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Cerebral malaria (CM) is a severe complication of Plasmodium falciparum infection, predominantly experi-
enced by children and nonimmune adults, which results in significant mortality and long-term sequelae.
Previous studies have reported distinct susceptibility gene loci in CBA/CaH (CBA) and C57BL/6 (B6) mice with
experimental CM (ECM) caused by infection with Plasmodium berghei ANKA. Here we present an analysis of
genome-wide expression profiles in brain tissue taken from B6 and CBA mice with ECM and report significant
heterogeneity between the two mouse strains. Upon comparison of the leukocyte composition of ECM brain
tissue, microglia were expanded in B6 mice but not CBA mice. Furthermore, circulating levels of gamma
interferon, interleukin-10, and interleukin-6 were significantly higher in the serum of B6 mice than in that of
CBA mice with ECM. Two therapeutic strategies were applied to B6 and CBA mice, i.e., (i) depletion
of regulatory T (Treg) cells prior to infection and (ii) depletion of CD8" T cells after the establishment
of ECM. Despite the described differences between susceptible mouse strains, depletion of Treg cells
before infection attenuated ECM in both B6 and CBA mice. In addition, the depletion of CD8™ T cells
when ECM symptoms are apparent leads to abrogation of ECM in B6 mice and a lack of progression of
ECM in CBA mice. These results may have important implications for the development of effective

treatments for human CM.

Cerebral malaria (CM) is a severe neurological complication
that arises predominantly in children and nonimmune adults
infected with Plasmodium falciparum parasites. In sub-Saharan
Africa, it has been estimated that CM affects around 500,000
people each year, resulting in case fatality rates of 17.5 to
19.2% and long-term neurological sequelae in many CM sur-
vivors (9, 30, 31, 45). CM has been associated with the seques-
tration of parasitized red blood cells (pRBC) in the brain
microvasculature (1, 35), with the accumulation of mononu-
clear cells in brain tissue (37), and with the increased expres-
sion of proinflammatory cytokines (10) such as tumor necrosis
factor (TNF) both in the brain and systemically (7, 19, 23, 25).
A large proportion of deaths occur in hospitals before anti-
parasitic treatment can take effect (15), highlighting the im-
portance of understanding the pathogenesis of this disease and
of implementing new, rapidly acting interventions in combina-
tion with antiparasitic treatment (50).

Experimental CM (ECM) caused by infection of C57BL/6
(B6) or CBA/CaH (CBA) mice with Plasmodium berghei
ANKA displays many features of human CM and has been
useful in identifying host factors involved in CM pathogenesis.
The host immune response to parasites plays a significant role
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in ECM. Conventional dendritic cells (14), CD4" and CD8" T
cells (5, 6, 22, 49), natural regulatory T (Treg) cells (3, 48), NK
T cells (21, 41), NK cells (20), and platelets (26, 46, 47) have
been implicated in ECM and appear to play a negative role in
disease outcome. In addition, several pro- and anti-inflamma-
tory cytokines have been shown to influence the outcome of
ECM pathogenesis. These include gamma interferon (IFN-vy;
2, 19, 49), TNF (18), lymphotoxin alpha (LTea; 16), and inter-
leukin-10 (IL-10) (24). All of these cytokines, except IL-10,
play negative roles in disease outcome. Interestingly, suscepti-
bility/resistance loci have been mapped to different chromo-
somes within the genome of CBA and B6 mice (4, 32, 34),
indicating that factors critical to ECM development may be
different between the two strains of mice (34). This is consis-
tent with human CM, which is considered to be a syndrome
with significant heterogeneity in disease development and
manifestation between affected individuals (11, 27).

In this study, we investigated changes in gene expression in
brain tissue following the development of severe ECM symp-
toms in B6 and CBA mice. We also examined immune re-
sponses in these different mouse strains throughout P. berghei
ANKA infection. We found significant heterogeneity in brain
gene expression profiles between B6 and CBA mice with ECM
and many differences in the immune responses of these mouse
strains to P. berghei ANKA infection. However, modulating the
function of Treg cells could prevent ECM and depletion of
CD8™ cells could treat ECM in both mouse strains. These data
indicate that common strategies might be used to prevent CM
across a broad population base.
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MATERIALS AND METHODS

Mice and infections. Female B6 and CBA mice (5 to 6 weeks of age) were
from the Animal Resources Centre (Canning Vale, Western Australia). Mice
were infected with P. berghei ANKA pRBC, and blood parasitemia, anemia, and
ECM symptoms were monitored by using a clinical score system as previously
described (3, 14). Age-matched naive B6 and CBA mice were included as con-
trols. All procedures were approved by the Queensland Institute of Medical
Research Animal Ethics Committee.

Sample preparation and RNA extraction. Mice were sacrificed by CO, asphyx-
iation, and blood was obtained by cardiac puncture for serum cytokine analyses.
Mice were then perfused with 20 ml ice-cold phosphate-buffered saline via the
heart in order to remove blood and other nonadherent cells from the brain
microvasculature. Brains were isolated, halved, and preserved in either RNAlater
(Qiagen, Doncaster, Australia) or Tissue-Tek O.C.T. Compound (Sakura, Tor-
rance, CA). Total RNA was extracted from brain tissue as previously described
(3), and RNA quality was assessed with RNA 6000 Nano Assay Kits on a
Bioanalyzer 2100 (Agilent Technologies, Forest Hill, Australia). Samples in-
cluded in this study had 260:280-nm absorbance readings between 1.8 and 2.0.
Equal quantities of six samples of naive and P. berghei ANKA-infected brain
tissue from B6 and CBA mice were pooled for microarray analysis.

Expression profiling with microarrays. Pooled RNA samples were converted
to cDNA and antisense cRNA, labeled, and hybridized to GeneChip Mouse
Genome 430 2.0 arrays (Affymetrix, Surrey Hills, Australia) by the Australian
Genome Research Facility (Parkville, Australia) according to Affymetrix proto-
cols. Each array analyzed the expression of more than 39,000 transcripts and
variants representing the entire mouse transcribed genome. Arrays were scanned
with the GeneChip Scanner 3000 (Affymetrix) and GeneChip Operating Soft-
ware v1.1.1 (Affymetrix). Normalization and initial analyses were carried out in
GeneSpring v7 (Agilent Technologies). Values below 0.01 were set to 0.01. Each
measurement was divided by the 50th percentile of all measurements in that
sample. The data were filtered for genes flagged as present which had an ex-
pression level of at least 50 Affymetrix units, a measurement of signal intensity
generated directly from Affymetrix chips. The samples analyzed had similar
numbers of transcripts and variants tagged as present on the arrays (naive CBA,
25,801; CBA ECM, 25,833; naive B6, 26,407; B6 ECM, 26,437). Overall, when
focusing on naive brain tissue, 24,033 probes were tagged as present in both naive
CBA and B6 brain tissue while only 1,800 and 2,404 probes were tagged as
uniquely present in naive B6 or CBA brain tissue, respectively. To determine
differences in gene expression profiles, the ECM samples were normalized to the
naive sample such that each measurement for each gene in the ECM samples was
divided by the median of that gene’s measurements in the corresponding naive
sample. All of the pooled ECM samples (B6 and CBA separately) were then
independently considered to be duplicate samples of each other for statistical
analyses. Likewise, the naive samples (B6 and CBA separately) were also treated
as duplicates. This consideration generated two ratio values for each treatment
group (naive and ECM). A ¢ test was then used to analyze whether the expression
of each probe set in the ECM sample was significantly different from the naive
brain sample for each CBA or B6 mouse. Transcripts were deemed to be
differentially expressed when the P value was equal to or less than 0.05.

Once normalized, 98 transcripts were found to be expressed significantly more
in naive CBA brain tissue than in naive B6 brain tissue. Importantly, the in-
creased level of these transcripts in naive tissue did not result in higher expres-
sion in CBA ECM brain tissue. Likewise, 181 transcripts were found to have a
higher resting expression levels in naive B6 brain tissue than in naive CBA brain
tissue. Of these, only six genes were also found to be significantly upregulated in
B6 ECM brain tissue. Therefore, differences in brain gene expression profiles
observed between the two strains are likely to reflect differences in cellular
recruitment, responses to the presence of parasites, and signaling pathways
initiated in the brain during ECM rather than simply to reflect variations in
experimental conditions.

Real-time RT-PCR. Individual RNA samples were reverse transcribed into
c¢DNA with the cDNA Archive Kit (Applied Biosystems, Scoresby, Australia).
Real-time reverse transcription (RT)-PCR analyses were performed on a Cor-
bett Rotorgene 3000 (Corbett Life Sciences, Sydney, Australia). Platinum SYBR
green master mix (Invitrogen) was used when measuring TNF (5'GGTACAAC
CCATCGGCTGGCA [forward] and 5'GATTCAACCTTGCGCTCATCTT
AGGC [reverse]), LTa (5'CTGCTCACCTTGTTGGGTACCC [forward] and
5'GACAAAGTAGAGGCCACTGGTG [reverse]), LTB (5'CTCAGAGATCC
AATGCTTCC [forward] and 5'CCAAGCGCCTATGAGGTG [reverse]),
TNFRI1 (5'GCCACAAAGGAACCTACTTGG [forward] and 5'CACTCAGGT
AGCGTTGGAACTGG [reverse]), and TNFR2 (5'GAAAACCCATTCTGGC
AGCTGTCG [forward] and 5’"CAGGATGCTACAGATGCGGTGG [reverse])
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mRNA levels. All measurements were normalized against the expression of the
hypoxanthine phosphoribosyltransferase housekeeping gene (5'GTTGGATAC
AGGCCAGACTTTGTTG [forward] and 5'GATTCAACCTTGCGCTCATCT
TAGGC [reverse]).

Anti-CD8 monoclonal antibody (MAb) and anti-CD25 MAD treatment. B6 and
CBA mice were depleted of Treg cells by the administration of a single intra-
peritoneal (i.p.) injection of 0.5 mg anti-CD25 MAD (PC61; rat immunoglobulin
G1 [IgG1]; American Type Culture Collection, Manassas, VA) either 1 or 14
days prior to P. berghei ANKA infection. Mice were depleted of CD8* T cells
when ECM symptoms were apparent and all clinical scores in the group were
above 2. Animals received a single i.p. injection of 0.5 mg of anti-CD8« MAb
(YTS169.1; rat 1gG2a; European Collection of Cell Cultures, Porton Down,
United Kingdom). The efficiency of Treg cell and CD8" T-cell depletion was
tested by flow cytometry in each experiment performed.

Assessment of cell types in brain tissue. Brain tissue was collected into colla-
genase solution (1 mg/ml type IV collagenase [Worthington, Lakewood, NJ] and
0.5 mg/ml DNase I [Worthington] in RPMI medium) prior to the isolation of
brain mononuclear cells for fluorescence-activated cell sorter (FACS) analysis, as
previously described (3). Cells were stained for CD4 (clone GK1.5), CD8 (clone
53-6.7), TCRB (clone H57-597), NK1.1 (clone PK136), B220 (clone RA3-6B2),
CD19 (clone 6D5), CD11b (clone M1/70), Ly6C (clone AL-21), Ly6G (clone
1A8), CD11c (clone N418), or CD45.2 (clone 104) expression with anti-mouse
MADs purchased from BD Bioscience or Biolegend, and cell populations were
defined as previously described (3).

Measurement of serum cytokine levels. Serum was collected prior to the
commencement of experiments and on day 5 p.i. or at ECM onset via the tail
vein. Blood samples were allowed to clot overnight at 4°C, and sera were col-
lected following centrifugation. Cytokines in individual serum samples were
quantified with the Cytometric Bead Array Inflammatory kit (BD Bioscience) on
a FACScan cytometer equipped with CellQuest Pro and CBA software (BD
Bioscience).

In vivo bioluminescence imaging. In some experiments, mice were infected
with P. berghei ANKA transgenic for a luciferase gene. The location of parasites
in vivo, as well as the bioluminescence generated, was determined with an I-CCD
photon-counting video camera and imaging system (IVIS 100; Xenogen, Ala-
meda, CA) as previously reported (3).

Statistics. Differences in the survival of treatment groups were analyzed by the
Kaplan-Meier log rank test with GraphPad Prism version 4.03 for Windows
(GraphPad Software, San Diego, CA). Differences in blood parasitemia, cyto-
kine levels, and cell numbers in brain tissue between treatment groups and
mouse strains were determined by two-way analysis of variance, followed by a
Bonferroni post-hoc test with GraphPad Prism. For all statistical tests, P < 0.05
was considered significant.

Nucleotide seq e accessi ber. All of the nucleotide sequence data
obtained in this study have been submitted to the Gene Expression Omnibus
(GEO) and accepted and can be accessed by using accession number GSE6019
(http://www.ncbi.nih.gov/geo/).

RESULTS

Brain gene expression profiles are heterogeneous in CBA
and B6 mice with ECM. B6 and CBA mice developed neuro-
logical symptoms within a 24-h window following P. berghei
ANKA infection with no difference in blood parasitemia on the
day of sacrifice (day 6 p.i.; Fig. 1A and B). Brains were re-
moved from these animals to investigate gene expression pro-
files. Brains were also collected from naive B6 and CBA mice
to enable the measurement of constitutive gene expression
levels. Following hybridization to Affymetrix GeneChip Mouse
Genome 430 2.0 arrays and the performance of statistical anal-
ysis as described in Materials and Methods, we found that 221
genes were commonly upregulated during ECM in the brains
of both mouse strains (see Table S1 in the supplemental ma-
terial). Notably, 324 and 498 genes were solely upregulated in
B6 (see Table S2 in the supplemental material) and CBA (see
Table S3 in the supplemental material) brains with ECM, re-
spectively (Fig. 1C). We also found that 11 genes were com-
monly downregulated during ECM in both mouse strains,
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FIG. 1. P. berghei ANKA-infected B6 and CBA mice show hetero-
geneous brain gene expression during ECM. (A) B6 (closed diamonds)
or CBA (open diamonds) mice were infected with 10° P. berghei
ANKA pRBC intravenously. Mice were sacrificed upon the develop-
ment of severe ECM symptoms (n = 6 mice per group). The hatched
area indicates the time when mice displayed ECM symptoms. (B) Par-
asitemia was also monitored (mean * standard error of the mean, n =
6 mice per group). (C) RNA was extracted from perfused brain tissue
from both P. berghei ANKA-infected and naive CBA and B6 mice and
hybridized to Affymetrix GeneChip Mouse Genome 430 2.0 arrays.
Total-brain gene expression profiles were compared between CBA and
B6 mice based on significant upregulation or downregulation of genes
during ECM, following normalization and statistical testing.

while 37 genes were solely downregulated in B6 mice and 63
genes were solely downregulated in CBA mice (Fig. 1C). A
number of the genes identified in our study have yet to be
defined functionally (see accession number GSE6019 at http:
/www.ncbi.nih.gov/geo/). Importantly, a number of genes pre-
viously reported to play key roles in ECM pathogenesis were
identified as being significantly upregulated in both mouse
strains (see Table S1 in the supplemental material). These
include those for heme oxygenase 1 (hmox1) (36) and CXCL10
(yIP-10) (20, 29), as well as granzyme A and granzyme B,
products of cytolytic CD8™ T cells (5, 38, 49). However, gene
expression profiling was performed only once in this study with
pooled samples. Therefore, the data were primarily used to
provide a general contrast of response to infection between the
two mouse strains, as well as a tool for the generation of
preliminary hypotheses. Thus, these data indicate extensive
heterogeneity in gene expression profiles between B6 and CBA
mice and also suggest that CBA mice have greater overall
immunological activity in the brain during ECM than B6 mice.

CBA and B6 mice with ECM have differential expression of
TNF family members in brain tissue. TNF (18) and LT« (16)
have been implicated in the pathogenesis of CM. However, our
microarray analysis revealed few changes in TNF family mem-
bers, although TNFR1 was significantly upregulated in both
CBA and B6 mice with ECM (see Table S1 in the supplemen-
tal material). Previous microarray studies have reported diffi-
culty in identifying changes in cytokine expression levels (44).
For this reason and the potential importance of TNF and LT«
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FIG. 2. Differential expression of mRNAs encoding TNF, LT,
and their receptors in ECM brain tissue from P. berghei ANKA-in-
fected CBA and B6 mice. TNF, LTa, LTB, TNFRI1, and TNFR2
mRNA levels were measured in brain tissue taken from naive and P.
berghei ANKA-infected B6 and CBA mice during ECM, relative to the
expression of 1,000 hypoxanthine phosphoribosyltransferase mRNA
molecules (mean * standard error of the mean; n = 6 mice per group;
left panel). The relative change in the expression of each cytokine or
receptor in ECM brain tissue, relative to naive brain tissue, was also
calculated (right panel). The data presented are from one representa-
tive experiment of two performed. Statistically significant differences
of P < 0.01 (**) and P < 0.001 (*#**) are shown.

in CM pathogenesis, we investigated the expression of these
cytokines and their receptors in individual naive and ECM
brains taken from CBA and B6 mice by real-time RT-PCR
(Fig. 2). TNFR1 mRNA levels were significantly upregulated
during ECM in CBA (P < 0.001) and B6 (P < 0.01) brain
tissue compared with the naive control brain tissue, validating
the microarray results. TNF mRNA levels were significantly
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FIG. 3. P. berghei ANKA-infected B6 mice show expansion of microglia during ECM. Mononuclear cells were prepared from brain tissue
obtained during ECM and analyzed by FACS. The total numbers of CD4" T cells, CD8" T cells, DCs, neutrophils, monocytes/macrophages, and
microglia were measured in naive and infected CBA and B6 mouse brain tissue (mean * standard error of the mean; n = 5 mice per group), as
indicated (A). Representative FACS profiles of brain CD4* T cells (CD4", TCRB ") and microglia (CD11b™, CD45™) in B6 and CBA mice, as
indicated, are shown with corresponding percentages of total leukocytes (B). Data are from one representative experiment of two performed.
Statistically significant differences of P < 0.05 (*), P < 0.01 (**), and P < 0.001 (***) are shown.

(P < 0.001) upregulated in brain tissue taken from both strains
of mice with ECM, compared to the naive control brain tissue,
and this upregulation was significantly (P < 0.001) greater in
the CBA mice (Fig. 2). TNFR2 mRNA expression was also
upregulated in both strains during ECM (P < 0.001), but there

was no difference between strains. Similarly, there were in-
creased levels of LTB (P < 0.001) in ECM brain tissue taken
from both strains of mice, although the total levels did not
differ between the strains of mice (Fig. 2). Notably, although
LTa expression in B6 mouse brains during ECM only reached
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FIG. 4. Levels of serum cytokines differ between CBA and B6 mice during infection. Serum cytokine levels were measured in naive CBA and
B6 mice and P. berghei ANKA-infected mice during ECM (mean * standard error of the mean; n = 3 to 5 mice per group), as indicated. Data
shown are from one representative experiment of two performed. Statistically significant differences of P < 0.001 (*#*) are shown. IL-10 levels
were below the level of detection in naive mice (n.d, not detected). IL-6 levels were below the level of detection in naive CBA mice.

the levels of constitutive gene expression observed in naive
CBA brain tissue, the relative change in expression was greater
than that observed for CBA mice (Fig. 2). Together, these data
further suggest that CBA mice had greater overall immuno-
logical activity in the brain during ECM than B6 mice but that
there were different patterns of TNF and LTa expression in
these two mouse strains.

CBA and B6 mice with ECM have different patterns of
cellular recruitment to the brain. We were interested in
whether these differences in the brain gene expression profiles
of B6 and CBA mice with ECM were also reflected in the
leukocyte populations recruited to this site. We analyzed the
leukocyte populations in the brains of B6 and CBA mice by
FACS when control mice developed ECM (Fig. 3). The re-
cruitment of leukocytes such as T cells (5, 33), NK cells (20),
monocytes (40), and neutrophils (43) to the brain following P.
berghei ANKA infection, as well as the activation of resident
microglia (28), is a feature of ECM. Increased numbers of
CD8" T cells, DC, monocytes/macrophages, and neutrophils
were found in the brains of both B6 and CBA mice with ECM,
compared to naive controls (Fig. 3). Interestingly, CD4* T-cell
numbers were only found to increase significantly (P < 0.05) in
B6 mice with ECM, although naive CBA mice had consistently
higher numbers of these cells in their brains. When the num-
bers of microglia were analyzed, based on the expression of
high levels of CD11b and intermediate expression of CD45
(17, 42), numbers were increased in B6 mice with ECM but not
CBA mice with ECM (Fig. 3). These data identify relatively
minor differences in brain leukocyte composition between B6

and CBA mice with ECM, but nevertheless, these changes may
contribute to some of the observed heterogeneity in cerebral
gene expression profiles between B6 and CBA mice (Fig. 1).

CBA and B6 mice have different patterns of serum cytokine
levels following P. berghei ANKA infection. Several differences
were also observed between CBA and B6 mice when serum
cytokine levels were assessed (Fig. 4). B6 mice had significantly
(P < 0.05) higher levels of serum IFN-vy, IL-10, and IL-6 than
CBA mice with ECM. Thus, despite B6 mice having reduced
overall immunological activity in the brain during ECM com-
pared with CBA mice, they generated greater levels of systemic
cytokines during infection.

Common strategies to prevent or treat ECM development in
B6 and CBA mice. Given the heterogeneity between B6 and
CBA mice with ECM and the reported heterogeneity in human
CM patients, it was important to determine whether the de-
velopment of this disease could be prevented in both mouse
strains. We (3) and others (48) have recently demonstrated
that treatment of C57BL/6 mice with anti-CD25 MAD prior to
P. berghei ANKA infection protects from ECM. This treatment
results in profound changes in the host immune response to P.
berghei ANKA infection by depleting Treg cells and enhancing
parasite-specific CD4* T-cell activation, events associated with
dramatic reductions in parasite burdens (3). Therefore, we
next tested if this immunomodulatory treatment prior to P.
berghei ANKA infection would alter the disease outcome in
both ECM-susceptible mouse strains. Following anti-CD25
MAD treatment either on the day prior to infection (data not
shown) or 14 days before infection (Fig. SA), both B6 and CBA
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FIG. 5. Depletion of Treg cells prior to infection protects both B6 and CBA mice from ECM. Mice were administered the Treg-depleting
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bioluminescence (C). Mice were administered control rat IgG or anti-CD25 MADb 14 days prior to infection with luciferase-expressing P. berghei
ANKA. When control mice developed ECM, when clinical scores were =3, all groups were anesthetized and injected with luciferin firefly potassium
salt and the whole-body parasite burden was visualized with an I-CCD photon-counting video camera and in vivo imaging system. Differences in parasite
burdens between control and Treg-depleted mice are depicted in bar graphs as a measurement of bioluminescence. Data shown are from one
representative experiment of two performed. Statistically significant differences of P < 0.01 (#*) and P < 0.001 (***) are shown.

mice were protected from ECM, showed few signs of disease,
and were culled in the third week of infection with hyperpara-
sitemia and severe anemia according to ethical guidelines (Fig.
5B). All control animals developed ECM (Fig. 5A). Parasite
burdens were determined on day 7 p.i. by measuring biolumi-
nescence in mice infected with a transgenic P. berghei ANKA
line that constitutively expressed luciferase. When ECM symp-
toms were present in control mice, parasites were observed in
the extremities such as the tail, ears, nose, and footpads, where
blood vessels were close to the surface of the skin, as well as in
tissues such as the lungs and brain (Fig. 5C). Importantly, a
significant reduction in the parasite burden (P < 0.01) was

observed in both B6 and CBA mice treated with anti-CD25
MAD, compared with controls (Fig. 5C), indicating that para-
site accumulation in tissue and vasculature was greatly reduced
in both mouse strains following anti-CD25 MAb treatment,
relative to control animals.

CD8™ T cells also play a key role in the pathogenesis of
ECM in C57BL/6 mice, and depletion of this cell population
following the onset of ECM symptoms can rescue mice from
death (5, 33). To test if this therapy might be more broadly
applicable, both B6 and CBA mice were depleted of CD8" T
cells with an anti-CD8 MAb when ECM symptoms were ap-
parent in both mouse strains (day 6 p.i.). Strikingly, this treat-
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FIG. 6. CD8" T cells are critical for ECM in B6 and CBA mice, and depletion of these cells halts ECM progression. Anti-CD8 MAD (open
symbols) or control rat IgG (closed symbol) was administered i.p. to P. berghei ANKA-infected B6 (squares) and CBA (circles) mice on day 6 p.i.,
when clinical scores were =2, and mice were monitored for further disease development (A). B6 (open squares) and CBA (open circles) mice had
similar clinical scores upon the administration of anti-CD8 MAb (B; arrow), and these mice were monitored until the development of severe
anemia (B). Parasitemia was monitored in anti-CD8 MAb-treated B6 and CBA mice. At 72 h postadministration of the anti-CD8 MADb, differences
in parasitemia between the two ECM-susceptible mouse strains were observed (C). Ten mice were included in each group. Statistically significant

differences of P < 0.001 (***) and P < 0.002 (**) are shown.

ment prevented the further development of ECM in B6 and
CBA mice (Fig. 6A and B). Interestingly, B6 mice displayed a
temporary improvement in clinical scores following this treat-
ment, but this was not the case in CBA mice, whose clinical
scores stabilized (Fig. 6A and B). Furthermore, at 72 h follow-
ing anti-CD8 MADb treatment, blood parasitemia was signifi-
cantly reduced in B6 mice, but not in CBA mice. The reason
for this different effect on blood parasitemia is unknown. Nev-
ertheless, these results indicate that depletion of CD8™ T cells
can interrupt the development of ECM in B6 and CBA mice.
Anti-CD8 MAD treatment can temporarily reverse or stabilize
the progression of ECM in B6 and CBA mice, respectively,
with both strains of mice developing hyperparasitemia and
severe anemia in the third week of infection. Overall, these
prevention and intervention strategies can modulate the out-
come of P. berghei ANKA infection in B6 and CBA mice,
suggesting that, despite clear differences in cellular activity and
transcript expression in the brain and in systemic cytokine
levels, common immunomodulatory strategies can be used to
prevent or treat ECM in both strains of mice.

DISCUSSION

In this study, we found heterogeneous gene expression in
brain tissue from B6 and CBA mice with ECM. Many genes
associated with ECM in previous microarray studies (13, 44)
were also found to be differentially expressed in response to P.
berghei ANKA in the present analysis. In addition, many spe-

cific molecules that have been implicated in ECM pathogenesis
were also identified (see Tables S1, S2, and S3 in the supple-
mental material). A number of genes identified in the present
study have yet to be characterized functionally. Therefore, the
full impact of the gene expression profiles associated with
ECM, and how they might relate to ECM pathogenesis in B6
and CBA mice, remains to be fully appreciated. Also, because
the gene expression profiling in this study was performed only
once with pooled samples, it is possible that the results com-
municated here include some false-positive and false-negative
results.

B6 and CBA mice both had increased levels of mRNAs
encoding TNF, LT, and their receptors in brain tissue at the
onset of ECM. However, changes in TNF and LTa mRNA
levels differed between the two mouse strains following P.
berghei ANKA infection. These trends are in accordance with
a study of P. berghei ANKA-infected CBA brain tissue taken at
day 6 p.i.,, where increased expression of TNF and LTa
mRNAs was also observed (39). Overall, the relative increase
in TNF mRNA expression in the brains of CBA mice with
ECM was greater than in B6 mice whereas the relative increase
in LTa mRNA expression was greater in B6 mice following the
onset of ECM. These findings were not unexpected, given the
proposed roles for TNF in ECM in CBA mice (18) and LT« in
ECM in B6 mice (16).

In addition, some differences in brain leukocyte populations
were found when B6 and CBA mice developed ECM, as well
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as major differences in serum cytokine levels throughout P.
berghei ANKA infection. These data suggest that there may be
distinct immunological mechanisms involved in ECM patho-
genesis in B6 and CBA mice. However, we showed that ma-
nipulation of the host immune response to P. berghei ANKA
infection by depletion of Treg cells or CD8™ T cells resulted in
the protection of both B6 and CBA mice from ECM. Of
interest, following depletion of CD8" T cells, B6 mice recov-
ered rapidly, albeit transiently, while CBA mice continued to
display clinical signs of P. berghei ANKA infection. This obser-
vation suggests that physical recovery following CD8™ T-cell
depletion depends on different factors in the two strains. Blood
parasitemia was transiently reduced in B6 mice receiving anti-
CD8 MAD, and this may contribute to their temporary reversal
of clinical scores (Fig. 6). This transient reduction in blood
parasitemia in B6 mice could be due to several reasons. First,
CD8™ cell depletion may cause the parasites to be sequestered
to tissue sites and therefore be absent from blood. Second,
there may be a population of CD8" cells that suppresses an-
tiparasitic responses. The removal of all CD8" cells may re-
move these suppressor cells, thereby allowing effective immune
responses to be generated against the parasite. Third, we can-
not discount the possibility that new CD8" T cells or CD8"
DCs are generated and that these new cells are capable of
transient control of parasite growth. The above possibilities are
not mutually exclusive and may impact on each other to affect
the response of B6 mice to P. berghei ANKA infection. Nev-
ertheless, these effects appear to have been different in CBA
mice, whose clinical scores stabilize, rather than improve, as is
the case with B6 mice.

Parasites sequestered in tissue are thought to be critical for
disease pathogenesis during malaria infection (8, 15). There-
fore, it is likely that the reduced parasite burdens observed in
B6 and CBA mice that received anti-CD25 MAD is a simple
explanation for why these animals do not develop ECM. How-
ever, we cannot exclude the possibility that this treatment has
also altered a critical pathogenic component of the host im-
mune response following P. berghei ANKA infection, as this
treatment does significantly change antiparasitic immunity (3,
48). Furthermore, our previous data indicate that many of the
effects caused by anti-CD25 MAD treatment result from the
depletion of Treg cells (3). Others have interpreted the results
of this treatment differently and, in particular, have attributed
many of the effects of the treatment to the depletion of acti-
vated T cells (48). However, we have observed increased CD4™
T-cell activation in mice that have received anti-CD25 MAD,
rather than reduced responses (3). Other differences due to the
use of this antibody are in the effectiveness of depletion and
the duration of this effect, whereby there have been reports of
incomplete elimination of CD25" FoxP3" CD4™" T cells (12).
In our experiments, the anti-CD25 MAb treatment resulted in
85 to 95% depletion of CD25" FoxP3" CD4™" T cells and these
cells were reduced in number for at least 14 days, although they
did reemerge relatively rapidly following P. berghei ANKA
infection (3). The reason for the different effects of anti-CD25
MAD treatment may reflect differences in antibody preparation
and administration or the immune status of the experimental
animals used.

Identifying key molecules involved in CM pathogenesis is
vital for the development of treatments to delay or prevent this
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disease. Information generated from comparisons between
ECM-susceptible mouse strains, such as the genes commonly
upregulated, may prove important for identifying universal
factors that are critical for CM development. These could then
be used as potential targets for therapies aimed at preventing
or treating CM in humans. Our data suggest that common
strategies to delay or prevent CM may be feasible, despite
great heterogeneity between individuals in their immune re-
sponses during malaria infection.
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