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Abstract 

Irregularities in intracellular traffic in axons caused by mutations of molecular motors may lead to 

“traffic jams”, which often result in swelling of axons causing such neurodegenerative diseases as 

Alzheimer’s disease and Down syndrome. Hence, it is of particular interest to mathematically 

model the formation of traffic jams in axons. This paper adopts the hydrodynamic continuity 

equations for intracellular transport of organelles as developed by Smith and Simmons [1] 

whereas the Kerner and Konhäuser [2] model for traffic jams in highway traffic is applied to 

predict the velocity field. It is observed that combination of the two sets of equations can 

comprehensively predict the traffic jams in axons without the need to any additional assumption 

or modification. 
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t%  time 

t dimensionless average relaxation time, kτ +
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±v~  velocity of a particle moving on a MT in the (+)/(−) directions, respectively 

V±
%  average motor velocity of the anterograde (+) and retrograde (−) transport, respectively 

0V+
%  average motor velocity of the anterograde (+) transport for the case when concentration 

of particles riding on MTs is very low 
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Greek symbols 

µ dimensionless viscosity of the traffic flow, 0
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µ%  viscosity of the traffic flow 

0σ , Lσ  degree of loading at 0~ =x / Lx
~~ =  

τ%  average relaxation time 

 

1. Introduction 

Neurons are known to be highly specialized cells with long arms (processes). An axon is an arm 

which transmits electrical signals. This arm is called a dendrite (see Fig. 1 of Alberts et al. [3]) if 

it receives electrical signals. Axons in a human body can be up to one meter in length. They 

support little synthesis of proteins or membrane; hence, materials must be imported constantly 

from the synthetically active cytoplasm of the cell body (Hurd and Saxton [4]) and be transported 
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to arms’ terminals. Diffusion is not a sufficiently fast mechanism for transporting large 

intracellular particles (organelles), such as large protein particles or intracellular vesicles carrying 

different types of cargo. This is because according to Einstein’s relation for the diffusivity of 

small particles due to the Brownian motion, the diffusivity is inversely proportional to the 

particles’ radius, which means that larger particles have smaller diffusivity. To overcome the 

diffusion-limited intracellular transport in axons and dendrites axons rely on the “railway system” 

whereby large intracellular particles attach themselves to molecular motors (specialized proteins 

that as a result of a chemical process, usually ATP hydrolysis, undergo conformational changes 

“walking” along intracellular filaments, such as microtubules (MTs)). 

All MTs in an axon have the same polarity (their plus ends point toward the axon terminal); the 

MTs do not stretch the entire length of the axon so that the continuous path along the axon is 

composed by short overlapping segments of parallel MTs. Transport vesicles loaded with specific 

proteins are carried away from the neuron body toward the synapse (the axon terminal) by 

kinesin-family molecular motors (this family of molecular motors is responsible for the transport 

on MTs toward their plus-ends). Used and old intracellular organelles are carried from the axon 

terminal toward the body of the neuron by dynein-family molecular motors (this family of 

molecular motors is responsible for the transport on MTs toward their minus-ends). In dendrites 

the MT polarities are mixed; some of them point their plus ends toward the dendrite tip and some 

point those toward the neurons’ body. Therefore, in a dendrite, depending on the polarity of a 

particular MT, transport in a certain direction (to the neuron’s body or away from it) can be 

carried out by either kinesin or dynein molecular motors [3]. 

Irregularities in intracellular traffic in axons caused by mutations of molecular motors may lead to 

“traffic jams”, which may result in swelling of axons causing various neurodegenerative diseases 

(Hurd and Saxton [4], Goldstein [5], Martin et al. [6]). Hurd and Saxton [4] published electron 

micrographs of cross-sections through axonal swellings. The micrographs show that the 

swellings, caused by traffic jams induced by a mutation of a gene encoding the force-producing 

heavy chain of the kinesin molecular motor, are packed with mitochondria, large multi-vesicular 

bodies, and other types of intracellular organelles. 

Traffic jams in intracellular transport in axons are similar to those in highway traffic [7-10]. 

Moving in a step-like manner on MTs, kinesin and dynein use energy obtained from ATP 

hydrolysis to generate force. Experimental observations have been made that step sizes of dynein 

motors depend on the hindrance force against forward movement of these motors. Based on these 

observations, Mallik et al. [11] proposed a molecular gear mechanism for them. In a recent study, 
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Kunwar et al. [12] presented a cellular automata model for intracellular traffic of dynein motors 

based on the aggressive driving model of vehicular traffic. Fortunately, traffic jams in highway 

traffic have been studied in great detail using different models including, cellular automation, gas 

kinetic, and car-following (Nagatani [13]).  

The aim of this paper is to simulate traffic jams in an axon by applying numerical techniques. The 

combination of the molecular motor-assisted transport equations reported in [1] and the 

hydrodynamic model of traffic jams in highway traffic proposed in [2] form the governing 

(continuity and momentum, respectively) equations. The model developed by Kuznetsov and 

Hooman [7] relies exclusively on the first set of equations, i.e. the continuity equations. There, it 

was assumed that either the detachment rate or the velocity is an exponential function of the 

number density while the other  remains uniform along the axon. That is, no equation was solved 

to obtain the velocity distribution. The present work, on the other hand, uses the momentum 

equations of [2] to find the velocity distribution. Hence, it can shed some light on the traffic jams 

in axons, over a wide range of key parameters, both qualitatively and quantitatively.  

 

2. Governing equations 

The molecular-motor-assisted transport equations suggested in Smith and Simmons [1] are 
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where 0
~
D  is the diffusivity of a free particle; t~  is the time; 0

~n  is the free particles concentration; 

+n~ , −n~  is the concentration of particles moving on MTs in the positive and negative direction 

(away from/toward the cell body) respectively; x~  is the linear coordinate along the axon; −v~ , +v~  

is the velocity of a particle moving on a MT toward and away from the cell body (in an axon this 

is the motor velocity generated by a dynein/kinesin -family molecular motor) respectively; +k
~

 

and −k
~

 are the first order rate constants for binding to MTs for particles that move in the positive 
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and negative directions, respectively; and +′k
~

 and −′k
~

 are the first order rate constants for 

detachment from MTs for particles that move in the positive and negative directions, respectively. 

These equations are supplemented by equations of motion, which state that the product of particle 

density and acceleration equals the sum of acting forces (Kerner and Konhäuser [2]), i.e. 
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where τ~ is the average relaxation time, 20
~c  is the variance of the velocity distribution,µ~  is the 

viscosity of the traffic flow, and V±
%  is the average motor velocity of the anterograde/retrograde 

(+/-) transport, respectively. 

The terms on the right side of the above equations should be interpreted as statistical anticipation 

functions [8]. Hence, the pressure terms [2], 
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The appropriate boundary conditions for Eqns. (1-5) are  
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According to the Pi theorem, the maximum reduction is equal to two (the number of dimensions 

describing the variables, length and time). Introducing the appropriate scales, similar to [7,8], and 

assuming constant and uniform traffic properties (viscosity, relaxation time, and velocity 
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variance), the dimensionless steady-state (as a large timescale involved in their formation) form 

of the governing equations are  
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Dimensionless boundary conditions are 

0=x  /( )
0

d v

dx
+ − = 00 Nn = 00Nn σ=+      (13) 

Lx =  /( )
0

d v

dx
+ − = LNn =0 LL Nn σ=−      (14) 

Then, the dimensionless flux of intracellular organelles can be given by  

0
0

dn
j D v n v n
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Finite difference approximation is used to solve the non-linear system of equations, i.e. Eqns. (8-

12), iteratively subject to the appropriate boundary conditions, i.e. Eqns. (13-14). The governing 

equations are discretized using the Central Difference Scheme (CDS) using a uniform grids of 

size ∆x=0.025. Grid independence is verified by running the code on different grid sizes. It is 

observed that moving ∆x from 0.025 to 0.015, the change in the results is less than 1%. The 

convergence criterion (maximum relative error in the values of the dependent variables between 

two successive iterations) in all runs is set at 10-7. As a test on the accuracy of the numerical 

procedure the results are compared (successfully) with [7,8].  
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3. Results and Discussion 

In the light of Dinh et al [14], the detachment rate constants, ±′k
~

, for trafficking adenoviruses of 

type 2 in HeLa cells are estimated as 0.5 1−s . The corresponding binding rates, 1
~ =±k , are taken 

to be equal to 1 1−s  based on [1,7] where the authors assumed that typical molecular motor 

velocities are 1~ ±=±v  µm/s and that the Einstein relation for a 1-µm sphere in water gives 

4.0
~

0 =D  µm2/s. As estimations of transport properties for different types of organelles are given 

in Table 1 of [15] and in supplementary material for [16], they are not repeated here. An axon 

with a dimensionless length of L=20 is modeled in this research. We have also assumed that 

N0=NL =σ0= σL=0.1, and V+,-=+,-1. 

Figures 2-4 display dimensionless number density concentrations of free particles, 0n , those 

riding on microtubules toward and away from the neuron body, n- and n+, and the anterograde and 

retrograde velocities for different values of the controlling parameters. Figures 2(a,b) correspond 

to t=0.01 and µ=100 with different values of c0. It can be seen in the figure that as c0 changes, by 

even order of magnitude, with the mentioned values for the other parameters, velocities (in either 

direction) are close to their average values throughout the axon hinting that traffic jams are not 

forming.  

With figures 3(a-d), on the other hand, where µ was made to change from 0.01 to 100, with t and 

c0 being fixed (at 1 and 0.1, respectively), a different phenomenon is observed. As the 

dimensionless viscosity increases, all three number density concentrations increase. Interestingly, 

the local velocities, still almost uniformly distributed, tend to be half of their average values.  

A traffic jam for n+ is evident in Fig. 3(c); it occurs at approximately x=2.0 which is, surprisingly, 

the same location as that reported in [7] based on their simplified model. The traffic of organelles 

toward the axon terminal becomes more jammed as µ increases. This is similar to the formation 

of a cluster of cars in traffic flow [17], with the difference that traditional traffic flows are 

essentially unsteady, and clusters of cars (traffic jams) often form in a homogeneous flow and are 

highly dynamic while those in the intracellular flow of organelles are steady [7]. 

Figures 4(a-d), that show the effect of changing the relaxation time, with fixed viscosity and 

velocity variance, illustrate clearly that the model is capable of predicting the traffic jam. For the 

highest relaxation time, the number density concentrations are almost doubled (except for regions 

near the two ends of the axon where boundary conditions are to be satisfied) compared to the 

lower values of t. Interestingly, the velocity values approach zero (to be more specified reduce by 
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90% for v- and 60% for v+) for high t values. Surprisingly, the velocity distribution tends to be 

almost indistinguishable when t>1 while the changes in the number density concentrations (when 

t=1) are not as severe as those of t=10 compared to t=0.1. A notable observation is that v- seems 

to be more sensitive to a change in relaxation time compared to v+. This is a very important 

observation that the anterograde and retrograde velocities do not mirror about the x-axis. This is, 

however expected as the boundary conditions are different for number density concentrations at 

the two axon ends despite being identical for the two velocities. The reader should be reminded 

that the nature of the problem is a coupled one, i.e. the number density concentrations are 

functions of the velocities (see Eqns. (1-3)) while the velocities are, in turn, affected by the 

number density concentrations; see Eqns. (4-5). 

Figure 5 illustrates how the (dimensionless) flux j, on the vertical axis, changes when the 

controlling parameters (c0
2, t, and µ) vary. The horizontal axis represents one of these independent 

variables (mentioned in the legend in the figure insert) with the other two being fixed. Observe 

that increasing either of c0 or t leads to higher j values. This seems to be the case for low viscosity 

values while for higher viscosities, say µ>10, the converse is true as j decreases with µ. According 

to this figure, traffic jam results in reducing the flux of organelles toward axon terminal with the 

reduction being more significant as µ increases. 

 

4. Conclusions 

This research demonstrates that modified Smith-Simmons equations if supplemented by Kerner-

Konhäuser equations are capable of modeling traffic jams in molecular-motor-assisted transport 

of intracellular organelles in axons. Effect of different combination of the key parameters, on 

number densities and velocities, is examined. It was observed that not only the increase in the 

number density can slow down the traffic jam but also the interaction between different terms in 

the momentum equations can play a key role. This can be worse in the regions occupied by 

axonal swelling, where organelles with attached molecular motors compete for the same limited 

space close to the microtubule. Traffic jams as well as sharp reduction in local velocities can 

result in reducing the flux of organelles toward axon terminal, which may eventually lead to a 

disruption of normal functioning of the neuron.  
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Figure captions 

Fig. 1. Schematic diagram of a neuron cell with a dendrite and axon; also, a traffic jam in the 

axon resulting from crowding of organelles at a certain location in the axon.  

Fig. 2. Effect of velocity variance on the molecular-motor assisted transport along microtubules 

on number density concentrations of free particles,0n , particles riding on microtubules toward the 

neuron body, −n , particles riding on microtubules away from the cell body, +n (a), and 

anterograde/retrograde velocities (b) computed for µ=100 and t=0.01. 

Fig. 3. Effect of dimensionless viscosity on number density concentrations of free particles, 0n  

(a), particles riding on microtubules toward the neuron body, −n  (b), particles riding on 

microtubules away from the cell body, +n  (c), and anterograde/retrograde velocities (d) 

computed for c0
2=0.01and t=1. 

Fig. 4 Effect of dimensionless relaxation time on number density concentrations of free particles, 

0n  (a), particles riding on microtubules toward the neuron body, −n  (b), particles riding on 

microtubules away from the cell body, +n  (c), and anterograde/retrograde velocities (d) 

computed for c0
2=1and µ=10. 

Fig. 5 Effects of velocity variance, viscosity, and relaxation time on the flux. Solid line 

corresponds to c0
2=0.1and µ=1. For dashed line t=0.01and µ=100 while with dash-dotted one 

c0
2=0.1and t=1 
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Fig. 1. Schematic diagram of a neuron cell with a dendrite and axon; also, a traffic jam in the 

axon resulting from crowding of organelles at a certain location in the axon.  
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Fig. 2. Effect of velocity variance on the molecular-motor assisted transport along microtubules 

on number density concentrations of free particles,0n , particles riding on microtubules toward the 

neuron body, −n , particles riding on microtubules away from the cell body, +n (a), and 

anterograde/retrograde velocities (b) computed for µ=100 and t=0.01. 
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Fig. 3-a 
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Fig. 3-b 
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Fig. 3-c 
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Fig. 3-d 

Fig. 3. Effect of dimensionless viscosity on number density concentrations of free particles, 0n  

(a), particles riding on microtubules toward the neuron body, −n  (b), particles riding on 

microtubules away from the cell body, +n  (c), and anterograde/retrograde velocities (d) 

computed for c0
2=0.01and t=1. 
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Fig. 4-a 
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Fig. 4-c 
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Fig. 4 Effect of dimensionless relaxation time on number density concentrations of free particles, 

0n  (a), particles riding on microtubules toward the neuron body, −n  (b), particles riding on 

microtubules away from the cell body, +n  (c), and anterograde/retrograde velocities (d) 

computed for c0
2=1and µ=10. 
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Fig. 5 Effects of velocity variance, viscosity, and relaxation time on the flux. Solid line 

corresponds to c0
2=0.1and µ=1. For dashed line t=0.01and µ=100 while with dash-dotted one 

c0
2=0.1and t=1 

 


