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A parameter whose coupling to a quantum probe of n constituents includes all two-body interactions
between the constituents can be measured with an uncertainty that scales as 1=n3=2, even when the
constituents are initially unentangled. We devise a protocol that achieves the 1=n3=2 scaling without
generating any entanglement among the constituents, and we suggest that the protocol might be
implemented in a two-component Bose-Einstein condensate.
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Quantum mechanics determines the fundamental limits
on measurement precision. In the prototypal quantum met-
rology scheme, the value of a parameter is imprinted on a
quantum probe through an interaction in which the pa-
rameter appears as a coupling constant [1]. The number
n of constituents in the probe is often considered to be the
most important resource for such schemes. We denote the
parameter to be estimated by �, and we write the interac-
tion Hamiltonian as H � @�H, where H is a dimension-
less coupling Hamiltonian. The measurement precision is
quantified by the units-corrected root-mean-square devia-
tion �� of the estimate �est from its true value [2].

The scaling of ��with n depends on the probe dynamics
as expressed in H [3–10]. For an interaction that acts
independently on the probe constituents, the optimal mea-
surement precision scales as 1=n, a scaling often called the
‘‘Heisenberg limit.’’ In contrast, a nonlinear Hamiltonian
that includes all possible k-body couplings gives an opti-
mal sensitivity that scales as 1=nk. To achieve this requires
that the initial probe state be entangled. If practical con-
siderations preclude initializing the probe in an entangled
state, sensitivity that scales as 1=nk�1=2 is possible us-
ing a probe that is initially in a product state [3,4,6,8,10].
Both of these scalings can be achieved with separable
measurements.

Practical interest in using nonlinear interactions for
quantum metrology comes from the fact that, even with
two-body couplings and initial product states, it is possible
to obtain a 1=n3=2 scaling for �� [3,4,6,8–10]. In all such
schemes proposed until now, (particle) entanglement is
generated during the protocol that leads to better than
1=n scaling. We formulate here a protocol that generates
no entanglement among the probe constituents yet still
achieves the 1=n3=2 scaling; in this protocol, it is clearly
the dynamics alone that leads to improvement over the 1=n
scaling. The dynamics has the same quantum-mechanical
character as linear (k � 1) metrology schemes but is n
times faster. Even though this Letter is mainly about im-
proving on the Heisenberg scaling, any experimental dem-

onstration of a scaling better than 1=n1=2 would be of
considerable interest to the metrology community.

A typical k � 2 choice for a probe made of qubits is
H � J2

z , where Jz �
1
2

Pn
j�1 Zj is the z component of the

‘‘total angular momentum,’’ with Zj being the Pauli Z
operator for the jth qubit. We denote the eigenvectors of
Z by j0i and j1i. An optimal initial state, evolving for a
time t, gives a signal that oscillates in � with frequency
tn2=4. Sampling from this signal over � trials leads to a
measurement precision �� � 4=tn2 ���

�
p

[5].
If the initial probe state is required to be a product state,

an optimal input state is of the form e�iJy�j0i�n �
�cos��=2�j0i � sin��=2�j1i��n, where 0<� 	 �=2. A
measurement of Jy after the probe has evolved for a time
t under the J2

z Hamiltonian leads to a measurement preci-
sion that scales as 1=tn3=2 ���

�
p

, provided �t is small [8]. This
scaling applies for all values of � � �=2, but the optimal
sensitivity occurs for � � �=4. The restriction to small
times arises because Jz eigenstates accumulate phase shifts
quadratic in n, leading to a ‘‘phase dispersion’’ that after a
short time renders it impossible to determine � optimally
from a separable measurement such as that of Jy.

For the J2
z Hamiltonian, the entanglement generated

during evolution from an initial product state and the phase
dispersion are two aspects of the same phenomenon. One
might think that the generated entanglement and associated
phase dispersion somehow play a role in the enhanced
1=n3=2 scaling, but it would normally be expected that
the phase dispersion is best avoided [8].

The essential observation we make here is that, if the J2
z

Hamiltonian were replaced with one of the form H � nJz,
there would be no phase dispersion and no generated
entanglement. An nJz Hamiltonian acts as a linear cou-
pling whose strength is proportional to n. Physically, an
nJz coupling cannot arise from a fundamentally linear
coupling, as that would require the coupling strength to
be a function of the number of constituents in the probe.
We show here that it can arise naturally from quadratic
couplings to the parameter.
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With a pure nJz interaction, the optimal initial product
state is e�iJy�=2j0i�n � ��j0i � j1i�=

���
2
p
��n. The state re-

mains unentangled at all times, evolving to ��e�i�tn=2j0i �
ei�tn=2j1i�=

���
2
p
��n. A measurement of Jx at time t has

expectation value hJxi �
1
2n cos��tn� and uncertainty

�Jx �
1
2

���
n
p
j sin��tn�j, leading to measurement precision

�� � �Jx=�
���
�
p
jdhJxi=d�j� � 1=tn3=2 ���

�
p

after � trials. A
measurement of any other equatorial component of J
achieves the same sensitivity. The enhanced scaling in
this protocol is clearly due to the dynamics alone, not to
entanglement of the constituent qubits. These results in-
dicate that, in quantum metrology, entanglement is impor-
tant only in providing an optimal initial state, which leads
to an improvement by a factor of 1=n1=2 over initial prod-
uct states.

We are interested in investigating measurement proto-
cols that use both J2

z and nJz interactions in systems of
bosons that can occupy two modes with creation operators
ay1 and ay2 . In the Schwinger representation, we have Jz �
1
2 �n1 � n2� and n � n1 � n2, where n1 � ay1a1 and n2 �

ay2a2 are the numbers of particles in the two modes. The
bosons that we consider interact with one another, but the
interactions conserve particle number. Our measurement
protocols, for both types of coupling, can be represented in
terms of the interferometer with nonlinear phase shifters
depicted in Fig. 1. In practical implementations, the inter-
ferometer might be an optical or Ramsey interferometer or
an interferometer made up of coupled nanomechanical
resonators [10]. Optical interferometers using coherent
states as inputs will have phase dispersion even with the
nJz interaction because of the uncertainty in n. To avoid
phase dispersion, we focus on bosonic systems with non-
zero chemical potential in which number states are easy to
create.

An nJz coupling acts as a linear coupling with a cou-
pling strength proportional to n. Thus the effect of deco-
herence on our measurement protocol is the same as that on
a linear protocol with a product-state input. In particular,
decoherence that acts independently on the probe particles
preserves the 1=n3=2 scaling at all times [8,10].

We turn now to the problem of implementing the non-
linear interferometer of Fig. 1 in a laboratory system of
considerable interest. For this purpose [7,9] we consider a
two-mode Bose-Einstein condensate (BEC) in which the n
atoms can occupy two internal states (modes) labeled j1i
and j2i, which are typically hyperfine levels. The atoms
that form the initial BEC are all in the internal state j1i. In
the mean-field approximation, they all share the same
spatial wave function  n�r�, which is the n-dependent
ground-state solution of the Gross-Pitaevskii equation for
a trapping potential V�r� and a scattering term character-
istic of internal state j1i. An external field (the first beam
splitter in Fig. 1) drives transitions between the two inter-
nal states [11], resulting in every atom being in the same
superposition of the two internal states. We assume that the

atomic collisions are elastic, so the only scattering chan-
nels are j1ij1i ! j1ij1i, j2ij2i ! j2ij2i, and j1ij2i !
j1ij2i. These have amplitudes g11, g22, and g12, respec-
tively, where gij � 4�@2aij=m, with aij being the s-wave
scattering length. The effect that we seek is the differential
phase shift between the two internal states due to their
different scattering properties. After some period of evo-
lution, a second external field (the second beam splitter in
Fig. 1) drives a �=2 pulse between the internal states. A
final measurement then determines the population differ-
ence between the two internal states. In the following, we
are interested in the BEC dynamics that occurs between
application of the external fields.

We assume, as can be achieved in the laboratory, that the
two internal states are chosen so that both see the same
trapping potential V. Nonetheless, the spatial wave func-
tions of the two internal states will diverge because they
experience different scattering interactions. The effect of
the scattering terms on the spatial wave functions becomes
important at the atom number nc, where the scattering
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FIG. 1 (color online). Nonlinear interferometer giving J2
z and

nJz couplings. An incoming beam of n bosons is split at a beam
splitter, which puts each boson into an appropriate superposition
of being in the two arms (modes). The two initial nonlinear
phase shifters produce Kerr phase shifts �1n

2
1 and �2n

2
2. The

phase shifter at the intersection of the beams produces a cross-
Kerr phase shift 2�12n1n2. The final 50=50 beam splitter con-
verts the required measurement of an equatorial component of J
into a measurement of Jz, i.e., a counting of the difference of the
numbers of particles in the two output beams. The net effect of
the nonlinear phase shifters is the same as a probe Hamiltonian
H acting for a time t, with H t=@ � �1n

2
1 � �2n

2
2�

2�12n1n2 � �� � �12�n
2=2 � ��1 � �2�nJz � 2�� � �12�J

2
z ,

where � � 1
2 ��1 � �2� is the average Kerr phase shift. The term

proportional to n2 produces an overall phase shift and can be
ignored. The nJz coupling comes from having different Kerr
phase shifters in the two arms; to eliminate the J2

z interaction
requires a cross-Kerr coupling �12 � �. Under these circum-
stances, we have H � @�nJz, with �t � �1 � �2.
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energy becomes comparable to the total atomic kinetic
energy. For n small compared to nc, the two spatial wave
functions remain essentially the same; for n larger than nc,
we neglect changes in the spatial wave functions to keep
our analysis simple. We address the effect of the break-
down of this approximation below.

With these assumptions, the Hamiltonian for the two-
mode BEC [12,13] takes the form

 H �H 0 � �1��n� 1�Jz � �2�J
2
z ; (1)

where ��
R
drj n�r�j4, �1�

1
2�g11�g22�, �2�g�g12,

and g � 1
2 �g11 � g22� (notice that �1 and �2 do not have

units of frequency). The only effect of the Hamiltonian
H 0 � nE0 �

1
4 �g� g12��n2 � 1

2g�n, where E0 is the
single-particle kinetic plus trap potential energy corre-
sponding to  n, is to introduce an overall phase, and thus
H 0 can be ignored. We assume that n is large enough that
we can replace n� 1 with n in H .

In a harmonically trapped BEC, the repulsive scattering
interactions cause the single-particle ground-state wave
function  n to spread as the number of particles increases.
This effect appears in the BEC Hamiltonian in the factor �,
which is inversely proportional to the effective volume
occupied by the ground-state wave function. The n depen-
dence of � gives the coupling strength a dependence on n
that must be included in our analysis of the precision in
estimating �1;2.

When the number of atoms is small compared to nc, the
total kinetic energy far exceeds the scattering energy,
resulting in a ground-state wave function that is indepen-
dent of n. In a three-dimensional harmonic trap with
ground-state half-width s, the total kinetic energy is

n�@2=ms2�, and the scattering energy is 
n2�g11=s

3�
(for atoms in internal state j1i), giving nc 
 s=a11.
Typical values of a11 
 10 nm and s
 10 �m give nc 

1000. Hence, for a condensate composed of tens to a few
hundred or so atoms, � does not depend significantly on n,
implying a scaling of 1=n3=2 in such small BECs.

In large harmonically trapped BECs, with n� nc, �
acquires an n dependence that defeats the desire to improve
on 1=n scaling. Strategies for dealing with this include
using traps with harder walls than a harmonic trap and
working with BECs confined to fewer than three dimen-
sions. To assess these strategies, we compute the n depen-
dence of � when the BEC is trapped in d longitudinal
dimensions by a spherically symmetric potential V � 1

2 kr
q

and is tightly confined in the remaining D � 3� d trans-
verse dimensions by a harmonic potential. The longitudi-
nal trap is characterized by the hardness parameter q and
the half-width of its (bare) ground-state wave function
R0 � �@

2=mk�1=�q�2�, for which a typical value might be
R0 
 10 �m. The tight transverse potential is character-
ized by its resonant frequency !0 and the half-width s �
�@=2m!0�

1=2 of its ground-state wave function, for which a
typical value would be s
 100 nm.

There are now two critical atom numbers. The first,
nL � �R0=a11��s=R0�

D, occurs when the scattering energy
is comparable to the longitudinal kinetic energy. As n
increases from nL, the ground-state wave function spreads
in the longitudinal dimensions, its size growing as R

R0�n=nL�1=�q�d�. The second critical atom number, nT �
�s=a11��R0=s�

d�q�2�=q, arises when the scattering energy
becomes as large as the transverse kinetic energy (so
does not apply when d � 3), at which point the longitudi-
nal extent of the wave function is RT . The corresponding
atomic number density nT=sDRdT 
 1=a11s2 
 1016 cm�3

is right at the upper limit on number density set by three-
body scattering losses, so we consider only atom numbers
smaller than nT .

For atom numbers between nL and nT , a reasonable
approximation to the ground-state solution of the Gross-
Pitaevskii equation is obtained by using the Gaussian
ground state of width s in the transverse dimensions and
using the Thomas-Fermi approximation for the longitudi-
nal wave function [14]. In this approximation, we find

 � �
2q

2q� d
	
ng11

�

q;d
sDRd0

�
nL
n

�
d=�d�q�

; (2)

where 	 � �� 1
2D@!0 is the longitudinal part of the

chemical potential � and 
q;d is a geometric factor of
order unity that depends on q and d but not on n. The n
dependence of� implies an effective coupling strength that
scales as n��1=2, where � � �d� 3q�=2�d� q�. The pre-
cision of estimating �1 or �2 thus scales as 1=n�.

For a three-dimensional BEC trapped in a harmonic
potential, the measurement precision scales as 1=n9=10,
worse than the Heisenberg scaling but still better than
1=n1=2. To achieve super-Heisenberg scalings requires a
trapping potential that is harder than a harmonic potential
or else working with a one- or two-dimensional BEC. For
d � 2, a BEC trapped in a harmonic potential matches the
1=n scaling, and a one-dimensional harmonic BEC betters
it, achieving a 1=n7=6 scaling. A d-dimensional BEC
achieves super-Heisenberg scaling when the hardness pa-
rameter q exceeds d. The limit of large q corresponds to a
trap with hard walls and extent 2R0 and has � � 3=2
regardless of d. For a one-dimensional BEC, an alternative
to hard caps is to use a ring geometry.

A good candidate for implementing the generalized
metrology protocol is a BEC made of 87Rb atoms. Atoms
in the hyperfine level jF � 1;MF � �1i � j1i are trapped
and cooled to form a BEC, and then a Raman or
microwave-driven transition is used to create a superposi-
tion of j1i and the hyperfine level [11,15] jF � 2;MF �
1i � j2i. The s-wave scattering lengths a11, a22, and a12

are nearly degenerate for 87Rb, with ratios fa22:a12:a11g �
f0:97:1:1:03g. These values imply that �2 �

1
2 �

�g11 � g22� � g12 is essentially zero for this scheme,
meaning that a 87Rb BEC can realize the generalized
quantum metrology protocol with a pure n��1=2Jz cou-
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pling. The optimal initial state for this protocol has all
atoms in an equally weighted superposition of j1i and
j2i. The quantity that is estimated is proportional to �1 �
1
2 �g11 � g22�, which, though small, is nonzero for the scat-
tering lengths in 87Rb.

Effects neglected in our analysis impose important limi-
tations. The difference in evolution of the spatial wave
functions of the two internal states is likely to be the
most severe restriction on measurement time. If the spatial
wave functions are not identical, there is a position-
dependent relative phase between j1i and j2i in addition
to the overall relative phase in which we are interested. The
sensitivity scaling is unaffected for short times, and pre-
liminary results suggest that this effect can be further sup-
pressed by using a hard trap or a lower-dimensional BEC.

Loss of atoms from the trap is an important decoherence
mechanism, mainly due in our protocol to inelastic spin-
exchange collisions (exchange of atoms with the thermal
cloud that is present around any realistic BEC is negli-
gible). A chief advantage of using protocols that do not rely
on entanglement is that loss of atoms does not affect the
sensitivity scaling, although it does generally degrade the
sensitivity. In the case of spin-exchange collisions, the
decoherence can be modeled in terms of a parameter
��=2, which we can estimate using data from Ref. [16]
and the assumption that j1i and j2i have the same spatial
wave function. This estimate gives �=2�1 
 1=26, imply-
ing that we can perform a measurement of �1 before
inelastic collisions have a significant impact.

A final issue is that the number of atoms in a BEC is not
known to arbitrary precision, as we have assumed until
now. We propose to determine n by counting the number of
atoms in both internal states at the output of our protocol. A
determination of n with a fractional error of �n=n
 0:01,
which is within current capabilities, would be sufficient for
the purpose of demonstrating an enhanced scaling with n,
provided that the measurement time is kept short enough
that the nonlinear phase shift is much smaller than n=�n.
We note that, if �n is bigger than

���
n
p

, the chief practical
advantage of the nJz interaction is obviated, since the
requirement on measurement time is as strict as or stricter
than that set by phase dispersion in a J2

z protocol. Even so,
the ability of the nJz coupling to achieve enhanced scalings
with no generated entanglement remains an important
objective.

We have shown that it is possible to achieve measure-
ment precision that scales better than 1=n by using the
dynamics generated by nonlinear Hamiltonians. The pure
nJz scheme introduced here does not use quantum entan-
glement at any stage to achieve the enhanced scaling. Early
experiments to test our scheme in BECs are likely to focus
on demonstrating enhanced scaling in the estimation of
some combination of atomic scattering lengths. To be
useful, however, our scheme must be adapted to measuring
external fields that modulate the atomic scattering proper-
ties. One possibility is to use a 133Cs BEC with optical

trapping of the jF � 3;MF � 3i state [17], which has a
very broad Feshbach resonance at 8 G, which makes the
scattering lengths very sensitive to the strength of an
external magnetic field [18,19]. This suggests that our
scheme might be used for ultrahigh precision
magnetometry.
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