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Superconducting flux qubits are considered to investigate macroscopic many-qubit interactions. Many-qubit
states based on current states can be manipulated through the current-phase relation in each superconducting
loop. For flux qubit systems comprised of N-qubit loops, a general expression of low-energy Hamiltonian is
presented in terms of low-energy levels of qubits and macroscopic quantum tunnelings between the many-qubit
states. Many-qubit interactions classified by Ising-type or tunnel exchange interactions can be observable
experimentally. Flux qubit systems can provide various artificial-spin systems to study many-body systems that
cannot be found naturally.
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It is believed that electrons are interacting in a pair. The
interaction is called two-body interaction. Understanding the
many-electron effects is one of the most important researches
in condensed-matter physics. Normally, rich many-electron
physics has been revealed by the two-body interactions of
spin pairs in solid-state materials. In a strongly correlated
electronic system, however, a low-energy Hamiltonian can
involve more than three spin interactions.1–4 Such multiple-
spin interactions are known to play a significant role in
strongly correlated systems. Some examples include the
magnetism of solid 3He, the high Tc superconductivity, and
so on.2,3 Moreover, it is well known theoretically that higher
dimensional systems can be mapped to the multiple-spin in-
teraction Hamiltonian of one-dimensional chain unlikely
found naturally.5

The last decade has seen rapidly developing advanced
material technologies that make it possible to investigate pre-
viously inaccessible quantum systems for quantum informa-
tion and computation in solid-state systems. Especially, co-
herent manipulation of quantum states in tunable
superconducting devices has enabled to demonstrate macro-
scopic qubits6–8 and entangled states of qubits.9–11 Experi-
mentally, it has been shown that, in terms of pseudospins,
different types of exchange interactions between two artifi-
cial spins such as an Ising interaction for charge qubits9 and
flux qubits10,12 and an XY interaction for phase qubits11 can
be realized and controlled by the system parameters. Al-
though different types of solid-state qubit systems have re-
vealed such artificial-spin exchange interactions, multiple
artificial-spin interactions have not been demonstrated yet.
This Brief Report aims to discuss, in a general framework,
how artificial-multiple-spin interactions are possible and re-
alizable in superconducting qubit systems. Flux qubit sys-
tems are shown to have an intrinsic property which is mul-
tiple artificial-spin interactions. Moreover, controllable
system parameters in the flux qubit systems enable to create
various types of artificial-spin systems even though a flux
qubit system is fabricated experimentally. Then, the man-
made superconducting structures of flux qubits can offer ex-
perimental simulators for many-body physics in association
with multiple-spin interactions.

In a superconductor, the macroscopic wave function can
be written as ��r�=�n�ei��r�, where n� and ��r� are the den-
sity and phase of Cooper pairs, respectively. ��r� describes
the behavior of the entire ensemble of Cooper pairs in the
superconductor. The supercurrent density in electromagnetic
field is given by

J =
q�n�

m�
�� � ��r� − q�A�r�� , �1�

where q� and m� are, respectively, the charge and the mass of
Cooper pairs. Then, the current states of flux qubit loops are
influenced by the variations of the phase ��r� across Joseph-
son junctions and the vector potential A�r�. A change of
current state in a qubit loop results in a change of current
states in other qubit loops because: �i� the change in
Josephson-junction phases in superconducting loops cou-
pling qubits mediates the change in the current states of all
qubits and �ii� the circulating current in the qubit produces
the induced magnetic flux that influences on all other qubits.
In experiments, several ways to make two- or four-flux qu-
bits interacting have been employed. Disconnected supercon-
ducting loops, as the indirect way, are coupled
inductively10,12 by means of the induced magnetic flux. Other
direct ways are to introduce connecting superconducting
loops,13–15 which is called phase coupling. Consequently,
many-flux qubits defined by current states can interact all
together, which can be observable in experiments.

We present a general expression of N-qubit Hamiltonian
describing low-energy physics. The Hamiltonian is deter-
mined by the low-level energies and the tunneling ampli-
tudes between N-qubit states in the flux qubit systems. We
define two types of many-qubit exchange interactions origi-
nating from the energy differences of many-qubit states and
the macroscopic quantum tunneling between the states. Fur-
ther, it is shown that a specific coupling scheme enables to
map flux qubit systems into many-body systems.

We consider a general model including the inductive and
phase coupling ways. The N-flux qubit systems are com-
posed of N-qubit loops with N� loops connecting the qubit
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loops �Fig. 1�. Unprimed �primed� indices will indicate qubit
�connecting� loops. The charging energy of Josephson junc-
tions in the N�N�� qubit �connecting� loops is given by

HC =
1

2
��0

2�
�2��

i=1

N

�
�

Ci
��̇i�

2 + �
i�=1

N�

�
��

Ci�
���̇i���

2 � , �2�

where C�C�� is the capacitance of the Josephson junctions in
the qubit �connecting� loops. �0=h /2e is the unit flux quan-
tum. ����� rely on the number of Josephson junctions in a
qubit �connecting� loop. The inductive energy is given by

HL = �
i,j=1

N
1

2
�L�ij� + �ijLK

�i��IiIj + �
i,i�=1

N,N�

L�ii��IiIi�
�

+ �
i�,j�=1

N�
1

2
�L��i�j�� + �i�j�LK�

�i���Ii�
� Ij�

� , �3�

where Ii�Ii�
� � are the circulating currents in the qubit �con-

necting� loop i�i��. L�ii�=LS
�i� is the self-inductance for the

qubit loop i. For i� j, L�ij� is the mutual inductance between
the qubits i and j. LK

�i� is the kinetic-inductance13,16,17 in the

qubit loop i. Similarly, LS�
�i��, LK�

�i��, and L��i�j�� are denoted
for the connecting loops. L�ii�� is the mutual inductance be-
tween the qubit loop i and the connecting loop i�. Finally, the
Josephson energy of the junctions is given by

HJ = �
i=1

N

�
�

2EJi
� sin2 �i

�

2
+ �

i�=1

N�

�
��

2EJi�
��� sin2

�i�
��

2
, �4�

where EJ’s are the Josephson energy of junctions in the qubit
and connecting loops.

By integrating Eq. �1� along the closed path in the ith
loop, the fluxoid quantization gives the boundary conditions,

LK
�i�Ii/�0 = ni −

1

2�
�
�

�i
� − f i, �5�

where �i
� is the phase across the Josephson junction �, ni is

an integer, and f i= fext
�i� + f ind

�i� consists of an external and in-
duced magnetic fields, i.e., fext

�i� =�i /�0 and f ind
�i�

=� j=1
N L�ij�Ij /�0+�i�=1

N� L�ii��Ii�
� /�0. Similarly, the boundary

conditions in the connecting loops can be given. From the
boundary conditions, the total energy can be re-expressed as
a function of the phases 	�i
 and their time derivatives 	�̇i
.

The number of Cooper pairs n and the phase of wave
function � are noncommuting variables, i.e., �� ,n�= i, such
that the canonical momentum P� can be introduced as P�

=n�=−i���,18 where n=q /2e with the charge from the Jo-
sephson relation, q=C��0 /2���̇. When the charging energy
is much smaller than the Josephson energy, the phase is well
defined while the number is strongly fluctuating. The charg-
ing energy HC�	�̇i
� plays a role of kinetic energy for a par-
ticle in an effective potential defined by U�	�i
�=HL�	�i
�
+HJ�	�i
�.

In the three-Josephson-junction qubit loops ��� 	a ,b ,c
�
with EJi

b,c=EJi and �i
b,c=�i, the effective potential has the 2N

local minima corresponding to the 2N basis, 	�m1 , ¯ ,mN�
,
of the N qubits with mi=↑ and ↓ for i=1, ¯ ,N. The values
of 	�i
 at the local minimum corresponding to the state
�m1 , ¯ ,mN� are denoted by 	�i;m1¯mN

0 
. Then, 	�i;m1¯mN

0 
 de-
termines the current state of flux qubit i by the current-phase
relation.

In the low-energy limit, one can employ a tight-binding
approximation in which the 2N states of N qubits correspond
to 2N-lattice sites. In the 2N basis 	�m1 , ¯ ,mN�
, the low-
energy N-qubit Hamiltonian matrix can be written as

HN = �
j1,¯,jN�	0,x,y,z


Cj1¯jN
�1

j1 � ¯ � �N
jN, �6�

where �0��x,y,z� are the identity �Pauli� matrices. The coef-
ficients are obtained by

Cj1¯jN
=

1

2N Tr ��1
j1 � ¯ � �N

jNHN� . �7�

The diagonal components of the Hamiltonian matrix are
the level energies Em1,¯,mN

at the local minima 	�i;m1¯mN

0 
.
The level energies are given by

Em1,¯,mN
=

�

2 �
i=1

N

	i;m1,¯,mN
+ U�	�i;m1¯mN

0 
� , �8�

where the characteristic oscillating frequencies are
	i;m1,¯,mN

2 = � 1
Mi

�2

��i
2 U�	�i
��	�i;m1,¯,mN

0 
 with an effective mass

Mi= �
�0

2� �2Ceff
�i� and effective capacitance Ceff

�i� in the harmonic-
oscillator approximation.19

Generally, the macroscopic tunneling processes between
any two many-qubit states are possible due to the quantum
fluctuation originating from the kinetic energy. The off-
diagonal components are the macroscopic quantum tunneling
amplitudes, i.e.,

fNf1 f2 fi

EJ
a

EJ
c

Qubit 1 Qubit 2 Qubit Qubiti N

Connecting loop

EJ
b

I

EJI

i

FIG. 1. �Color online� An N-flux qubit system with one connect-
ing loop �N�=1�. The N superconducting loops are connected by a
connecting loop interrupted by a Josephson junction EJ�. In each
qubit loop, the diamagnetic �paramagnetic� current states assigned
by �↓ ���↑ �� are superposed, which makes the loop being regarded as
a qubit. � �oppositely �� denote the directions of the applied and
induced magnetic fields f i=�i /�0 in the qubit loop i. Ii�I�� stand
for the currents in the qubit i �connecting� loop. EJ’s are the Joseph-
son coupling energies of the Josephson junctions in the connecting
and qubit loops. The fluxoid quantization in the connecting loop
gives rise to the boundary condition connecting the phases �i across
each Josephson junction. Both the mutual inductances and the flux-
oid quantization make it possible to realize many-qubit interactions
in the N-flux qubit system. The many-qubit interactions are defined
in the text.
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t:�m1�, ¯ ,mN� � ⇔ �m1, ¯ ,mN� , �9�

for the tunneling between the two states, �m1� , ¯ ,mN� � and
�m1 , ¯ ,mN�. The tunneling amplitudes can be calculated by
the well-known numerical methods such as WKB approxi-
mation, instanton method, and Fourier grid Hamiltonian
method.20 The tunneling process, �↑↑ ↑¯↑�⇔ �↓↑ ↑¯↑�,
describes the first pseudospin flip. Such a tunneling process
that describes only one pseudospin flip among the N qubits is
called single-qubit tunneling t1. If the N qubits are flipped for
tunneling, the tunneling processes can be called N -qubit
tunneling tN, e.g., �↓↑ ↑¯↓�⇔ �↑↓ ↓¯↑�. Normally, single-
qubit tunneling amplitudes are much larger than other
multiple-qubit ones. However, when a multiple-qubit tunnel-
ing amplitude is larger than single-qubit one, the multiple-
qubit tunneling processes can play an important role in de-
termining the property of eigenstates of the system.21,22

Actually, Eq. �6� describes any N-qubit system including
all types of many-qubit interactions. Let us expand the low
energy N-qubit Hamiltonian matrix in terms of qubit interac-
tions,

HN = H0 + �
i

H1
�i� + �

i
j

H2
�ij� + �

i
j
k

H3
�ijk� + ¯ + HN

�1¯N�,

�10�

where H0= �1 /2N� Tr �HN� and the qubits are described by
H1

�i�=�i�i
z+ t1

�i��i
x with the energy difference 2�i and the tun-

neling amplitude t1
�i� between the two states of the qubit i.

Qubit interactions are denoted by two-qubit interactions H2
�ij�,

three-qubit interactions H3
�ijk�, and so on. Then, the N-qubit

interaction is presented by

HN
�1¯N� = �

j1,¯,jN�	x,y,z

Cj1¯jN

�1
j1 � ¯ � �N

jN. �11�

We define the N -qubit exchange coupling constant as

Jz¯z
�N� = Cz¯z =

1

2N Tr ��1
z

� ¯ � �N
z HN� , �12�

which has a form of the Ising-type exchange interaction for
N qubits. For other terms of the N-qubit interaction, the co-
efficients of the terms can be called N -qubit tunnel exchange
coupling constants, e.g.,

Jx¯y¯z
�N� = Cx¯y¯z =

1

2N Tr ��1
x

� ¯ �i
y
¯ � �N

z HN� , �13�

since the off-diagonal components of the Hamiltonian matrix
result from the hopping �tunneling� between the sites �states�.

For two-qubit systems, the two-qubit interaction is given
by H2

�12�=� j�	x,y,z
Jjj
�2��1

j
� �2

j , where Jxx
�2�=−�t2

a+ t2
b� /2, Jyy

�2�

= �t2
a− t2

b� /2, and Jzz
�2�= �E↑↑−E↑↓−E↓↑+E↓↓� /4. The two-qubit

tunneling amplitudes, t2
a and t2

b, describe the tunneling pro-
cesses: �i� �↑↑�⇔ �↓↓� in the parallel pseudospin states and
�ii� �↑↓�⇔ �↓↑� in the antiparallel pseudospin states. As ex-
pected, the exchange coupling constant Jzz

�2� is the energy dif-
ference between the parallel and antiparallel pseudospin
states. The two-qubit tunnelings contribute to the pseudospin
exchange interaction. Then, H2

�12� has a form of XYZ model
for two pseudospins. t2

a� t2
b gives an XXZ pseudospin model

and, for Jzz
�2�=0, i.e., E↑↑+E↓↓=E↑↓+E↓↑, an XY pseudospin

model. For t2
a,b�Jzz

�2�, H2
�12� becomes an Ising pseudospin

model. This shows that various types of pseudospin models
can be realized by manipulating the system parameters.

Next, for comparison, let us consider a two-qubit interac-
tion of three-qubit system given by H2

�12�=� j�	x,y,z
Jjj0
�2��1

j

� �2
j +Jxz0

�2� �1
x

� �2
z +Jzx0

�2� �1
z

� �2
x, where Jxx0

�2� =−�t̄2
a+ t̄2

b� /4
− �t�2

a+ t�2
b� /4, Jyy0

�2� = �t̄2
a− t̄2

b� /4+ �t�2
a− t�2

b� /4, and Jzz0
�2� = �E↑↑↑

−E↑↓↑−E↓↑↑+E↓↓↑� /8+ �E↑↑↓−E↑↓↓−E↓↑↓+E↓↓↓� /8. Here,
t̄�t�� denotes the two-qubit tunnelings for the up �down� state
of the third pseudospin. Compared to the two-qubit interac-
tion in two-qubit systems, interestingly, there are two extra
tunnel exchange coupling terms, Jxz0

�2� and Jzx0
�2� , mediated by

the single-qubit tunnelings.
In the three-qubit interaction H3

�123�, the three-qubit ex-
change coupling constant is given by Jzzz

�3�= �E↑↑↑−E↑↓↑
−E↓↑↑+E↓↓↑� /8− �E↑↑↓−E↑↓↓−E↓↑↓+E↓↓↓� /8. Also, the
single- and two-qubit tunnelings as well as the three-qubit
tunnelings give rise to the three-qubit tunnel exchange cou-
pling constants. Especially, if the three-qubit tunnelings are
stronger than the two-qubit tunnelings, the ground state can
be in a Greenberger-Horne-Zeilinger state and if the two-
qubit tunnelings are stronger than the three-qubit tunnelings,
a W state can be generated in an excited state.22
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FIG. 2. �Color online� Multiple-qubit exchange coupling con-
stants, Jzzzz

�4� , Jzzz0
�3� , and Jzz00

�2� , in the four qubits �N=4� as a function of
�a� the applied magnetic field f = fext

�i� �i=1, . . . ,4� for EJ�=0.15EJ

and �b� the Josephson energy EJ� for f =0.45. Other parameters are
ni=n�=0 and EJ

�=EJ��� 	a ,b ,c
�.
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To explore many-qubit interactions explicitly, let us con-
sider a specific multiple-qubit system in Fig. 1. For simplic-
ity, the inductances are assumed to be very small and then
the inductive energy can be negligible. The boundary condi-
tions for the qubit loops and the connecting loop are reduced
to 2�i+�i

a=2��ni− fext
�i� � and ��=2�n�−�i=1

N �i
a, respectively.

The effective potential is given as

U���i�� = �
i=1

N 4EJ sin2 �i

2
+ 2EJ

a sin2 ��ni − fext
�i� −

�i

�
��

+ 2Ej� sin2 �n� − �
i=1

N �ni − fext
�i� −

�i

�
�� . �14�

For the four-qubit system �N=4�, we plot the exchange
coupling constants as a function of f = fext

�i� and EJ� in Figs.
2�a� and 2�b�, respectively. At the coresonance point, f =0.5,
the three-qubit interaction disappears while the two- and
four-qubit interaction strengths reach their maximum values
in Fig. 2�a�. The sign of the three-qubit interaction is
changed from negative for f 
0.5 to positive for f 0.5. As
EJ� increases, the two-, three-, and four-qubit interactions in-
crease monotonically in Fig. 2�b�.

Interestingly, the four-qubit interaction is stronger than
the two- and three-qubit interactions; that is, Jzzzz

�4� �3Jzz00
�2� .

Also, the three-qubit interaction can be stronger than the
two-qubit interaction for a certain applied magnetic field.
This result seems to be counterintuitive. However, for an
N-qubit system, the result can be understood from Eq. �5� as
well as the boundary condition of the connecting loop with-
out the assumption, LK� I� /�0=n�− �1 /2�����+�i=1

N �i
a�− f ind� ,

where f ind� =L�I� /�0+�i=1
N LM

�i�Ii /�0 with the mutual induc-
tance LM

�i�. When one superconducting loop couples all qubit
loops, all qubits are interconnected through the effective flux
feff��1 /2���i=1

N �i
a as well as f ind� . Normally, the induced

flux is much smaller than the effective flux, i.e., f ind
�i� , f ind�

� feff, so that much stronger many-qubit interaction for the
effective flux than for the induced magnetic flux can be ex-
pected. Therefore, if the N-qubit interaction is much stronger
than other quit interactions, HN�HN

�1. . .N� can map higher
dimensional systems.5

We also considered two more models: �i� For N qubits
inductively coupled without any connecting loop, multiple-
qubit interactions are intrinsically involved but their
strengths are very weak, as for instance of N=4, Jzzzz

�4�

�10−6Jzz00
�2� in the parameters of Ref. 12. If the two-qubit

interactions are much stronger than other multiple-qubit in-
teractions, HN��i
jH2

�ij�. Then, an N qubits inductively
coupled can be a many-spin system in which one artificial-
spin interact with all other artificial spins by the two-body
interactions. �ii� For the model of Ref. 13, the multiple-qubit
interactions behave similarly to the model of Fig. 1. In the
same parameter values with Fig. 2�a�, however, this model
gives Jzzzz

�4� �0.17Jzz00
�2� . The two models show that the four-

qubit interaction is smaller than the two-qubit interactions
for the four-qubit systems. In general, hence, many-qubit in-
teractions are dependent on specific experimental setups and
on varying the system parameters. Various types of artificial-
spin systems can be prepared in flux qubit systems. There-
fore, it is possible to explore a many-spin system realized in
flux qubit systems.

We investigated many-qubit interactions in the supercon-
ducting flux qubit systems. There are two types of many-
qubit exchange interactions: one is similar to the Ising spin
interaction; and the other types of exchange interactions are
due to macroscopic quantum tunnelings between the many-
qubit states. Various types of many-qubit interactions can be
realized experimentally in flux qubit systems. Moreover, an
experimental setup can be provided to study many-spin sys-
tems that can be mapped into many-flux qubit systems.
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