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ABSTRACT 

We present an experimental demonstration of a method using optical tweezers proposed by Fischer and Berg-Sørensen 
for measuring viscoelasticity using optical tweezers. It is based on a sinusoidal oscillation of the liquid in combination 
with force measurements using optical tweezers. We verify the method by applying it to measurements in water, glycerol 
and polyethylene oxide (PEO). 
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1. INTRODUCTION 
Optical tweezers have been successfully used before to measure viscosity. Translational as well as rotational methods 
can be used to obtain the viscosity of liquids [1, 2]. Rotational measurements use birefringent particles that rotate in a 
circularly polarized optical trap and the exerted torque is used to obtain the viscosity [2]. When using a translational 
measurement technique, the trap is calibrated using the calibration method presented in reference 3. However, methods 
based on the observation of the thermal movement [3] of particles are only suitable for viscous liquids and not for 
viscoelastic liquids. Since most biofluids are viscoelastic, there is a need for the development of techniques that allow 
determination of the viscoelasticity. Here we describe such a method and verify its correctness by performing 
measurements n water and known concentrations of glycerol. We also use the method for measurements of PEO. 

2. OPTICAL TWEEZER SET UP 
The setup combines optical tweezers and back focal plane imaging. See figure 1 for a schematic picture of the setup, 
which comprises microscope designed by Dr. Gregor Knöner. Inverted microscopes provide stability and flexibility of 
multiple beam incorporation as well as easy access to the sample. An additional advantage in comparison to upright 
configuration is that the trapping force is stronger in the bottom of the slide, where we do most of the experiments. 

The illumination system is based on the Köhler principle using a white light source (Olympus TGHM Spot 
macroilluminator). An Ytterbium doped fibre laser (1070 nm), with an output power up to 5W, serves as source of the 
trapping beam. Absorption by biological samples in this wavelength region is low and therefore heating of the sample is 
limited. The minimum stable operating power for this laser is 3W, so a polarizing beam splitter cube in combination with 
a half wave plate is used in order to reach a power in the order of tens to hundreds of miliwatts at the entrance of the 
objective. A small fraction of the laser power is reflected onto a power meter. The trapping beam is focused using an oil 
immersion 100x (Nikon) high numerical aperture objective (1.3 NA). A telescope is positioned to overfill the back 
aperture of the objective to achieve a tightest possible focus at the focal plane. Mirror M1 is imaged on the back of the 
objective to allow centering of the trapping beam with respect to the imaging beam in the sample plane. The sample is 
positioned on a 3D piezo-controlled micrometer stage with a precision accuracy of 5 nm. 
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Figure 1 Setup for optical tweezers with position detection 

A HeNe laser (Uniphase 1144P, 633nm) is coupled in through dichroic mirror M2 and serves as position detector beam. 
The transmitted light is collected by the condenser (Olympus 1.4 NA). The back focal plane of the condenser is imaged 
onto a quadrant detector (QPD). The four signals of the quadrant detector are acquired by a data acquisition system and 
further processed using Labview and Matlab.  

3.  THEORETICAL BACKGROUND  
To obtain the complex viscosity of a liquid we generate a sinusoidal movement of the piezo stage where the sample is 
situated. Using this method we can determine the complex dynamic modulus (G), which is the strain response of a 
viscoelastic liquid to a sinusoidal stress deformation. 
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Figure 2 Sinusoidal input to the piezo stage and bead movement. 

As an output we obtain the position of a trapped bead as a function of time. In figure 2 the input and output signals are 
plotted, where the detected position of the bead is a superposition of the thermal Brownian motion and the sinusoidal 
response to the stage oscillation of the amplitude xs[1]. From these measurements we can obtain the phase lag (θ) 
between input and output and the amplitude of the bead in the liquid (x0). These three parameters are used as an input to 
the model for calculating the viscoelastic properties of the liquid of interest [1], described by the complex modulus 

* ( )G ω  of the medium. Below, we summarize the theory given in [1], and describe the procedure for determining the 

complex modulus * ( )G ω . 

The effect of the complex modulus on the motion of a particle (which will also be acted on by the optical trapping force, 
characterized by the optical spring constant k, thermal forces, and possibly an external driving force) is described by the 
friction relaxation spectrum, 

( ) ( ) i ( )γ ω γ ω γ ω′ ′′= + .    (1) 

Since here the real part ( )γ ω′  accounts for the effects of viscosity, which involves the loss of energy, and the imaginary 
part ( )γ ω′′  accounts for elasticity, which involves the storage of energy, the relationship between the complex modulus 
and the frequency relaxation spectrum is 

* ( ) i ( ) 6G aω ωγ ω π=     (2), 

where a is the radius of the particle. Therefore, the spectral response, ( )χ ω  of the particle to an external force F, defined 
by ( ) ( ) ( )x Fω χ ω ω= , where x is the complex amplitude of the motion of the particle at frequency ω , is 

( )2( ) 1 i ( )k mχ ω ωγ ω ω= + −    (3), 

where k is the spring constant and m is the mass of the particle. 

A suitable way to drive the particle with an external force is to sinusoidally oscillate the stage. To a high level of 
accuracy, we can assume that the medium follows the motion of the stage exactly. In this case, the external force driving 
the particle is simply given by the friction relaxation spectrum, and the spectral response of the particle position to active 
driving by this external force will be 
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where S ( )x ω  is the complex amplitude of the motion of the stage. Since we are only interested in the relative phase 
between the motion of the trapped particle and the stage, we can introduce the phase lag θ  between these two motions, 
and write the active response spectrum as 

0 0

S0 S0

( ) cos ( ) sin
( )

i ( ) ( )

x x
R

x x

ω θ ω θ
ω

ω ω ω ω
= −    (5) 

where 0 ( )x ω  and S0 ( )x ω  are the magnitudes of the particle and stage motion respectively, with 0 ( ) ( )x xω ω=  and 

S0 S( ) ( )x xω ω= . This conveniently separates the response into real and imaginary parts. The magnitude 0x  and phase 
lag θ  at a particular frequency ω  can be found from measurements such as those shown in figure 2. 

At this point, we can use the definition of the response function ( )χ ω , equation (3), to find an expression for ( )χ ω , 

since we have ( ) 2( ) 1 ( )i k mωγ ω χ ω ω= − +  from the definition, and therefore 

2

1 i ( )
( )

R

k m

ω ω
χ ω

ω

−
=

−
     (6) 

If ( )χ ω  can be found, the friction relaxation spectrum can be found using equation (4), and hence the complex modulus 
* ( )G ω . 

However, it will first be necessary to determine the spring constant k of the optical trap, and the mass of the particle, if 
this is not already known or negligibly small (which will depend on how high the driving frequency is). For a particle of 
known size and composition, the mass will be known, and often is small enough to be ignored. 

One of the most common methods of measuring the trap stiffness k is to find the power spectrum due to thermal motion, 
which is 

( )2 B

22

2 Re ( )
( ) ( )

i ( )

k T
P x

k m

γ ω
ω ω

ωγ ω ω
= =

+ −
,  (7) 

where Bk  is Boltzmann’s constant and T is the absolute temperature. However, we do not yet know the properties of the 
fluid, characterized here by ( )γ ω , and therefore cannot find the spring constant by the usual method of finding the 
corner frequency of the Lorentzian spectrum. However, ( )γ ω  here is the same as ( )γ ω  for the externally driven case, at 
least when the motion in both cases is in the same linear regime [1]. 

Noting that we can write the thermal motion power spectrum as  

( ) *

B( ) 2 Re ( ) ( ) ( )P k Tω γ ω χ ω χ ω=    (8), 

and since  

( ) ( ) ( )2

* *

2 2
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γ ω χ ω χ ω ω χ ω

ω ω

+
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 (9), 

we can eliminate the friction relation spectrum and find the optical trap spring constant k from the ratio of the real part of 
the active response spectrum ( )R ω  to the thermal motion power spectrum ( )P ω  using 
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Even if the mass is unknown, it should be noted that this will yield the entire unknown term 2k mω−  in equation (6), 
allowing us to determine the viscoelastic properties of the fluid even if the spring constant, by itself, remains unknown. 

4. MEASUREMENTS 
4.1 Calibration 

The Quadrant Photo Detector (QPD) is calibrated by monitoring the movement of a bead fixated at the bottom of a cover 
slip when the piezo stage is driven sinusoidal. The amplitude in nanometers is known and can be used to calibrate the 
QPD. For displacements that are small enough, the QPD behaves linearly. 

4.2 Bead size 

The measurements were performed on polystyrene beads with a diameter of 2±0.045 µm. We have calculated the effect 
of the size of the particle on the position in the trap as well as the trap stiffness using a full non paraxial vector wave 
treatment [4].  The result of the calculations  is shown in figure 5a. These simulations were done for a NA of 1.3 and a 
trapping wavelength of 1064 nm. It appears that a small variation in size causes a large variation in z-position in the 
optical trap. This could be a problem because the position of the bead with respect to the imaging system changes, which 
means the calibration of the QPD changes and therefore the position we obtain in meters could be incorrect. In figure 5b 
the effect on the trap stiffness is shown. Again large variations can occur. To avoid problems with either of these factors 
we choose polystyrene beads of 2.077 µm with a standard deviation of 0.045 µm. For this size range the variation in z-
position as well as trap stiffness appears to be minimal. 

 
Figure 1 (a) variation in bead position in z-direction as a function of the bead diameter and (b) the effect of the 
diameter on the trap stiffness (dark circles represent a bead with diameter of  0.5 µm and clear circles a bead 

with diameter 2 µm). 

5. MEASURING VISCOELASTICITY 
The position of a bead in the optical trap as a function of time was obtained using a signal from the QPD. This was done 
first in passive mode, a situation where the stage was not driven, and after that several active measurements were 
performed when the stage was moving sinusoidally with an amplitude of 100 nm and a frequency of 60 Hz. From these 
input values the viscosity is obtained using equations 1 to 4. Figure 4.a gives an example of the raw data obtained from 
the quadrant detector during an active measurement. In the frequency domain this translates to figure 4.b, where the 
large peak is due to the driving frequency and the thermal background is visible from the Lorenz curve, where the corner 
frequency is related to the trap stiffness. 
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Figure 2 (a) Signal obtained from the QPD when the stage is driven sinusoidally. The obtained signal is an 
addition of Brownian motion and the sinusoidal stage input.  (b)  Power spectrum of the bead movement. 

The method was tested in water and glycerol solutions. We found the viscosity in water to be 1.1 ± 0.1 Pa s with a 
variation of approximately 25%. Viscosity measurements on different concentrations of glycerol are shown in figure (5),  
which shows how viscosity of the solution increases with glycerol content, according to our expectations.  

 

 

Figure 3 Measurements performed in glycerol solutions. The obtained viscosity is plotted as a function of the 
glycerol concentration. 

6. CONCLUSION 
In conclusion the method proposed by Fisher et al. [1] has been proven experimentally in water and glycerol. The size of 
the trapped particle affects considerably the trap stiffness and the particle’s z-position in the optical trap. The obtained 
values of the viscosity of water are consistent as well the values found for the glycerol viscosity are proportional to its 
concentration. Future plans are to improve our calibration by using a liquid with a known viscosity, such as water, 
instead of a stuck bead to calibrate our QPD. 
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