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Super-resonant radiation stimulated by higher-harmonics

Cristian Redondo Lourés, Thomas Roger, Daniele Faccio, and Fabio Biancalana
School of Engineering and Physical Sciences, Heriot-Watt University, EH14 4AS Edinburgh, UK

Solitons propagating in media with higher order dispersion will shed radiation known as resonant
radiation, with applications in frequency broadening, deep UV sources for spectroscopy and funda-
mental studies of soliton physics. Using a recently proposed equation that models the behaviour
of ultrashort optical pulses in nonlinear media using the analytic signal, we find that the reso-
nant radiation associated with the third-harmonic generation term of the equation is parametrically
stimulated with an unprecedented gain. Resonant radiation levels, typically only a small fraction of
the soliton, are now as intense as the soliton itself. The mechanism is universal and works also in
normal dispersion and with harmonics higher than the third. We report experimental hints of this
super-resonant radiation stimulated by the fifth harmonic in diamond.

PACS numbers: 42.65.-k Nonlinear optics; 42.65.Ky Frequency conversion; harmonic generation, includ-
ing higher-order harmonic generation; 42.65.Sf Dynamics of nonlinear optical systems; optical instabilities,
optical chaos and complexity, and optical spatio-temporal dynamics; 42.65.Wi Nonlinear waveguides

Introduction — The process of resonant radiation
emission in nonlinear media is extremely general and has
been studied in many different systems, like solitons in
fibers and bulk media [1-6], 3D light bullets [7-9], dis-
persive shock waves [10], resonators [11-15], and complex
scenarios combining a mixture of the above [16]. This
emission is dictated by a nonlinear momentum conserva-
tion, i.e. the requirement is that the momentum of the
pump is equal to the linear momentum of the dispersive
wave propagating in normal dispersion [2, 4, 5] — known
as the phase matching condition. For a system governed
by the nonlinear Schrédinger equation (NLSE) it can only
occur when a third (or higher) order dispersion term is
present. In a recent work, Conforti et al proposed an
equation for the analytic signal of an electric field that
is formally similar to the NLSE but does not suffer from
many of the limitations of the latter [17] and only re-
lies on the reasonable assumption of neglecting backward
propagating waves [18]. This equation has been found
to predict features of the nonlinear interaction between
light and matter that were not present in the original
NLSE, related to the so-called negative frequency compo-
nents of the pulse [19, 21-24]. In [17] the authors discuss
new phase matching conditions that arise from the new
nonlinear polarisation terms in their equation, and the-
oretically predict the emission of the so-called negative
resonant radiation (NRR) and third-harmonic resonant
radiation (THRR). The former had been previously iden-

tified experimentally by Rubino et al. [19, 20]. However,
the new THRR term was located in the deep infrared
region of the spectrum for the system analysed (fused
silica), where it was not efficiently fed by the pump and
thus has never been observed.

In this Letter we explore the possibility of promoting
the THRR signal into a very strongly resonant mode.
When the THRR frequency is close to a higher-harmonic
frequency, a surprisingly large amount of the pump en-
ergy can be transferred to the radiation via a stimulated
process. This is a two step mechanism: the pump releases
energy to a higher harmonic, and the higher-harmonic
energy is then transferred to the resonant THRR mode.
This mode then appears as a sharp, intense peak in the
output spectrum. The surprising property of this novel
radiation, which we dub super-resonant radiation (SRR),
is its extremely powerful gain dynamics and the unprece-
dented transfer of energy from the soliton to the radiation
itself — setting the SRR apart from any currently known
dispersive wave emission, with interesting potential uses
in frequency conversion applications. In the final part,
we show a clear experimental hint of SRR in diamond,
where intense pulses in normal dispersion are used to ex-
cite the THRR, which is then promoted to SRR when its
frequency is close to the fifth harmonic of the pump.

Governing equations — The equation proposed by
Conforti et al [17] is, in dimensionless units,

i0eA + D(id;)A + <1 + iaf) [|A|2A + |A|* A" exp(2i¢) + %A3 exp(—2i¢)| =0 (1)

where A = A(E, 7) is the envelope of the analytic signal
of the electric field, £ and 7 are the dimensionless space

+

and time variables (scaled with the second order disper-
sion length Lp = t3/|32| and the input pulse duration



to, respectively), D = 32%°_ b,,,(id,)™ /m! is the disper-
sion operator, by, = B /(|B2]t]"?) are the normalised
dispersion coefficients, ¢ = k€ + ut, £ = (S1wo — Po)Lp
is a crucial parameter that measures the difference be-
tween the group and the phase velocities, u = wpty is the
normalised pulse frequency, (5 is the inverse group ve-
locity, Bo/wo the inverse phase velocity, Lp = t2/|82] is
the dispersion length, and wy the central frequency of the
pulse. Equation (1) has been successfully applied to opti-
cal fibers, crystals [17, 22] and fiber or microring cavities
[23].

The analytic signal € = Aexp(iffpz — iwpt) is the pos-
itive frequency part of the electric field F, which can be
written as F = (€ + £*)/2, an equal mixture of positive
and negative frequencies [21]. In the absence of nonlin-
ear interactions, the fields £ and £* are completely de-
coupled, but the nonlinear polarisation in Eq. (1) mixes
both fields in a non-trivial way. The first term of the
polarisation inside the square brackets in Eq. (1) corre-
sponds to the usual Kerr term. The third term is the
3rd-harmonic generation, and the second is the so called
negative-frequency Kerr term [17]. The subscript + in
Eq. (1) means that spectral filtering must be performed,
since A must contain only the positive frequency compo-
nents [17, 22, 23, 25, 26].

In Ref. [17] all the phase matching conditions for the
emission of resonant radiationshave been derived — there
are three in total, one associated with each term of the
nonlinear polarisation:

D(A) =2mk — (2m — 1)q, (2)

where ¢ = 1/2 is the normalised power of the inci-
dent pulse, and m = 1 for NRR, m = 0 for the usual
RR, and m = —1 for the THRR, see also Ref. [17].
D(A) = > , by A" /nl is the Fourier transform of the
dispersion operator, where A is the dimensionless detun-
ing between pulse and radiation. Since in experimentally
accessible conditions k > ¢, if we are in deep anoma-
lous dispersion (by < 0 and all other dispersion coeffi-
cients can be ignored) D(A) = byA?/2 < 0 and neither
the phase-matching for RR nor the one for NRR can be
satisfied, see blue solid curve in Fig. 1. However, the
phase matching for THRR can be fulfilled for two values
of the detuning, one positive and one negative (see blue
solid curve and dots showing crossings in Fig. 1). In the
same figure we can see that when we include b3, all three
phase matching conditions can be satisfied for values of
A > 0, and there are three different detunings for which
we expect to find THRR, see dashed black curve and dots
showing the crossings in Fig. 1.

We have numerically found that, when the position of
the THRR is close to the 3rd-harmonic that is created
by the pump as it propagates through the medium, the
radiation will grow rapidly and appears as a narrow, very
intense peak in the spectrum in the position predicted by
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FIG. 1: (Color online) Phase matching curves from Eq. (2).
The three horizontal lines represent the three phase matching
conditions: NRR (upper, red line), RR (medium, green line)
and THRR (lower, brown line). The two curves represent the
dispersion for bz only (blue, solid line) and bs = 0.15 (black,
dashed line). 1 =5 and k = 10 in both cases.

the phase matching condition (2), with m = —1. At vari-
ance with previously known dispersive wave emissions in
fibers or bulk, this is a two step mechanism: the pulse
gives energy to its 3rd-harmonic during propagation, and
then most of this energy is transferred to the phase-
matched THRR closest to the 3rd-harmonic frequency.
This last step can only occur if the THRR is spectrally
located close to the 3rd-harmonic frequency (see purple
oval in Fig. 1). We therefore say that the THRR has
been ‘promoted’ to SRR. This effect is extremely efficient:
the 3rd-harmonic never manages to fully grow, since the
THRR continuously absorbs almost all its energy, leading
to the formation of an extremely intense and spectrally
well-localized SRR peak. We have also checked that the
possible emission of backward RR (which has its own
phase-matching condition, and is far detuned and there-
fore very weak) is not detrimental to the formation of
SRR [see also Fig. 6(c)].

Numerical simulations — Figure 2 shows the evolu-
tion in the time domain of a sech pulse with by < 0,
bs = 0, p = 5 and k = 10 after ¢ = 10 dispersion
lengths. These parameters are chosen in such a way
that the THRR is phase-matched at a frequency between
the pump (w/wp = 1) and its 3rd-harmonic (w/wp = 3),
around w/wg ~ 2. An oscillation appears on the top of
the pulse in the time domain and then moves faster than
the soliton, thus creating a leading oscillating tail. These
violent intra-soliton oscillations are characteristic of the
SRR.

The spectral evolution of this pulse is shown in Fig. 3.
The spectrum develops a very intense peak at the posi-
tion predicted for the THRR, see Eq. (2). This starts as
a small peak in the 3rd-harmonic peak but keeps grow-
ing with propagation, as energy is sucked from the 3rd-
harmonic. Note that for ¢ = 100 this peak has grown
to be more intense than the pump pulse. The THRR
is parametrically stimulated by the 3rd-harmonic, and
is promoted to SRR. If the phase-matched THRR fre-
quency is a bit outside 3rd-harmonic band, an important
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FIG. 2: (Color online) Soliton in time domain after a propa-
gation of £ = 2.5 (a), 5 (b), 7.5 (c) and 10 (d). We can see
the oscillations on top of the pulse that leave it through the
leading edge. Parameters: b3 =0, © =5 and x = 10.
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FIG. 3: (Color online) Initial (red dashed) and final (thick
blue) spectrum of a pulse after a propagation of £ = 2.5 (a), 5
(b), 7.5 (c) and 100 (d), with other parameters as in figure 2.
One can see the evolution of a THRR peak into a stimulated
SRR, Eq. (2) for m = —1 (vertical black dotted line).

growth can still be observed, however the THRR stimu-
lation becomes increasingly weaker.

In Fig. 4 we show the XFROG spectrograms of the
pulse evolution for £ = 2.5, 5, 7.5 and 10, again for the
case b3 = 0. The 3rd-harmonic radiation has two com-
ponents, one that propagates alongside the pulse and an-
other one leading it (‘#1’ and ‘#2’, respectively). The
SRR extends between these two components of the 3rd-
harmonic, confirming our hypothesis that SRR is THRR
stimulated by higher harmonics.

When b3 = 0.15 # 0 the situation changes significantly.
As seen in Fig. 1, Eq. (2) predicts two (normally disper-
sive) phase-matched frequencies near the 3rd-harmonic
(see the intersection between the black dashed line and
the horizontal THRR line). Output spectra for the case
bs # 0 are shown in Fig. 5. Two peaks appear at the po-
sitions predicted by the phase matching conditions, with
the one closer to the 3rd-harmonic frequency growing
much faster than the other. Again, the radiation peak
closer to the 3rd-harmonic (which is inside the purple
oval in Fig. 1) is a stimulated THRR which is then pro-
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FIG. 4: (Color online) XFROG for propagation lengths of
& =25 (a), 5 (b), 7.5 (c) and 10 (d). We can see the two
components of the 3rd-harmonic described in the text and the
SRR between them. Note how the SRR band grows indefi-
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FIG. 5: (Color online) Snapshots of the initial (red dashed
line) and final (blue solid line) spectra during a propagation
of (a) € = 2.5 and (b) £ = 10 in the case bs = 0.15. The two
vertical lines show the predicted position of the two THRRs.
The THRR closer to the 3rd-harmonic peak grows taller than
the pump for £ = 10, becoming a SRR. Other parameters are
as in Fig. 2.

moted to SRR.

Ezperimental hints of SRR — We show now ini-
tial experimental evidence of THRR stimulated by the
5th-harmonic in diamond. Odd harmonics higher than
the 3rd are generated in the sample during propagation
due to cascaded four-wave mixing, for which the 3rd-
harmonic generation term of Eq. (1) is responsible. This
term initially merges three photons of the pump with
frequency wp into a single photon with frequency 3wy,
and then this secondary photon with two other photons
of the pump so that a pulse of frequency 5wy is cre-
ated. Therefore we expect the resonant radiation com-
ing from the 3rd-harmonic term to be stimulated by any
cascaded higher odd harmonic, albeit the resulting SRR
would have smaller amplitude due to the decreasing in-
tensity of higher harmonics. The use of the 5th-harmonic
instead of the 3rd is useful in some materials, due to
the unclean spectra surrounding the 3rd-harmonic when
pumping with very high energies. In diamond (normally
dispersive) we cannot propagate solitons. The emissions
are in this case shock-front-assisted resonant radiations
Ref. [27]. The specific nature of the pulse generating
the resonant emission is not important, since the phase-



matching conditions still hold. SRR is a general phe-
nomenon that appears whenever a nonlinear system that
exhibits cascaded higher harmonic generation allows for
resonant radiation associated with the higher harmonic
generation term (for a similar process occurring in x(?
media see Refs. [28, 29]).

We have used 50 fs pulses injected in a 500 um bulk
diamond. An amplified Ti:Sapphire laser with central
wavelength A\g = 785 nm is used to pump an optical
parametric amplifier (OPA, TOPAS-C, Light Conversion
Ltd.) producing infrared light pulses whose wavelength
can be tuned between 1750-2050 nm, repetition rate of
100 Hz and with pulse duration 70 fs. The IR pulses are
focused with an f = 150 mm lens to a spot radius of
~ 36um providing a peak intensity of I = 28 TW /cm?2.
A single crystal diamond cut along the (100) axis is used
to study the dynamics of the THRR vs pump wavelength.
The output of the diamond crystal is imaged onto a spec-
trometer (Andor Shamrock 303i spectrometer and iDus
CCD camera) providing visible spectrum data. In order
to isolate the 5th harmonic from the intense 3rd harmonic
contribution and have enough dynamic range, the high
frequency component (A < 510 nm) is blocked inside the
spectrometer.

In Fig. 6(a) we show the high-energy part of the output
spectrum after L = 500 pm propagation, when varying
the input pulse wavelength from 1750 nm to 2050 nm.
We can observe the 5th-harmonic peak shifting linearly
towards longer wavelengths as expected [see red solid line
and red squares in Fig. 6(a) that shows the pump wave-
length x1/5]. However, an additional peak is observed,
which shifts towards shorter wavelengths when increas-
ing the pump wavelength. This latter peak is due to
THRR as shown by the perfect agreement with the pre-
dicted THRR position [black solid line and black dots in
Fig. 6(a)]. The prediction is based on the THRR phase-
matching condition in normal dispersion and in presence
of the shock term, as in Ref. [27]. When the THRR and
5th harmonic peaks have similar frequencies, i.e. when
the pump wavelength is ~ 1960 nm, the THRR am-
plitude grows considerably with a conversion efficiency
larger than -50 dB from the pump. We have checked
via an accurate phase-matching analysis that such en-
hancement is not due to a phase-matched cascaded 5th-
harmonic generation. The normal dispersion of diamond
does not allow the formation of a soliton, i.e. the pulse
intensity will quickly decrease in propagation: yet these
results show that the phenomenon of SRR ‘promotion’ is
very general and relies only on the crossing of the THRR
emission with a higher-order harmonic.

Figure 6(b) shows the peak intensities of the 5th har-
monic and THRR taken along the red and black solid
lines from Fig. 6(a) respectively. There is a clear en-
hancement of the peaks at the point at which their emis-
sion wavelengths are overlapped (A, ~ 1960 nm), and
significant enhancement of the combined peak [~40%
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FIG. 6: (Color online) (a) Emission of THRR (black dots) and
5th harmonic (red squares) in diamond vs pump wavelength.
There is a crossing point of the THRR and 5th harmonic emis-
sion for Ap ~ 1960 nm. SRR peak is generated at 390 nm.
(b) THRR and 5th harmonic peak maxima vs pump wave-
length. We find an enhancement of 40% compared to that
predicted by taking the sum of the average values away from
their overlap wavelength (dashed red and black lines). (c)
Phase-matching curves for all types of radiations in diamond.

larger than predicted, see blue dashed line] indicating
the production of a stimulated SRR. Figure 6(c) shows
the phase-matching curves of all the radiations in dia-
mond for A\, = 1960 nm. Backward RR (green dashed
line) is unimportant since it would be phase-matched at
very short wavelengths (106 nm). The THRR is pre-
dicted at 390 nm, overlapping with the 5th-harmonic,
as seen in the experiment. Phase-matching curves are
not straight lines due to the strong contribution of the
shock term for high intensities and normal dispersion,
see Ref. [27]. The conversion efficiency from the pump
pulse to the SRR peak is estimated to be ~ 1075, due
to the short propagation distance and the rapid inten-
sity drop in normal dispersion. However this is an im-
portant proof of concept of the SRR formation, which
is open to improvements once the appropriate materials
and waveguides that are able to phase match SRR over
long distances are found.

Conclusions — We have shown that the THRR can
be stimulated by a higher-harmonic when they are spec-
trally close. Resonant radiation peak could grow indef-
initely in a stimulated fashion, with its amplitude even
becoming higher than the pump itself in some cases. We
have seen experimentally some preliminary hints of SRR
in diamond, where a very intense pulse propagates in nor-
mal dispersion and the radiation is stimulated by the 5th
harmonic. Our findings could lead, by using appropriate
waveguides or bulk crystals, to super-efficient frequency
conversion effects.

[1] J. N. Elgin, T. Brabec, and S. M. J. Kelly, Opt. Commun.
114, 3221 (1995).

[2] N. Akhmediev and M. Karlsson, Phys. Rev. A 51, 2602
(1995).

[3] A. V. Husakou and J. Herrmann, Phys. Rev. Lett. 87,
203901 (2001).

[4] F. Biancalana, D. V. Skryabin, and A. V. Yulin, Phys.
Rev. E 70, 016615 (2004).



[5] D. V. Skryabin et al., Science 301, 1705 (2003).

[6] M. Erkintalo, G. Genty, and J. M. Dudley, Opt. Lett. 35,
658 (2010).

7] M. Durand et al., Phys. Rev. Lett. 110, 115003 (2013).

8] M. Durand et al., Phys. Rev. A 87, 043820 (2013).

9] T.

0]

Roger et al., Phys. Rev. A 90, 033816 (2014).

M. Conforti, F. Baronio, and S. Trillo, Phys. Rev. A 89,

013807 (2014).

[11] C. Millidn and D. V. Skryabin, Opt. Express 22, 3732
(2014).

[12] S. Coen, H. G. Randle, T. Sylvestre, and M. Erkintalo,
Opt. Lett. 38, 37 (2013).

[13] J. K. Jang et al., Opt. Lett. 39, 5503 (2014).

[14] M. R. E. Lamont, Y. Okawachi and A. L. Gaeta, Opt.
Lett. 38, 3478 (2013).

[15] Y. Okawachi et al., Opt. Lett. 36, 3398 (2011).

[16] S. Malaguti, M. Conforti, and S. Trillo, Opt. Lett. 39,
5626 (2014).

[17] M. Conforti et al., Opt. Express 21, 31239 (2013).

1

P. Kinsler, J. Opt. Soc. Am. B 24, 2363-2368 (2007).

E. Rubino et al., Phys. Rev. Lett. 108, 253901 (2012).

F. Biancalana, Physics 5, 68 (2012).

Sh. Amiranashvili, U. Bandelow and N. Akhmediev,

Phys. Rev A 87, 013805 (2013); Sh. Amiranashvili and

A. Demircan, Adv. Opt. Technol. 2011, 989515 (2011).

[22] C. Redondo Lourés et al., Opt. Lett. 40, 613 (2015).

[23] C. Redondo Lourés, D. Faccio, and F. Biancalana, Phys.
Rev. Lett. 115, 193904 (2015).

[24] J. McLenaghan and F. Konig, New Journal of Physics
16, 063017 (2014).

[25] A. Demircan et al., Phys. Rev. Lett. 110, 233901 (2013).

[26] A. Demircan et al., Opt. Express 22, 3866 (2014).

[27] T. Roger et al., Phys. Rev. A 88, 051801 (2013).

[28] B. Zhou, H. Guo, and M. Bache, Phys. Rev. A 90, 013823
(2014).

[29] B. Zhou et al., arXiv:1606.00572v3 (2016).



	coversheet_accepted
	155671

