod, DCT-mod2 and DCT-mod-delta

By inspecting Eqns (1) and (3), it is evident that the 0th DCT coef-

ficient will reflect the average pixel value (or the DC level) inside

each block and hence will be the most affected by any illumination

change. Moreover, by inspecting Fig. 1 it is evident that the first

and second coefficients represent the average horizontal and verti-

cal pixel intensity change, respectively. As such, they will also be
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Fig. 1. Several DCT basis func-
tions for N=8. Lighter colours rep-
resent larger values.
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Fig. 2. Ordering of DCT coeffi-
cients C(v; u) for N=4.

significantly affected by any illumination change. Hence we shall

study three additional feature extraction approaches (in all cases

we assume the baseline DCT feature vector is M dimensional):

1. Discard the first three coefficients from the baseline DCT

feature vector. We shall term this modified feature extrac-

tion method as DCT-mod.

2. Discard the first three coefficients from the baseline DCT

feature vector and concatenate the resulting vector with the

corresponding DCT-delta feature vector. We shall refer to

this method as DCT-mod-delta.

3. Replace the first three coefficients with their horizontal and

vertical deltas, ie.:
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where the (b; a) superscript was omitted. Let us term this

approach as DCT-mod2.

Thus in the DCT-mod-delta and DCT-mod2 approaches transitional

spatial information is combined with local texture information.

3. GMM CLASSIFIER

The distribution of feature vectors for each person is modeled by a

Gaussian Mixture Model (GMM). Given a set of training vectors,

an N
G

-Gaussian GMM is trained using a k-means clustering algo-

rithm followed by 10 iterations of the Expectation Maximization

(EM) algorithm [12].

Given a claim for person C’s identity and a set of feature vec-

tors X = f~x

i

g

N

V
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supporting the claim, the average log likelihood

of the claimant being the true claimant is calculated using:
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Here �
C

is the model for person C. N
G

is the number of Gaus-

sians, m
j

is the weight for Gaussian j (with constraint
P

N

G

j=1

m

j

= 1),

and N (~x; ~�;�) is a multi-variate Gaussian function with mean

~� and diagonal covariance matrix �. Given a set f�
b

g

B

b=1

of B

background person models for person C, the average log likeli-

hood of the claimant being an impostor is found using:
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The set of background person models is found using the method

described in [13]. An opinion on the claim is found using:

�(X) = L(Xj�

C

)� L(Xj�

C

) (15)

The verification decision is reached as follows: given a thresh-

old t, the claim is accepted when �(X) � t and rejected when

�(X) < t.
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4. VIDTIMIT AUDIO-VISUAL DATABASE

The VidTIMIT database, created by the authors, is comprised of

video and corresponding audio recordings of 43 people (19 female

and 24 male), reciting short sentences. It was recorded in 3 ses-

sions, with a mean delay of 7 days between Session 1 and 2, and

6 days between Session 2 and 3.

The sentences were chosen from the test section of the NTIMIT

corpus [14]. There are 10 sentences per person. The first six

sentences are assigned to Session 1. The next two sentences are

assigned to Session 2 with the remaining two to Session 3. The

first two sentences for all persons are the same, with the remaining

eight generally different for each person. The mean duration of

each sentence is 4.25 seconds, or approximately 106 video frames.

The recording was done in a noisy office environment using a

broadcast quality digital video camera. The video of each person is

stored as a sequence of JPEG images with a resolution of 384 � 512

pixels. The corresponding audio is stored as a mono, 16 bit, 32 kHz

WAV file. For more information on the database, please visit

http://spl.me.gu.edu.au/vidtimit/ or contact the authors.

5. EXPERIMENTS

Before feature extraction can occur, the face must first be

located [15]. Furthermore, to account for varying distances to the

camera, a geometrical normalization must be performed. We treat

the problem of face location and normalization as separate from

feature extraction.

To find the face, we use template matching with several pro-

totype faces of varying dimensions. Using the distance between

the eyes as a size measure, an affine transformation is used [10]

to adjust the size of the image, resulting in the distance between

the eyes to be the same for each person. Finally a 56 � 64 pixel

face window, w(y; x), containing the eyes and the nose (the most

invariant face area to changes in the expression and hair style) is

extracted from the image.

For PCA, the dimensionality of the face window is reduced to

40 (choice based on the work by Samaria [16] and Belhumeur [7]).

For DCT and DCT derived methods, each block is 8� 8 pix-

els. Moreover, each block overlaps with horizontally and vertically

adjacent blocks by 50%.

For Gabor features, we follow Duc [3] where the dimensional-

ity of the Gabor feature vectors is 18. The location of the wavelet

centers was chosen to be as close as possible to the centers of the

blocks used in DCT-mod2 feature extraction.

To reduce the computational burden during modeling and test-

ing, every second video frame was used. For each feature extrac-

tion method, 8-Gaussian client models (GMMs) were generated

from features extracted from face windows in Session 1.

An artificial illumination change was introduced to face win-

dows extracted from Sessions 2 and 3. To simulate more illumi-

nation on the left side of the face and less on the right, a new face

window v(y; x) is created by transforming w(y; x) using:

v(y; x) = w(y; x) +mx+ Æ (16)

for y = 0; 1; :::; 55 and x = 0; 1; :::; 63

where m =

�Æ

63=2

(17)

and Æ = illumination delta (in pixels)

Example face windows for various Æ are shown in Fig. 3. It must

be noted that the above artificial illumination change is rather re-

strictive as it does not cover all the effects of illumination changes

possible in real life (shadows, etc.).

Fig. 3. Examples of varying light illumination; left: Æ = 0 (no change);
middle: Æ = 40; right: Æ = 80

To find the performance, Sessions 2 and 3 were used for obtain-

ing example opinions of known impostor and true claims. Four

utterances, each from 8 fixed persons (4 male and 4 female), were

used for simulating impostor accesses against the remaining 35

persons. As in [13], 10 background person models were used for

the impostor likelihood calculation. For each of the remaining 35

persons, their four utterances were used separately as true claims.

In total there were 1120 impostor and 140 true claims. The deci-

sion threshold was then set so the a posteriori performance is as

close as possible to Equal Error Rate (EER) (ie. where the False

Acceptance Rate is equal to the False Rejection Rate).

In the first experiment, we found the performance of the DCT

approach on face windows with Æ = 0 (ie. no illumination change)

while varying the dimensionality of the feature vectors. The results

are presented in Fig. 4. The performance improves immensely as

the number of dimensions is increased from 1 to 3. Increasing

the dimensionality from 15 to 21 provides only a relatively small

improvement, while significantly increasing the amount of compu-

tation time required to generate the models. Based on this we have

chosen 15 as the dimensionality of baseline DCT feature vectors

- hence the dimensionality of DCT-delta is 30, DCT-mod is 12,

DCT-mod-delta is 42 and DCT-mod2 is 18.

In the second experiment we compared the performance of

DCT and all of the proposed techniques for increasing Æ. Results

are shown in Fig. 5.

In the third experiment we compared the performance of PCA,

DCT, Gabor and DCT-mod2 features for varying Æ. Results are

presented in Fig. 6.

Computational burden is an important factor in practical ap-

plications, where the amount of required memory and speed of

the processor have direct bearing on the final cost. Hence in the

final experiment we compared the average time taken to process

one face window by PCA, DCT, Gabor and DCT-mod2 feature ex-

traction techniques. It must be noted that apart from having the

transformation data pre-calculated (eg. � DCT basis functions),

no thorough hand optimization of the code was done. Neverthe-

less, we feel that this experiment provides figures which are at

least indicative. Results are listed in Table 1.

6. DISCUSSION AND CONCLUSIONS

We can see in Fig. 4 that the first three DCT coefficients contain

a significant amount of person dependent information. Thus ig-

noring them (as in DCT-mod) implies a reduction in performance.
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Fig. 4. Performance for varying dimensionality of DCT feature vectors
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Fig. 5. Performance of DCT and proposed feature extraction techniques

This is verified in Fig. 5 where the DCT-mod features have worse

performance than DCT features when there is little or no illumina-

tion change (Æ � 30). Performance of DCT features is fairly stable

for small illumination changes but degrades for Æ � 40. This is in

contrast to DCT-mod features which have a relatively static perfor-

mance.

The remaining proposed features (DCT-delta, DCT-mod-delta

and DCT-mod2) do not have the performance penalty present in

DCT-mod. Moreover, all of them have similarly better perfor-

mance than DCT features. DCT-mod2 edges out DCT-delta and

DCT-mod-delta in terms of stability for large illumination changes

(Æ � 50). Additionally, the dimensionality of DCT-mod2 is lower

than DCT-delta and DCT-mod-delta.

The results suggest that delta features make the system more

robust as well as improve performance. The results also suggest

that it is only necessary to use deltas of coefficients representing

the DC level and low frequency features (ie. the 0th, 1st and 2nd

DCT coefficients) while keeping the remaining DCT coefficients

unchanged. Hence out of the four proposed feature extraction tech-

niques, the DCT-mod2 approach is the most suitable.

Comparing PCA, DCT, Gabor and DCT-mod2 (Fig. 6), we

can see that the DCT-mod2 approach is the most immune to illu-

mination changes - the performance is virtually flat for varying Æ.

The performance of PCA derived features rapidly degrades as Æ

increases. Performance of Gabor features is stable for Æ � 40 and

then gently deteriorates as Æ increases. The results suggests that we

can order the features, based on their robustness and performance,

as follows: DCT-mod2, Gabor, DCT, and lastly, PCA.

It must be noted that using the introduced illumination change,

the center portion of the face (column wise) is largely unaffected.

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

40

45

δ

E
E

R
 (

%
)

PCA
DCT
GABOR
DCT−MOD2

Fig. 6. Performance of PCA, DCT, Gabor and DCT-mod2 feature extrac-
tion techniques

Method Time (msec)

PCA 11

DCT 6

Gabor 675

DCT-mod2 8

Table 1. Average time taken per face window (results obtained using
Pentium III 500 MHz, Linux 2.2.18, gcc 2.96)

The size of the portion decreases as Æ increases. In the PCA

approach one feature vector describes the entire face, hence any

change to the face would alter the features obtained. This is in

contrast to the other approaches (Gabor, DCT and DCT-mod2),

where one feature vector describes only a small part of the face.

Thus a significant percentage (dependent on Æ) of the feature vec-

tors is virtually unchanged, automatically leading to a degree of

robustness.

It must also be noted that when using the GMM classifier in

conjunction with the Gabor, DCT or DCT-mod2 features, the spa-

tial relation between major face features (eg. eyes and nose) is lost.

However, excellent performance is still obtained.

In Table 1 we can see that Gabor features are the most compu-

tationally expensive to calculate, taking about 84 times longer than

DCT-mod2 features. This is due to the size of the Gabor wavelets

as well as the need to compute both real and imaginary inner prod-

ucts. Compared to Gabor features, PCA, DCT and DCT-mod2 fea-

tures take a relatively similar amount of time to process one face

window.
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