
OR I G I N A L A R T I C L E

Landscape attributes governing local transmission of an
endemic zoonosis: Rabies virus in domestic dogs

Kirstyn Brunker1,2,3 | Philippe Lemey4 | Denise A. Marston3 | Anthony R. Fooks3 |

Ahmed Lugelo5 | Chanasa Ngeleja6 | Katie Hampson1,2* | Roman Biek1,2*

1Institute of Biodiversity, Animal Health and

Comparative Medicine, University of

Glasgow, Glasgow, UK

2The Boyd Orr Centre for Population and

Ecosystem Health, University of Glasgow,

Glasgow, UK

3Animal and Plant Health Agency,

Addlestone, UK

4Department of Microbiology and

Immunology, KU Leuven – University of

Leuven, Leuven, Belgium

5Department of Veterinary Medicine and

Public Health, Sokoine University of

Agriculture, Morogoro, United Republic of

Tanzania

6Tanzania Veterinary Laboratory Agency,

Dar es Salaam, United Republic of Tanzania

Correspondence

Kirstyn Brunker, Institute of Biodiversity,

Animal Health and Comparative Medicine,

University of Glasgow, Glasgow, UK.

Email: kirstyn.brunker@glasgow.ac.uk

Funding information

Research And Policy for Infectious Diseases

Dynamics (RAPIDD) Program of the Science

& Technology Directorate, Department of

Homeland Security and the Fogarty

International Center, National Institute of

Health; Wellcome Trust (Grant/Award

Number: 082715/B/07/Z, 095787/Z/11/Z,

097821/Z/11/Z, 105614/Z/14/Z); Medical

Research Council (Grant/Award Number:

G0901135); MSD Animal Health

Abstract

Landscape heterogeneity plays an important role in disease spread and persistence,

but quantifying landscape influences and their scale dependence is challenging.

Studies have focused on how environmental features or global transport networks

influence pathogen invasion and spread, but their influence on local transmission

dynamics that underpin the persistence of endemic diseases remains unexplored.

Bayesian phylogeographic frameworks that incorporate spatial heterogeneities are

promising tools for analysing linked epidemiological, environmental and genetic data.

Here, we extend these methodological approaches to decipher the relative contribu-

tion and scale-dependent effects of landscape influences on the transmission of

endemic rabies virus in Serengeti district, Tanzania (area ~4,900 km2). Utilizing

detailed epidemiological data and 152 complete viral genomes collected between

2004 and 2013, we show that the localized presence of dogs but not their density

is the most important determinant of diffusion, implying that culling will be ineffec-

tive for rabies control. Rivers and roads acted as barriers and facilitators to viral

spread, respectively, and vaccination impeded diffusion despite variable annual cov-

erage. Notably, we found that landscape effects were scale-dependent: rivers were

barriers and roads facilitators on larger scales, whereas the distribution of dogs was

important for rabies dispersal across multiple scales. This nuanced understanding of

the spatial processes that underpin rabies transmission can be exploited for targeted

control at the scale where it will have the greatest impact. Moreover, this research

demonstrates how current phylogeographic frameworks can be adapted to improve

our understanding of endemic disease dynamics at different spatial scales.
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domestic dog, endemic zoonotic disease, landscape heterogeneity, phylogeography, rabies,

spatial diffusion

1 | INTRODUCTION

The landscape occupied by a pathogen is spatially complex (McCal-

lum, 2008; Ostfeld, Glass, & Keesing, 2005; Real & Biek, 2007), and*These authors contributed equally to this work.
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spatial heterogeneities influence pathogen spread (Grenfell, Bjørn-

stad, & Kappey, 2001; Keeling et al., 2001; Meentemeyer, Haas, &

V�aclav�ık, 2012; Meentemeyer et al., 2011; Pavlovsky & Levine,

1966; Real & Biek, 2007). Topographical features like rivers and

mountain ranges and socio-ecological characteristics like road net-

works can impede or facilitate host movement, and influence host

distributions and densities. Meanwhile, the implementation of con-

trol measures such as vaccination affects the susceptibility of host

populations. The interaction between natural and anthropogenic

landscapes is an important aspect of infection dynamics for patho-

gens of both humans and animals (Bourhy et al., 2016; Gire et al.,

2014; Lemey et al., 2014; Pybus, Tatem, & Lemey, 2015; Talbi et al.,

2010). Understanding the scale over which landscape attributes act

on transmission mechanisms and how they, individually and in com-

bination, influence the spread of infection is a major challenge (Levin,

1992; Viboud et al., 2006; Wu, 2004).

Direct transmission of infection is rarely observed, but pathogen

genetic data provide information from which drivers of transmission

can be inferred. Viral phylogeographic analysis exploits genetic infor-

mation to explore how interactions between evolutionary and spatial

processes give rise to contemporaneous viral geographical distribu-

tions. Its application has uncovered important aspects of infectious

disease spread including the global migration dynamics underlying

human influenza H3N2 transmission (Bedford, Cobey, Beerli, & Pas-

cual, 2010; Lemey et al., 2014), the impact of border closures during

the 2013–2016 West African Ebola outbreak (Dudas et al., 2017)

and variation in epidemic raccoon rabies spread through space and

time (Lemey, Rambaut, Welch, & Suchard, 2010a,b). Notably, most

phylogeographic studies focus on epidemic spread. In contrast, ende-

mic pathogens have received less attention despite evidence of per-

sisting phylogeographic structure and discernible patterns of

dispersal (Bourhy et al., 2016; Brunker et al., 2015; Raghwani et al.,

2011). Increasingly, combined genetic and epidemiological/environ-

mental data are being used to resolve our understanding of complex

pathogen dynamics (Bedford et al., 2010; Faria et al., 2014; Lemey

et al., 2014; Trov~ao et al., 2015). Analytical tools to incorporate spa-

tial heterogeneity and exploit landscape genetic approaches are

rapidly evolving as demand grows for methods to analyse spatially

resolved and linked epidemiological, environmental and genetic data

sets (Brockmann & Helbing, 2013; Dellicour, Rose, & Pybus, 2016;

Lemey et al., 2014). Such an integrated approach, drawing on these

data, could elucidate the contribution of different processes underly-

ing endemic pathogen transmission dynamics and their scale depen-

dence (Baele, Suchard, Rambaut, & Lemey, 2016).

Dog-mediated rabies is a substantial but neglected public health

priority, responsible for around 59,000 human deaths globally every

year (Hampson et al., 2015). The causative agent, rabies virus

(RABV), is a rapidly evolving negative-sense RNA virus that causes a

fatal neurological infection in mammalian hosts. Domestic dogs are

responsible for over 99% of all human deaths from rabies, which

occur predominantly in Asia and Africa (WHO, 2013). Although mass

dog vaccination has repeatedly been shown to effectively control

rabies in domestic dog populations (Cleaveland, Kaare, Knobel, &

Laurenson, 2006; Cleaveland, Kaare, Tiringa, Mlengeya, & Barrat,

2003; Hampson et al., 2007; Morters et al., 2013; Townsend et al.,

2013), lingering doubts about the role of wildlife in maintaining

infection, and the perceived need to reduce dog populations, affect

the implementation of control measures (Lembo et al., 2010).

Improved understanding of the local drivers of RABV spread in

domestic dog populations could therefore support rabies control

efforts, especially as they focus towards the goal of elimination

(Hampson et al., 2016; Lankester et al., 2014; Mpolya et al., 2017).

As a directly transmitted pathogen, RABV is inevitably shaped by

landscape influences on the movement, distribution, density and sus-

ceptibility of hosts (Table 1). Well-studied rabies epidemics in wild-

life populations exhibit irregular waves of spread driven by key

landscape features and human-mediated long-distance translocations

(Russell, Real, & Smith, 2006; Smith, Lucey, Waller, Childs, & Real,

2002). Previous studies indicate that phylogeographic structure of

dog-mediated rabies is similarly shaped by an interplay of physical and

human geography (Bourhy et al., 1999, 2008; Brunker, Hampson, Hor-

ton, & Biek, 2012; Brunker et al., 2015; Talbi et al., 2009, 2010). For

example, physical barriers delineate major canine RABV clades (Bourhy

et al., 2008), while road and trade networks facilitate human-mediated

dispersal (Brunker et al., 2015; De Mattos et al., 1999; Denduangbori-

pant et al., 2005; Talbi et al., 2010; Tenzin, Dhand, Dorjee, & Ward,

2011). But, much less is known about landscape drivers on the local

spread and persistence of endemic dog rabies.

As control measures such as vaccination and population reduction

contribute to landscape heterogeneity, this framework also provides a

means to determine both the most appropriate form of control and

the impact of control measures. Culling continues to be used as a

response to rabies outbreaks in many parts of the world (Putra, Hamp-

son, & Girardi, 2013; Windiyaningsih, Wilde, Meslin, Suroso, &

Widarso, 2004). Although transmission of pathogens such as rabies is

often considered to depend on population density (Anderson & May,

1991), empirical evidence suggests that dog density has little effect on

RABV transmission (Hampson et al., 2009; Morters et al., 2013).

Moreover, dog population reduction alone has proven ineffective for

rabies control (Lee et al., 2001; WHO, 2013; Windiyaningsih et al.,

2004). Phylogeographic signatures may elucidate the relative roles of

dog population structure and density on RABV, and of vaccination.

These insights are critical to determining what interventions will be

most effective at the scale of their implementation.

Integrating genetic, environmental and population data within

phylogeographic frameworks offers the opportunity to quantify how,

individually and in combination, different landscape attributes influ-

ence the local transmission processes that underpin endemic circula-

tion of dog-mediated rabies. Here, integrated and flexible

phylogeographic frameworks are used to decipher the relative contri-

bution and scale-dependent effects of landscape influences on trans-

mission dynamics of endemic RABV in Serengeti district, Tanzania

(area ~4,900 km2). Based on a unique data set of genetic, epidemio-

logical and landscape data, including vaccination coverage and dog

density, we aim to elucidate the key mechanisms underlying the local

spread of RABV.
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2 | MATERIALS AND METHODS

2.1 | Sequence data

In total, 152 whole-genome sequences were used for this analysis,

including 119 new sequences. Of these 119, 27 partial sequences

previously submitted to GenBank were updated to whole-genome

sequences under the same accession number (Brunker et al., 2015).

The remaining 33 whole-genome sequences from the previous study

were also used. Sample details, including epidemiological data,

sequence details and GenBank accession numbers, are listed in

Table S3.

Brain samples were obtained from rabid animals in the Serengeti

district of northwest Tanzania from 2004 to 2013, along with the

GPS location, and date symptoms were observed for each case.

Samples were processed at the Animal & Plant Health Agency in

Weybridge (APHA) as described in Brunker et al. (2015) (except for

five samples sequenced by 454 pyrosequencing, see Methods S1

and Table S3). In brief, total RNA was extracted from brain material

using TRIzol and subject to two depletion stages to reduce the pro-

portion of host genetic material. Host genomic DNA was depleted

using the on-column DNase treatment in a RNeasy plus mini kit

(Qiagen) followed by ribosomal RNA depletion in a reaction with

Terminator 50-phosphate-dependent exonuclease (Epicentre), which

selectively digests RNA with a 50-monophosphate end. Depleted

RNA was subjected to a round of purification using the RNeasy plus

mini kit without DNase treatment and eluted in 30 ll molecular-

grade water. Double-stranded cDNA was transcribed using a cDNA

synthesis system kit with random hexamers (Roche) and libraries for

sequencing prepared via a Nextera-XT protocol (Illumina). Libraries

were sequenced on an Illumina MiSeq (Medical Research Council

Centre for Virus Research at the University of Glasgow, UK) or

NextSeq platform (Glasgow Polyomics centre at the University of

Glasgow, UK) with 150-bp paired-end reads. Raw reads were pro-

cessed as described in Brunker et al. (2015), and SNPs were filtered

in GATK according to strand bias (FS>60, SOR>4), mapping quality

(MQ<40, MQRankSum< (-)12.5), read position (ReadPosRankSum<(-)

8.0) and depth of coverage (DP<5). Filtered SNPs were called with a

75% consensus rule (ambiguous bases were given an IUPAC code),

and genome positions with no coverage or covered by less than two

reads were labelled “N.”

2.2 | Landscape

The study landscape was defined as a spatial grid encompassing

the Serengeti district (spatial extent: xmin = 637,638.2,

ymin = 9,757,825.5, xmax = 705,238, ymax = 9,835,425) with a resolu-

tion of 100 m. Landscape attributes (note: the term “attribute” is

used as a general descriptor for any landscape feature or process

that may affect viral dispersal) were characterized as resistance sur-

faces with grid cells assigned resistance values according to the

assumed facilitating or impeding impact of an attribute on RABV dif-

fusion. Data sources used for each landscape attribute are detailedT
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in Table 1. Specifically, a complete census of the human and dog

population in the Serengeti district, involving collecting GPS loca-

tions for each household and the vaccination status of each dog,

was conducted over a 7-year period, as described in Sambo et al.

(2017). This census was used to populate resistance matrices for dog

presence, dog density and susceptible dog density.

Resistance landscapes for each attribute were constructed indi-

vidually, with resistance values justified according to evidence from

previous studies (Table 1). For example, rivers have previously been

identified as barriers to RABV dispersal, and cells containing a river

were therefore assigned a high resistance value. Landscape attri-

butes assumed to facilitate diffusion were given resistance values

according to the reciprocal of their assumed conductance; for exam-

ple, roads were assigned an arbitrary conductance of 1,000 giving a

resistance value of 0.001. Cells with no attribute were assigned a

resistance value of one to represent a uniform landscape. A null

model of isolation by distance (IBD) was created, where all cell val-

ues were set to one.

Circuitscape (Shah & McRae, 2008) was used to generate a

matrix of pairwise resistance distances between all rabies sample

locations for each landscape-informed resistance surface. The pro-

gram uses a combination of circuit and graph theory to model con-

nectivity according to the effective resistance between pairs of

points or focal regions (see McRae, Dickson, Keitt, and Shah (2008)

for a detailed review). Landscape grids are converted to graphs

where each cell is represented by a node and connections by undi-

rected weighted edges. Resistance (i.e., edge weights) between two

nodes was calculated as the average per-cell resistance value. An

advantage to circuit theory methodology is that multiple connections

between nodes can be considered (in this analysis, eight neighbours

were considered for each node) accounting for the effect of multiple

pathways connecting points and producing an effective resistance

distance (McRae et al., 2008).

Details of the different landscape attributes tested are shown in

Table 1, and final resistance landscapes are shown in Figure 1.

Details on the construction of resistance surfaces for each attribute

can be found in the Methods S1.

2.3 | Empirical tree distribution

To overcome the computationally intensive task of exploring phylo-

genetic tree space repeatedly, in each set of analyses, a posterior

distribution of timescaled trees was inferred from sequence data

once using BEAST v1.8.1 (Drummond & Rambaut, 2007) with the

BEAGLE library (Ayres et al., 2012) as a basis for further analyses.

Sequence evolution was modelled using an HKY+gamma substitution

model partitioned by first, second and third codon positions and

intergenic regions, implemented with an uncorrelated lognormal

molecular clock (Drummond, Pybus, Rambaut, Forsberg, & Rodrigo,

2003; Drummond & Suchard, 2010) and a Bayesian skyline model

(Drummond, Rambaut, Shapiro, & Pybus, 2005). Five independent

MCMC chains were run for 50 million steps, sampled every

50,000th and combined in LOGCOMBINER v1.8.1. Chains were

inspected for stationarity and adequate mixing in TRACER v1.6 (Ram-

baut & Drummond, 2014) and a 10% burn-in discarded from each.

The combined posterior tree distribution was subsampled to a set

of 1,000 trees to provide an adequate sample of phylogenetic

uncertainty. The resulting empirical tree set was used in all subse-

quent diffusion analyses to approximate phylogenetic uncertainty.

A transition kernel was implemented to randomly sample from this

tree distribution (Pagel, Meade, & Barker, 2004). A maximum-like-

lihood phylogeny was also generated in RAXML (Stamatakis et al.,

2012), employing the GTRGAMMA model with 1,000 bootstrap

replicates to showcase the genetic diversity in the data (Fig-

ure S2).

2.4 | Measuring the local diffusion dynamic

Spatial diffusion was mapped on the posterior timescaled tree distri-

bution estimated (as explained above) using the continuous phylo-

geography framework described by Lemey et al. (2010a,b). This

enables the incorporation of precise geographic detail using a Brow-

nian or relaxed random walk (RRW) process to estimate spatial diffu-

sion, overcoming the need to force an (often unrealistic) discretized

sampling scheme for analysis. A Brownian diffusion model, which

assumes that the process does not vary over time, was tested along-

side RRW models allowing dispersal rates to vary along branches

according to gamma or lognormal prior distributions. Models were

compared using marginal likelihood estimates obtained by path sam-

pling (PS) and stepping-stone (SS) sampling to choose the most

appropriate diffusion model.

2.5 | Measuring diffusion in attribute-modified
landscapes

Two main phylogeographic approaches were used to measure the

effects of spatial heterogeneity on RABV diffusion. The methodolog-

ical details of both are discussed below, and a comparative summary

of each is provided in Table 2. Example XML files for each model

are provided in Dataset S1.

2.5.1 | Finding clusters for discrete diffusion
models

Multidimensional scaling (MDS) was used to project RABV cases in

two-dimensional space representative of each landscape attribute in

Table 1. MDS positions objects in an N-dimensional space to repre-

sent information contained in a similarity or dissimilarity matrix.

Here, the aim was to produce a rescaled spatial configuration of

RABV cases representing the perceived proximity between cases

according to landscape resistance. For each attribute, a matrix of Cir-

cuitscape resistance distances was used to inform MDS. For exam-

ple, river resistance distances represent the expected impediment to

RABV dispersal; therefore, cases separated by landscape cells with

rivers present (i.e., high resistance) project further apart in MDS

space (see Figure 3 for visualization).

BRUNKER ET AL. | 777



For phylodynamic diffusion models, the rescaled RABV cases

were divided into spatial clusters using a k-means algorithm. To

determine the number of clusters (k) needed to ideally represent the

distribution of cases, various statistical methods were applied (see

Methods S1). However, limited consensus between these methods

meant an appropriate range (k = 3–15) was instead used to explore

the effect of spatial clustering and scale. Resulting spatial clusters

for each k in the range were used to assign location states to each

observed RABV case in a discrete phylogeographic analysis (Lemey,

Rambaut, Drummond, & Suchard, 2009). Diffusion between locations

was modelled using a nonreversible continuous-time Markov chain

(CTMC) process, which uses a k 9 k infinitesimal rate matrix Λ to

describe migrations between k-discrete locations. MCMC chains with

a predefined tree space (the empirical tree set) were run for five mil-

lion steps and sampled every 500. We refer to this approach as a

discrete-MDS phylogeographic diffusion model. Two measures were

used to assess diffusion among clusters in comparison with a null

model (i.e., in a uniform landscape):

1. Migrations between clusters. The number of expected migrations

to explain diffusion throughout the inferred evolutionary history

was estimated using Markov jump (MJ) counts (Minin & Suchard,

2008). A reduction in MJ counts (while keeping the number of

clusters constant) across the phylogeny indicates a more parsimo-

nious explanation for the observed spatial pattern.

2. Phylogeny–trait association. This was measured using a modified

association index (AI) (Lemey et al., 2009; Wang, Donaldson,

Brettle, Bell, & Simmonds, 2001), which reports the posterior dis-

tribution of association values relative to those obtained by ran-

domizing the tip locations and represents the degree of spatial

admixture. Low AI values represent strong phylogeny–trait asso-

ciation and low spatial admixture.

In summary, fewer MJ counts and stronger phylogeny–trait clus-

tering than expected under a null model is indicative that the attri-

bute has shaped population structure.

2.5.2 | Testing the relative contribution of
attributes to the diffusion process

A generalized linear model (GLM) diffusion parameterization (Lemey

et al., 2014) of the discrete diffusion model was applied to estimate

the influence of landscape attributes on diffusion between discrete

locations. Cases were partitioned into k-discrete locations by MDS

as explained above using a Euclidean distance matrix rather than the

manipulated landscape in the previous approaches (Figures 3, S3,

and S4). Landscape attributes for the GLM were constructed using

Circuitscape resistance distances calculated between the centroids

of each cluster (clusters shown in Figure S3, centroids in Figure S4)

and were log-transformed and standardized before their incorpora-

tion in the GLM. Pearson correlations between attributes were cal-

culated (Table S2), and in cases where the correlation was greater

than or equal to 0.9, a GLM with one of the correlated attributes

removed was also tested to ensure it had no effect on the results

obtained.

In the GLM approach, the migration rate matrix used to model

diffusion is parameterized by a log linear function to incorporate a

set of attributes on a log scale (Lemey et al., 2014). The relative con-

tribution of each attribute p to the GLM is measured by a coefficient

b, and a binary indicator d determines the inclusion or exclusion of

an individual attribute in the model. The indicator variables are esti-

mated using Bayesian stochastic search variable selection (BSSVS).

This estimates the posterior probability of all possible models includ-

ing or excluding each attribute and so results in an estimate of the

posterior inclusion probability for each attribute. A small prior proba-

bility was used on each predictor’s inclusion reflecting a 50% prior

probability of no predictor being included (Lemey et al., 2014). Bayes

factors (BF) were calculated using d estimates to assess the level of

evidence against the null hypothesis, that is, the observed attribute

inclusion (ppp) vs. the prior opinion for attribute inclusion (qpp).

To test the effect of cluster size, origin and destination cluster

sizes (number of RABV sequences included per k location state in

the phylogeographic analysis) were included in the GLM as separate

TABLE 2 Comparison of phylogeographic approaches used to measure the effects of spatial heterogeneity on rabies virus diffusion

Approach Defining RABV clusters Phylogeographic trait
Extension to diffusion
model

Measure of diffusion
process

Incorporation
of landscape
attributes

Discrete-MDS Multidimensional scaling of

RABV locations using

a landscape resistance

distance matrix, followed by

k-means clustering.

Landscape-informed

clusters

Markov jump counts to

estimate numbers of

migrations between

clusters

1. Estimated migrations

between clusters

Individually

2. Phylogeny–trait

association index

GLM-diffusion

model

k-means clustering of original

RABV locations.

Geographic clusters

(Euclidean distance)

GLM parameterization of the

migration rate matrix using

landscape predictors, that is,

vectors of resistance

distances between

cluster centroids.

1. GLM inclusion probability

formalized by Bayes

factor support

Together

2. Conditional effect size

reflecting contribution

of each attribute

when included

in the model.

778 | BRUNKER ET AL.



attributes. Support for other attributes in addition to cluster size

attributes suggests that analyses are robust to potential sampling

biases.

A BF ≥ 3 was considered the threshold for sufficient support

against the null hypothesis, which corresponds to ppp being three

times more likely than qpp (when an attribute is included 50% of the

time). MCMC chains were run for five million steps and sampled

every 500.

2.6 | Overall evidence

To summarize results overall, each attribute was ranked according to

the strength of evidence from each measure of the diffusion process.

Scores for each measure were calculated and summed as follows:

1. Results from non-GLM based measures of diffusion, that is, with

k attribute-defined clusters, were condensed to the larger spatial

scales tested, k = 3–6, as this appeared to be the most relevant

spatial scale to test landscape effects. Each attribute was ranked

in ascending order according to (i) the sum of the mean number

of migrations and (ii) the sum of the mean AI ratio at each

k-level.

2. Generalized linear model results were ranked according to the

strength of Bayes factor support in descending order. An overall

BF value per attribute was calculated via the sum of significant

BF results across k-values with the highest value ranked first.

Attributes with no significant results were equally scored last.

3 | RESULTS

3.1 | Local transmission dynamics

A set of timescaled trees for full-genome RABV sampled in the Ser-

engeti district (Figure 2) was estimated using BEAST. The coordi-

nates of internal nodes were mapped to this empirical tree set

according to a continuous diffusion process, quantifying the rate and

variation of rabies spread. A RRW model with branch diffusion rates

drawn from a gamma distribution provided the best fit (model selec-

tion in Table S1) on the empirical tree set. The mean rate of RABV

spread was estimated at 4.46 km/year (95% HPD: 3.22–5.88), similar

to estimates for endemic wildlife RABV spread (Biek, Henderson,

Waller, Rupprecht, & Real, 2007; Lemey et al., 2010a,b), but around

four times lower than estimates for dog RABV spread in North

Africa (Talbi et al., 2010). There was considerable variation in the

diffusion rate among branches, indicated by a large coefficient of

variation (M = 3.10) for rates drawn from the gamma hyperdistribu-

tion in the RRW diffusion model. Two major lineages were identified

(in agreement with a previous study [Brunker et al., 2015]), which

cocirculated throughout the sampled period (Figure 2). In addition,

this analysis yielded a mean evolutionary rate of 2.67 9 10�4 substi-

tutions/site/year in line with dog RABV estimates for nucleoprotein,

glycoprotein and whole-genome evolution elsewhere (Ahmed et al.,

2015; Bourhy et al., 2008, 2016; Talbi et al., 2010).

3.2 | The effect of landscape heterogeneity on
RABV movement

Landscape heterogeneities (Table 1 and Figure 1) were incorporated

into discrete phylogeographic diffusion models by rescaling spatial

locations according to landscape-informed resistance measures and

subsequent clustering of the rescaled locations (Figure 3a). The rela-

tive contribution of each predictor was further estimated using a

GLM approach (Lemey et al., 2014) parameterized by resistance

measures (Figure 2b).

Rabies virus movement was assessed by assigning samples to

discrete spatial clusters defined by landscape attributes

(Figure 3a). As the appropriate scale for analysis was not known a

priori, the number of clusters (k) was varied from 3 to 15 for each

attribute. Two measures of diffusion were assessed for each land-

scape attribute: the estimated number of viral lineage migrations

according to Markov jump (MJ) counts and a phylogeny–trait

association index (AI), with strength of support expressed relative

to IBD, as a null model. Clusters structured according to land-

scape attributes (including IBD) always exhibited fewer migrations

and higher phylogeny–trait association than randomized data

(Figure 4), consistent with these attribute-transformed land-

scapes providing an improved measure of viral diffusion. A large

number of migration events were recorded overall, indicating

considerable local movement across this landscape. Results var-

ied according to k, but most attributes were consistently better

at explaining viral diffusion than IBD at larger spatial scales

(k = 3–6) as illustrated for roads (Figure 4b) and the presence of

dogs (Figure 4d).

The AI was calculated to assess the degree of phylogeny–trait

association, that is, attribute-defined structure according to the

number of clusters, k. There was some congruence between the

measures; that is, structure tended to be stronger when there was

also a large reduction in the number of lineage migrations in partic-

ular for dog presence, rivers and to some extent roads. However,

migration count were generally more sensitive than AI results (Fig-

ure 4).

3.3 | Relative contribution of attributes to RABV
movement

A GLM approach (Figure 3b) within a Bayesian framework was used

to identify landscape attributes driving the spread of RABV in the

Serengeti district. Geographic clusters (based on standard geographic

distances) were defined using the same range of k as before, and

GLMs were parameterized using resistance distances between the

centroids of these clusters. Total dog density, susceptible dog den-

sity, vaccination coverage and campaigns, human:dog ratios (HDR)

and roads all had no discernible support at any spatial scale using

this approach. The effect of cluster size (note: this is the number of

RABV cases per cluster, which is different from the number of clus-

ters, k) was tested by its inclusion as an attribute in the GLM with

the purpose of absorbing any potential adverse effect of sampling
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bias. This offers more credibility on the effect of landscape attri-

butes, which otherwise might owe their support to correlations with

sample size. However, we found cluster size had little effect on the

main results except to eliminate some attributes with borderline sig-

nificance (according to a threshold of BF > 3). When cluster size

was included, dog presence, elevation, rivers and slope were the only

attributes that surpassed the BF threshold at certain spatial scales,

indicating an influence on RABV movement (Table 3).

Results were scale-dependent, but in general, significant effects

were more often found when a greater number of centroids was

used to build the GLM migration matrices. All significant attributes

had a negative effect size, consistent with lower rates of RABV

movement as the effective resistance of the attribute increased. For

facilitators, for example, roads, this means that an increased pres-

ence (lower resistance) results in more RABV movement. For barri-

ers, for example, rivers, an increased presence (higher resistance)

results in less RABV movement. The strongest effect was found

when dog presence was included in a model with k = 7 (BF = 76.4,

with a mean negative conditional effect size of 1.11). Dog presence

also had an impact at larger k (k = 9, 12, 13), that is, at higher reso-

lution. Elevation was supported at four scales (k = 12–15) with an

estimated negative effect size ranging from �0.83 to �0.94, indicat-

ing less RABV movement at higher elevations. Rivers also had rea-

sonable support at two spatial scales (k = 12 & 15), again with a

negative effect size indicating slower diffusion across rivers. In

instances where attributes were highly correlated (Table S2), a sim-

plified GLM with the removal of one attribute was performed and in

all cases showed equivalent results to the full GLM (results not

shown).

3.4 | Overall results

To assess the overall evidence for landscape attributes influencing

viral movement, a scoring system was used to rank each attribute from

1 to 10, with 1 being the most supported (Table 4). Results for non-

GLM-based measures were limited to scales from k = 3 to k = 6 as

results became less discernible from the null IBD model at k > 6 (Fig-

ure 4). Dog presence showed strong and consistent levels of support

in each measure of the diffusion process, indicating that the distribu-

tion of the dog population is the most important determinant of RABV

transmission. Elevation also ranked highly, which can be regarded as

an indicator of host distribution given that human settlements (and

therefore dogs) are less common at higher elevations (Cohen & Small,

1998). There was considerable support for the impact of physical attri-

butes on host movement with rivers as barriers and roads as facilita-

tors, while slope performed reasonably well in some measures. Total

dog density had limited effect on measures of RABV movement, but

susceptible dog density was scored marginally higher (Table 4). There

was some evidence that vaccination measures limited spread, with

average vaccination coverage and the susceptible dog density both

performing better than the null IBD model. However, the consistency

of vaccination campaigns over a 10-year period had no apparent effect

on RABV movement, making no improvement on the null model of

IBD or generating any significant results (BF > 3) in the GLM.

F IGURE 1 Resistance surfaces for landscape attributes hypothesized to influence rabies virus movement in the Serengeti district. Host
density and distribution (a–c), host movement (d–g) and host susceptibility influenced by vaccination (h–j). Block arrows indicate whether the
attribute was considered a facilitator (green) or barrier (red) to viral movement [Colour figure can be viewed at wileyonlinelibrary.com]
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4 | DISCUSSION

Integrative spatial analyses drawing from phylogeography and land-

scape ecology provide an exciting new avenue to explore infectious

disease dynamics (Lemey et al., 2014; Trov~ao et al., 2015). By com-

bining isolation-by-resistance (IBD) theory from landscape ecology

with powerful Bayesian phylogeographic analyses, we identified dri-

vers of endemic RABV spread beyond IBD and demonstrated scale-

dependent landscape effects on transmission. Once IBD effects were

accounted for, we identified the distribution of dogs as the most

important predictor of RABV spread, but did not find evidence of

dog density effects. This supports assertions that RABV is main-

tained primarily in domestic dog populations rather than wildlife and

that transmission does not depend on dog density (Hampson et al.,

2009; Morters et al., 2013). Our results demonstrate the potential

for both fundamental and applied insight into the local drivers of

endemic RABV spread, but also highlight the need for further

methodological development to understand how transmission pro-

cesses scale from the individual to the landscape.

In line with our understanding of pathogen transmission, distance

was by far the most important attribute in explaining local RABV

spread. Once the two major cocirculating lineages were differenti-

ated, phylogenetic signatures revealed that most cases nearby in

space and time were highly related. Indeed, connectivity determined

by IBD (our null model) consistently explained more variation in viral

diffusion models than a randomized spatial structure (Figure 3). Our

estimated mean diffusion rate for RABV of 4.46 km/year is 4–8

times lower than dog RABV diffusion estimates from three North

African countries (Talbi et al., 2010), but higher than the rate

observed in a densely populated Central African city (Bourhy et al.,

2016). Our estimate is very close to that of endemic wildlife RABV

(Biek et al., 2007; Lemey et al., 2010a,b) where natural host

F IGURE 2 The spatial location and phylogenetic structure of 152 sequenced rabies viruses sampled from 2004 to 2013 within the
Serengeti district, Tanzania. (a) The Serengeti district (red polygon) within Tanzania; (b) locations of sequenced rabies cases within the
Serengeti district (grey polygon) with underlying topography (map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under
ODbL.) and administrative boundaries from www.nbs.go.tz; (c) timescaled maximum clade credibility tree from a Bayesian phylogenetic
reconstruction of whole-genome sequences, with node posterior support >0.9 indicated by blue circles. The inset shows node density through
time for the posterior set of trees, with >90% nodes occurring in the last 10 years. Maps drawn using R packages OpenStreetMap (Fellows &
Stotz, 2016) ggmap (Kahle & Wickham, 2013) and maptools (Lewin-Koh et al., 2012) [Colour figure can be viewed at wileyonlinelibrary.com]
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movement is the main mode of spread, suggesting that persistence

of endemic dog RABV in the Serengeti is maintained by the same

mechanism. However, the diffusion model showed considerable vari-

ation in the diffusion rate among branches, which suggests a poten-

tial role for landscape heterogeneities in explaining variation which

comprises both rabid dog movement and human-mediated transloca-

tions.

Overall, we showed that local presence of dogs is the most

important predictor of RABV transmission in the Serengeti district,

confirming the role of dogs as the main reservoir host and not wild-

life (Lembo et al., 2007). The effects of dog presence on RABV diffu-

sion were evident across multiple spatial scales, indicating that

uninhabited areas limit RABV movement over a range of spatial dis-

tances. Dog home ranges typically do not extend beyond a 1 km2

radius (Hampson et al., 2009; Woodroffe & Donnelly, 2011). RABV

transmission beyond this may require inhabited corridors that direct

dog movement and/or support chains of transmission. Given the

strong association between humans and dogs (Figure S1), the presence

of humans should be a reasonable proxy (and more accessible

resource) for dog presence that could inform models of RABV spread.

The impact of physical barriers or conduits was most evident at

larger spatial scales that effectively divided the landscape into three

to six subpopulations. Roads increased RABV movement, as in North

Africa (Talbi et al., 2010), and resulted in the largest reduction in

viral lineage migrations at larger scales, implying that the furthest

dispersal of RABV was associated with roads, consistent with

human-mediated movement of dogs. However, roads typically cir-

cumvent physical barriers and uninhabited land and thus could also

reflect the accessibility of the landscape to unaided dog movement.

Either way, roads represent routes of RABV dissemination and indi-

cate the increasing importance of landscape connectivity as spatial

scale surpasses the limits of natural dog movements (~1 km). It could

be argued that the effect of roads may be driven by surveillance bias

if rabid dogs are more likely to be detected and sampled near roads.

If this were the case, we would have expected to see a positive

effect of high human-to-dog ratios. However, no such effect was

observed.

Rivers reduce the dispersal of wildlife rabies (Bourhy et al., 1999;

Rees et al., 2008; Wheeler & Waller, 2008), and our results suggest

that rivers similarly impede movement of rabid dogs, even at very

local scales. Deployment of vaccines behind rivers could therefore

be beneficial for eliminating dog rabies as recommended for control

of wildlife rabies (Russell et al., 2006). More generally, these results

suggest a role for landscape attributes mediating metapopulation

dynamics (introductions and extinctions) that contribute to RABV

persistence (Beyer et al., 2011; Bourhy et al., 2016).

F IGURE 3 Using resistance distances to incorporate landscape heterogeneity into phylogeographic frameworks. Illustration of resistance
surfaces assuming rivers (dark red) acts as barriers to RABV spread. Two approaches are used to incorporate resistances in discrete
phylogeographic reconstructions: (a) locations of sequenced rabies cases are morphed in space using multidimensional scaling (MDS) and
clustered according to a k-means partitioning scheme (k = 3 shown). MDS cluster information is used to assign traits in a discrete trait
phylogeographic reconstruction measuring viral lineage migrations and phylogeny–trait association; (b) locations are clustered according to
geographic distances using k-means partitioning and resistance distances between cluster centroids are used to parameterize a GLM extension
of discrete phylogeographic diffusion. Bayesian model averaging is used to identify significant predictors of viral spread between centroids
[Colour figure can be viewed at wileyonlinelibrary.com]
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Our results provide insights regarding the value of control mea-

sures. Specifically, our finding that village-level vaccination coverage

reduced RABV dispersal is encouraging, particularly given the crude-

ness of the measurement used (coverages averaged over a 10-year

period). WHO recommends vaccination coverage should exceed 70%

(WHO, 2013), but we found that lower coverage still impedes dog

rabies spread. However, the relationship between vaccination cover-

age and disease appears complex (Beyer et al., 2011), and we did

not detect any association with numbers of vaccination campaigns (a

measure of the consistency of vaccination over time). Sequenced

genomes represent approximately 10% of identified rabies cases dur-

ing this period; therefore, direct measures of incidence are likely to

yield more insight on the impacts of vaccination. Total dog density

did not contribute to RABV movement, which substantiates evidence

that rabies transmission is not density dependent (Hampson et al.,

2009; Morters et al., 2013). Susceptible dog density, however, which

accounted for vaccination, was superior to total density as an

explanatory variable, but still had limited effect on diffusion. These

results add to the now substantial evidence base that mass vaccina-

tion of dogs, not population reduction, is required for effective

rabies control (Hampson et al., 2009; Morters et al., 2013).

The effect of landscape attributes may be scale-dependent;

therefore, efforts were made to find the most representative dis-

cretization (k) for each attribute (Methods S1). However, different

methods did not converge on the same optimum k. Challenges asso-

ciated with geographic partitioning in phylodynamic models have

previously been noted, including scale-dependent outcomes and

sampling-bias effects (Lemey et al., 2014). Choosing an appropriate

F IGURE 4 Summarized results from discrete-MDS phylogeographic models using landscape-informed spatial clusters for reconstructed
RABV movement in Serengeti district. A number of spatial scales were examined by subjecting RABV cases (n = 152) to different levels of
partitioning (k), ranging from 3 to 15 clusters. (a) A heatmap representing the reduction in estimated viral lineage migrations relative to a null
model (where only isolation by distance (IBD) was used to inform spatial clustering) at each k (horizontal axis) when each landscape attribute
(vertical axis) informed the configuration of clusters. White cells represent no reduction or an increase in migrations (i.e., the null model was
better), whereas shaded cells represent fewer migrations between attribute-informed clusters compared to the null model (i.e., the attribute-
informed model was better). (b) The number of inferred migrations at each spatial scale when clusters were assigned randomly, according to
IBD, or by roads (which showed the largest reduction in migrations relative to IBD at k = 3–6). (c) A heatmap representing the improvement in
phylogeny–trait association according to an association index, AI, for landscape-informed clusters relative to IBD-informed clusters, with
smaller AI values indicating stronger associations. (d) The inferred AI at each spatial scale when clusters were assigned randomly, according to
IBD, or using dog presence (which had the strongest phylogeny–trait association at smaller values of k) [Colour figure can be viewed at
wileyonlinelibrary.com]
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partitioning scheme based on a biological hypothesis or testing a

range of partitioning schemes is therefore an important considera-

tion. We tested the effect of cluster size by including it as a covari-

ate in GLM-diffusion models, with negligible effects on results. This

and the consistency of our results across similar spatial aggregations

implies that observed effects on diffusion are robust. A number of

attributes showed consistently strong results using fewer partitions

but diminished effects at higher resolutions in the discrete-MDS

phylogeography approach.

The GLM-diffusion model supported the role of landscape attri-

butes at smaller scales (k centroids >6), with dog presence, elevation,

rivers and slope all identified as significant predictors of diffusion

(median k = 13, Table 3). Using cluster centroids means that finely

resolved heterogeneity is lost, with less detail available to effectively

characterize the landscape at large-scale discretizations. The sensitiv-

ity of this approach therefore depends on the scale of analysis, with

biological knowledge required to assess whether cluster centroids

are expected to capture landscape heterogeneities.

An attractive property of the GLM-diffusion approach is the

ability to assess the relative contribution of different attributes.

However, highly correlated resistance distances such as total and

susceptible dog density present a problem as they potentially

explain the same variation. Simplified GLMs were performed to ver-

ify results from the full model that included all attributes. However,

even when resistances are correlated, one might offer a marginally

better fit (Talbi et al., 2010). For example, the observation that the

susceptible dog density provides better explanatory power than

total density fits with expectations regarding the effect of vaccina-

tion. As many of the attributes tested were correlated due to

shared underlying IBD structure, such subtle differences may be

necessary to extract the most meaningful predictors for pathogen

transmission at the landscape scale. A more powerful approach

would be to produce a multivariate surface representing the com-

bined attributes affecting diffusion. This introduces further consid-

erations, including identifying collinearity between attributes and

comparative resistance values of attributes, but should be an aim

for future studies.

We capitalize on the use of resistance surfaces to represent

landscape attributes. While synthesizing landscape information in

this way is useful, determining appropriate resistance values is a

common methodological challenge in landscape ecology for which

there is currently little consensus (Beier, Majka, & Spencer, 2008;

Beier, Spencer, Baldwin, & Mcrae, 2011; Spear, Balkenhol, Fortin,

McRae, & Scribner, 2010; Zeller, McGarigal, & Whiteley, 2012). Ide-

ally, resistances should be parameterized from empirical data, but

expert opinion is often used when such data are unavailable (Beier

et al., 2008). We assumed linear relationships between continuous

variables and resistance, such as elevation or vaccination, but nonlin-

ear relationships could be more informative if they for instance cap-

ture threshold effects (Spear et al., 2010). Although not ideal, our

parameterization scales with biologically meaningful quantities and

reflects the relative effects of attributes on diffusion, which is more

important than the choice of absolute resistance values (McRae,

2006). However, it may be advisable to check for the effect of resis-

tance value parameterization by repeating analyses with a different

parameter values and testing the attribute as both a facilitator and a

barrier to viral spread, as performed by Dellicour et al. (2017). Some

landscape attributes, however, may not be well represented by resis-

tance surfaces, particularly those that are heterogeneous through

time. For instance, we summarized vaccination coverage over a

10-year window discarding known and potentially important tempo-

ral fluctuations, which likely limited predictive power. A recently

TABLE 3 Landscape attributes influencing the dispersal of RABV
in the Serengeti district, Tanzania. Bayes factor support and
conditional effect sizes from GLM-diffusion models implemented in
BEAST are shown for BF significance >3 at different spatial
discretizations (number of clusters, k)

Landscape
attribute k

Inclusion
probability Conditional effect size

Bayes
factor

Dog presence 7 0.82 �1.11 (�1.76, �0.56) 76.4

9 0.2 �0.8 (�1.28, �0.33) 4.17

12 0.16 �0.86 (�1.36, �0.4) 3.15

13 0.2 �0.84 (�1.34, �0.38) 4.13

Elevation 12 0.46 �0.9 (�1.35, �0.47) 14.2

13 0.5 �0.87 (�1.34, �0.41) 16.95

14 0.58 �0.94 (�1.5, �0.44) 23.17

15 0.16 �0.83 (�1.37, �0.3) 3.31

River 12 0.32 �0.78 (�1.16, �0.42) 7.98

15 0.49 �0.73 (�1.06, �0.39) 15.88

Slope 15 0.16 �0.62 (�0.98, �0.26) 3.26

TABLE 4 Overall support for individual landscape attributes as
predictors of RABV spread in the Serengeti district, Tanzania

Attribute
Overall
rank

Overall
score

Lineage
migration
counts

Association
index

GLM
Bayes
factor

Dog presence 1 5 3 1 1a

Rivers 2 6 2 2 2a

Roads 3 12 1 6 =5

Elevation 4 13 7 3 3a

Average

vaccination

coverage

5 15 5 5 =5

Susceptible

dog density

6 17 8 4 =5

Slope =7 18 4 10 4a

Dog density =7 18 6 7+ =5

Human-to-dog

ratio

9 22 9 8+ =5

No. of

vaccination

campaigns

10 24 10+ 9b =5

=, equal score/rank for attributes.
aSignificant effect in GLMs according to Bayes factor > 3.
bMeasure did not improve on the null model.
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developed application to relax the time-homogeneity assumption in

phylogeographic reconstructions has demonstrated seasonal effects

on the dispersal of influenza H3N2 and suggests that further devel-

opments may enable incorporation of temporal variation (Bielejec,

Lemey, Baele, Rambaut, & Suchard, 2014).

5.1 | CONCLUSION

Increasing availability of genetic and spatially and temporally

resolved data provide opportunities to better understand transmis-

sion mechanisms in complex host–pathogen systems. Using an inte-

grative Bayesian phylogeographic framework, we quantified the

effect of landscape heterogeneity on the transmission and spread of

endemic RABV. Given a number of outstanding issues, including the

parameterization of resistance surfaces, efforts to directly apply

these results, for example, to inform control efforts, should proceed

with caution. Nonetheless, results suggest that key landscape attri-

butes could be exploited to limit RABV spread. Importantly, the find-

ing that the distribution of dogs but not their density predicts RABV

spread supports mass dog vaccination as the mainstay of effective

rabies control even in wildlife-rich communities such as Serengeti

and reinforces the conclusion that culling of dogs should not be used

to control rabies. Moreover, by exploiting landscape heterogeneities

during the roll-out and scaling up of campaigns, vaccination pro-

grammes could be strengthened. From a methodological perspective,

this study demonstrates the potential of phylogeographic techniques

to identify important landscape attributes governing pathogen dis-

persal in endemic settings.

ACKNOWLEDGEMENTS

We acknowledge the Ministries of Livestock and Fisheries Develop-

ment and of Health and Social Welfare, Tanzania National Parks,

Tanzania Wildlife Research Institute, Ngorongoro Conservation Area

Authority, Tanzania Commission for Science and Technology, and

National Institute for Medical Research for permissions and collabo-

ration and the Frankfurt Zoological Society for logistical and techni-

cal support. We are grateful to the veterinary and livestock field

officers, health workers, and paravets in northwest Tanzania and in

particular to the following research assistants: Zilpah Kaare, Matthias

Magoto, and Renatus Herman, all team members of the Serengeti

Health Initiative, to Lincoln Park Zoo and to Serengeti District Live-

stock Office for vaccinations and MSD for vaccine donations. Many

thanks to Malavika Rajeev, Karen Hotopp, Krystina Rysava and Grant

Hopcraft for assistance with data and Dan Haydon, Sarah Cleaveland

and Daniel Streicker for helpful comments on the manuscript.

DATA ACCESSIBILITY

New DNA sequences submitted with this paper: Genbank Accession

nos. KY210220–KY210311. Previously published DNA sequences:

Genbank Accession nos. KR534217–KR534220; KR534228-

KR534238; KR534244-KR534254; KR534256; KR906734;

KR906737-KR906738; KR906740; KR906742; KR906755-

KR906756; KR906767-KR906792.

AUTHOR CONTRIBUTIONS

K.B., P.L., K.H. and R.B. were involved in study design and concept.

A.L. and C.N. coordinated regional field sample collections. A.R.F.

and D.A.M. facilitated laboratory work and provided molecular

expertise. K.B. performed molecular work, sequencing, bioinfor-

matics and analysis. P.L. provided support and training in bioinfor-

matic analysis. K.B. wrote the manuscript with significant

contributions from K.H. and R.B. All authors viewed and revised

final manuscript.

ETHICS STATEMENT

This research was approved by the Institutional Review Board of Ifa-

kara Health Institute, Tanzania National Parks, the Tanzania Wildlife

Research Institute, the Tanzania Commission for Science and Tech-

nology and the Medical Research Coordinating Committee of the

National Institute for Medical Research of Tanzania (NIMR/HQ/

R.8a/Vol.IX/946) and the Ministry of Livestock Development and

Fisheries including permits for sample collection (VIC/AR/ZIS/4376).

ORCID

Kirstyn Brunker http://orcid.org/0000-0001-9990-6299

Roman Biek http://orcid.org/0000-0003-3471-5357

REFERENCES

Ahmed, K., Phommachanh, P., Vorachith, P., Matsumoto, T., Lamaningao,

P., Mori, D., . . . Nishizono, A. (2015). Molecular epidemiology of rabies

viruses circulating in two rabies endemic provinces of Laos, 2011–

2012: Regional diversity in Southeast Asia. PLOS Neglected Tropical Dis-

eases, 9, e0003645. https://doi.org/10.1371/journal.pntd.0003645

Anderson, R. M., & May, R. M. (1991). Infectious diseases of humans:

Dynamics and control. (Vol. 26). New York, NY: Oxford University

Press. Retrieved from http://www.loc.gov/catdir/enhancements/f

y0636/90014312-d.html

Ayres, D. L., Darling, A., Zwickl, D. J., Beerli, P., Holder, M. T., Lewis, P.

O., . . . Suchard, M. A. (2012). BEAGLE: An application programming

interface and high-performance computing library for statistical phy-

logenetics. Systematic Biology, 61(1), 170–173. https://doi.org/10.

1093/sysbio/syr100

Baele, G., Suchard, M. A., Rambaut, A., & Lemey, P. (2016). Emerging

concepts of data integration in pathogen phylodynamics. Systematic

biology, 66(1), e47–e65. https://doi.org/10.1093/sysbio/syw054

Bedford, T., Cobey, S., Beerli, P., & Pascual, M. (2010). Global migration

dynamics underlie evolution and persistence of human influenza A

(H3N2). PLoS Pathogens, 6(5), e1000918. https://doi.org/10.1371/

journal.ppat.1000918

Beier, P., Majka, D. R., & Spencer, W. D. (2008). Forks in the road:

Choices in procedures for designing wildland linkages. Conservation

Biology, 22(4), 836–851. https://doi.org/10.1111/j.1523-1739.2008.

00942.x

BRUNKER ET AL. | 785

http://www.ncbi.nlm.nih.gov/nuccore/KY210220
http://www.ncbi.nlm.nih.gov/nuccore/KY210311
http://www.ncbi.nlm.nih.gov/nuccore/KR534217
http://www.ncbi.nlm.nih.gov/nuccore/KR534220
http://www.ncbi.nlm.nih.gov/nuccore/KR534228
http://www.ncbi.nlm.nih.gov/nuccore/KR534238
http://www.ncbi.nlm.nih.gov/nuccore/KR534244
http://www.ncbi.nlm.nih.gov/nuccore/KR534254
http://www.ncbi.nlm.nih.gov/nuccore/KR534256
http://www.ncbi.nlm.nih.gov/nuccore/KR906734
http://www.ncbi.nlm.nih.gov/nuccore/KR906737
http://www.ncbi.nlm.nih.gov/nuccore/KR906738
http://www.ncbi.nlm.nih.gov/nuccore/KR906740
http://www.ncbi.nlm.nih.gov/nuccore/KR906742
http://www.ncbi.nlm.nih.gov/nuccore/KR906755
http://www.ncbi.nlm.nih.gov/nuccore/KR906756
http://www.ncbi.nlm.nih.gov/nuccore/KR906767
http://www.ncbi.nlm.nih.gov/nuccore/KR906792
http://orcid.org/0000-0001-9990-6299
http://orcid.org/0000-0001-9990-6299
http://orcid.org/0000-0001-9990-6299
http://orcid.org/0000-0003-3471-5357
http://orcid.org/0000-0003-3471-5357
http://orcid.org/0000-0003-3471-5357
https://doi.org/10.1371/journal.pntd.0003645
http://www.loc.gov/catdir/enhancements/fy0636/90014312-d.html
http://www.loc.gov/catdir/enhancements/fy0636/90014312-d.html
https://doi.org/10.1093/sysbio/syr100
https://doi.org/10.1093/sysbio/syr100
https://doi.org/10.1093/sysbio/syw054
https://doi.org/10.1371/journal.ppat.1000918
https://doi.org/10.1371/journal.ppat.1000918
https://doi.org/10.1111/j.1523-1739.2008.00942.x
https://doi.org/10.1111/j.1523-1739.2008.00942.x


Beier, P., Spencer, W., Baldwin, R. F., & Mcrae, B. H. (2011). Toward best

practices for developing regional connectivity maps. Conservation

Biology, 25(5), 879–892. https://doi.org/10.1111/j.1523-1739.2011.

01716.x

Beyer, H. L., Hampson, K., Lembo, T., Cleaveland, S., Kaare, M., & Hay-

don, D. T. (2011). Metapopulation dynamics of rabies and the effi-

cacy of vaccination. Proceedings of the Royal Society of London B:

Biological Science, 278(1715), 2182–2190. https://doi.org/10.1098/

rspb.2010.2312

Biek, R., Henderson, J. C., Waller, L. A., Rupprecht, C. E., & Real, L. A.

(2007). A high-resolution genetic signature of demographic and spa-

tial expansion in epizootic rabies virus. Proceedings of the National

Academy of Sciences of the United States of America, 104(19), 7993–

7998. https://doi.org/10.1073/pnas.0700741104

Bielejec, F., Lemey, P., Baele, G., Rambaut, A., & Suchard, M. A. (2014).

Inferring heterogeneous evolutionary processes through time: From

sequence substitution to phylogeography. Systematic Biology, 63(4),

493–504. https://doi.org/10.1093/sysbio/syu015

Bourhy, H., Kissi, B., Audry, L., Smreczak, M., Sadkowska-Todys, M.,

Kulonen, K., . . . Holmes, E. C. (1999). Ecology and evolution of

rabies virus in Europe. The Journal of General Virology, 80(10), 2545–

2557.

Bourhy, H., Nakoun�e, E., Hall, M., Nouvellet, P., Lepelletier, A., Talbi, C.,

. . . Rambaut, A. (2016). Revealing the micro-scale signature of ende-

mic zoonotic disease transmission in an African urban setting. PLoS

Pathogens, 12(4), e1005525. https://doi.org/10.1371/journal.ppat.

1005525

Bourhy, H., Reynes, J.-M., Dunham, E. J., Dacheux, L., Larrous, F., Huong,

V. T. Q., . . . Holmes, E. C. (2008). The origin and phylogeography of

dog rabies virus. The Journal of General Virology, 89(Pt 11), 2673–

2681. https://doi.org/10.1099/vir.0.2008/003913-0

Brockmann, D., & Helbing, D. (2013). The hidden geometry of com-

plex, network-driven contagion phenomena. Science (New York,

N.Y.), 342(6164), 1337–1342. https://doi.org/10.1126/science.

1245200

Brunker, K., Hampson, K., Horton, D. L., & Biek, R. (2012). Integrating the

landscape epidemiology and genetics of RNA viruses: Rabies in

domestic dogs as a model. Parasitology, 139(14), 1899–1913.

https://doi.org/10.1017/S003118201200090X

Brunker, K., Marston, D. A., Horton, D. L., Cleaveland, S., Fooks, A. R.,

Kazwala, R., . . . Hampson, K. (2015). Elucidating the phylodynamics

of endemic rabies virus in eastern Africa using whole-genome

sequencing. Virus Evolution, 1(1), vev011. https://doi.org/10.1093/

ve/vev011

Cleaveland, S., Kaare, M., Knobel, D., & Laurenson, M. K. (2006). Canine

vaccination–providing broader benefits for disease control. Veterinary

Microbiology, 117(1), 43–50. https://doi.org/10.1016/j.vetmic.2006.

04.009

Cleaveland, S., Kaare, M., Tiringa, P., Mlengeya, T., & Barrat, J. (2003). A

dog rabies vaccination campaign in rural Africa: Impact on the inci-

dence of dog rabies and human dog-bite injuries. Vaccine, 21(17–18),

1965–1973.

Cohen, J. E., & Small, C. (1998). Hypsographic demography: The distribu-

tion of human population by altitude. Proceedings of the National

Academy of Sciences of the United States of America, 95(24), 14009–

14014. https://doi.org/10.1073/pnas.95.24.14009

Cross, P. C., Creech, T. G., Ebinger, M. R., Manlove, K., Irvine, K., Hen-

ningsen, J., . . . Creel, S. (2013). Female elk contacts are neither fre-

quency nor density dependent. Ecology, 94(9), 2076–2086. https://d

oi.org/10.1890/12-2086.1

De Mattos, C. C., De Mattos, C. A., Loza-Rubio, E., Aguilar-Seti�en, A.,

Orciari, L. A., & Smith, J. S. (1999). Molecular characterization of

rabies virus isolates from Mexico: Implications for transmission

dynamics and human risk. The American Journal of Tropical Medicine

and Hygiene, 61(4), 587–597.

Dellicour, S., Rose, R., Faria, N. R., Fernando, L., Vieira, P., Gilbert, M., . . .

Pybus, O. G. (2017). Using viral gene sequences to compare and

explain the heterogeneous spatial dynamics of virus epidemics.

Molecular Biology and Evolution, https://doi.org/10.1093/molbev/

msx176

Dellicour, S., Rose, R., & Pybus, O. G. (2016). Explaining the geographic

spread of emerging epidemics: A framework for comparing viral phy-

logenies and environmental landscape data. BMC Bioinformatics, 17

(1), 82. https://doi.org/10.1186/s12859-016-0924-x

Denduangboripant, J., Wacharapluesadee, S., Lumlertdacha, B., Ruan-

kaew, N., Hoonsuwan, W., Puanghat, A., & Hemachudha, T. (2005).

Transmission dynamics of rabies virus in Thailand: Implications for

disease control. BMC Infectious Diseases, 5, 52.

Drummond, A. J., Pybus, O. G., Rambaut, A., Forsberg, R., & Rodrigo, A.

G. (2003). Measurably evolving populations. Trends in Ecology & Evo-

lution, 18(9), 481–488. https://doi.org/10.1016/S0169-5347(03)

00216-7

Drummond, A. J., & Rambaut, A. (2007). BEAST: Bayesian evolutionary

analysis by sampling trees. BMC Evolutionary Biology, 7, 214.

https://doi.org/10.1186/1471-2148-7-214

Drummond, A. J., Rambaut, A., Shapiro, B., & Pybus, O. G. (2005). Baye-

sian coalescent inference of past population dynamics from molecular

sequences. Molecular Biology and Evolution, 22(5), 1185–1192.

https://doi.org/10.1093/molbev/msi103

Drummond, A. J., & Suchard, M. A. (2010). Bayesian random local clocks,

or one rate to rule them all. BMC Biology, 8(1), 114. https://doi.org/

10.1186/1741-7007-8-114

Dudas, G., Carvalho, L. M., Bedford, T., Tatem, A. J., Baele, G., Faria, N.

R., . . . Rambaut, A. (2017). Virus genomes reveal factors that spread

and sustained the Ebola epidemic. Nature, 544(7650), 309–315.

https://doi.org/10.1038/nature22040

Faria, N. R., Rambaut, A., Suchard, M. A., Baele, G., Bedford, T., & Ward,

M. J. (2014). The early spread and epidemic ignition of HIV-1 in

human populations. Science, 346, https://doi.org/10.1126/science.

1256739

Fellows, I., & Stotz, J. P. (2016). OpenStreetMap: Access to open street

map raster images. Retrieved from https://cran.r-project.org/package=

OpenStreetMap

Ferguson, E. A., Hampson, K., Cleaveland, S., Consunji, R., Deray, R., Friar,

J., & Haydon, D. T. (2015). Heterogeneity in the spread and control

of infectious disease: consequences for the elimination of canine

rabies. Scientific Reports, 5, 18232. https://doi.org/10.1038/sre

p18232

Ferrari, M. J., Perkins, S. E., Pomeroy, L. W., & Bjørnstad, O. N. (2011).

Pathogens, social networks, and the paradox of transmission scaling.

Interdisciplinary Perspectives on Infectious Diseases, 2011, 267049.

https://doi.org/10.1155/2011/267049

Gire, S. K., Goba, A., Andersen, K. G., Sealfon, R. S. G., Park, D. J., Kan-

neh, L., . . . Sabeti, P. C. (2014). Genomic surveillance elucidates Ebola

virus origin and transmission during the 2014 outbreak. Science, 345,

1369-1372. https://doi.org/10.1126/science.1259657-

Grenfell, B. T., Bjørnstad, O. N., & Kappey, J. (2001). Travelling waves

and spatial hierarchies in measles epidemics. Nature, 414(6865), 716–

723. https://doi.org/10.1038/414716a

Hampson, K., Abela-ridder, B., Brunker, K., Bucheli, S. T. M., Carvalho,

M., Caldas, E., . . . Del Rio Vilas, V. (2016). Surveillance to establish

elimination of transmission and freedom from Dog-mediated rabies.

bioRxiv, 1–22, https://doi.org/doi: 10.1101/096883

Hampson, K., Coudeville, L., Lembo, T., Sambo, M., Kieffer, A., Attlan, M.,

. . . Dushoff, J. (2015). Estimating the global burden of endemic

canine rabies. PLOS Neglected Tropical Diseases, 9(4), e0003709.

https://doi.org/10.1371/journal.pntd.0003709

Hampson, K., Dushoff, J., Bingham, J., Br€uckner, G., Ali, Y. H., & Dobson,

A. (2007). Synchronous cycles of domestic dog rabies in sub-Saharan

Africa and the impact of control efforts. Proceedings of the National

786 | BRUNKER ET AL.

https://doi.org/10.1111/j.1523-1739.2011.01716.x
https://doi.org/10.1111/j.1523-1739.2011.01716.x
https://doi.org/10.1098/rspb.2010.2312
https://doi.org/10.1098/rspb.2010.2312
https://doi.org/10.1073/pnas.0700741104
https://doi.org/10.1093/sysbio/syu015
https://doi.org/10.1371/journal.ppat.1005525
https://doi.org/10.1371/journal.ppat.1005525
https://doi.org/10.1099/vir.0.2008/003913-0
https://doi.org/10.1126/science.1245200
https://doi.org/10.1126/science.1245200
https://doi.org/10.1017/S003118201200090X
https://doi.org/10.1093/ve/vev011
https://doi.org/10.1093/ve/vev011
https://doi.org/10.1016/j.vetmic.2006.04.009
https://doi.org/10.1016/j.vetmic.2006.04.009
https://doi.org/10.1073/pnas.95.24.14009
https://doi.org/10.1890/12-2086.1
https://doi.org/10.1890/12-2086.1
https://doi.org/10.1093/molbev/msx176
https://doi.org/10.1093/molbev/msx176
https://doi.org/10.1186/s12859-016-0924-x
https://doi.org/10.1016/S0169-5347(03)00216-7
https://doi.org/10.1016/S0169-5347(03)00216-7
https://doi.org/10.1186/1471-2148-7-214
https://doi.org/10.1093/molbev/msi103
https://doi.org/10.1186/1741-7007-8-114
https://doi.org/10.1186/1741-7007-8-114
https://doi.org/10.1038/nature22040
https://doi.org/10.1126/science.1256739
https://doi.org/10.1126/science.1256739
https://cran.r-project.org/package=OpenStreetMap
https://cran.r-project.org/package=OpenStreetMap
https://doi.org/10.1038/srep18232
https://doi.org/10.1038/srep18232
https://doi.org/10.1155/2011/267049
https://doi.org/10.1126/science.1259657-
https://doi.org/10.1038/414716a
https://doi.org/doi: 10.1101/096883
https://doi.org/10.1371/journal.pntd.0003709


Academy of Sciences of the United States of America, 104(18), 7717–

7722. https://doi.org/10.1073/pnas.0609122104

Hampson, K., Dushoff, J., Cleaveland, S., Haydon, D. T., Kaare, M.,

Packer, C., & Dobson, A. (2009). Transmission dynamics and pro-

spects for the elimination of canine rabies. PLoS Biology, 7(3), e53.

https://doi.org/10.1371/journal.pbio.1000053

Kahle, D., & Wickham, H. (2013). GGMAP: Spatial Visualization with GG-

PLOT2. The R Journal, 5(1), 144–161. Retrieved from http://journal.r-

project.org/archive/2013-1/kahle-wickham.pdf

Keeling, M. J., Woolhouse, M. E., Shaw, D. J., Matthews, L., Chase-Top-

ping, M., Haydon, D. T., . . . Grenfell, B. T. (2001). Dynamics of the

2001 UK foot and mouth epidemic: Stochastic dispersal in a hetero-

geneous landscape. Science (New York, N.Y.), 294(5543), 813–817.

https://doi.org/10.1126/science.1065973

Lankester, F., Hampson, K., Lembo, T., Palmer, G., Taylor, L., & Cleave-

land, S. (2014). Implementing Pasteur’s vision for rabies elimination.

Science, 345(6204), 1562–1564. https://doi.org/10.1126/science.

1256306

Lee, J. H., Lee, M. J., Lee, J. B., Kim, J. S., Bae, C. S., & Lee, W. C. (2001).

Review of canine rabies prevalence under two different vaccination

programmes in Korea. The Veterinary Record, 148(16), 511–512.

https://doi.org/10.1136/vr.148.16.511

Lembo, T., Hampson, K., Haydon, D. T., Craft, M., Dobson, A., Dushoff, J.,

. . . Cleaveland, S. (2008). Exploring reservoir dynamics: A case study of

rabies in the Serengeti ecosystem. Journal of Applied Ecology, 45(4),

1246–1257. https://doi.org/10.1111/j.1365-2664.2008.01468.x

Lembo, T., Hampson, K., Kaare, M. T., Ernest, E., Knobel, D., Kazwala, R.

R., . . . Rudovick, R. (2010). The feasibility of canine rabies elimination

in Africa: Dispelling doubts with data. PLoS Neglected Tropical Dis-

eases, 4(2), e626. https://doi.org/10.1371/journal.pntd.0000626

Lembo, T., Haydon, D. T., Velasco-Villa, A., Rupprecht, C. E., Packer, C.,

Brand~ao, P. E., . . . Cleaveland, S. (2007). Molecular epidemiology

identifies only a single rabies virus variant circulating in complex car-

nivore communities of the Serengeti. Proceedings of the Royal Society

of London B: Biological Sciences, 274(1622), 2123–2130. https://doi.

org/10.1098/rspb.2007.0664

Lemey, P., Rambaut, A., Bedford, T., Faria, N., Bielejec, F., Baele, G., . . .

Suchard, M. A. (2014). Unifying viral genetics and human transporta-

tion data to predict the global transmission dynamics of human influ-

enza H3N2. PLoS Pathogens, 10(2), e1003932. https://doi.org/10.

1371/journal.ppat.1003932

Lemey, P., Rambaut, A., Drummond, A. J., & Suchard, M. A. (2009). Baye-

sian phylogeography finds its roots. PLoS Computational Biology, 5(9),

e1000520. https://doi.org/10.1371/journal.pcbi.1000520

Lemey, P., Rambaut, A., Welch, J. J., & Suchard, M. A. (2010a). Phylo-

geography takes a relaxed random walk in continuous space and

time. Molecular Biology and Evolution, 27(8), 1877–1885. https://doi.

org/10.1093/molbev/msq067

Lemey, P., Rambaut, A., Welch, J. J., & Suchard, M. A. (2010b). Phylo-

geography takes a relaxed random walk in continuous space and

time. Molecular Biology and Evolution, 27, https://doi.org/10.1093/mol

bev/msq067

Levin, S. A. (1992). The problem of pattern and scale in ecology. Ecology,

https://doi.org/10.2307/1941447

Lewin-Koh, N. J., Bivand, R., Pebesma, E. J., Archer, E., Baddeley, A.,

Dray, S., . . . Rogerbivandnhhno, M. R. B. (2012). Maptools: Tools for

reading and handling spatial objects. R Package Version 0.8-14.

Retrieved from http://cran.r-project.org/web/packages/maptools/

index.html

McCallum, H. (2008). Landscape structure, disturbance, and disease

dynamics. In Richard. S. Ostfeld, F. Keesing & T. E. Valerie (Eds.),

Infectious disease ecology : The effects of ecosystems on disease and of

disease on ecosystems (pp. 100–122). Princeton, NJ: Princeton Univer-

sity Press.

McRae, B. H. (2006). Isolation by resistance. Evolution, 60(8), 1551–1561.

https://doi.org/10.1554/05-321.1

McRae, B., Dickson, B., Keitt, T., & Shah, V. (2008). Using circuit theory

to model connectivity in ecology, evolution, and conservation. Ecol-

ogy, 89(10), 2712–2724.

Meentemeyer, R. K., Cunniffe, N. J., Cook, A. R., Filipe, J. A. N., Hunter,

R. D., Rizzo, D. M., & Gilligan, C. A. (2011). Epidemiological modeling

of invasion in heterogeneous landscapes: Spread of sudden oak death

in California (1990–2030). Ecosphere, 2(2), art17. https://doi.org/10.

1890/es10-00192.1

Meentemeyer, R. K., Haas, S. E., & V�aclav�ık, T. (2012). Landscape epi-

demiology of emerging infectious diseases in natural and human-

altered ecosystems. Annual Review of Phytopathology, 50, 379–402.

https://doi.org/10.1146/annurev-phyto-081211-172938

Minin, V. N., & Suchard, M. A. (2008). Counting labeled transitions in

continuous-time Markov models of evolution. Journal of Mathematical

Biology, 56(3), 391–412. https://doi.org/10.1007/s00285-007-0120-8

Morters, M. K., Restif, O., Hampson, K., Cleaveland, S., Wood, J. L., &

Conlan, A. J. (2013). Evidence-based control of canine rabies: A criti-

cal review of population density reduction. Journal of Animal Ecology,

82(1), 6–14. https://doi.org/10.1111/j.1365-2656.2012.02033.x

Mpolya, E. A., Lembo, T., Lushasi, K., Mancy, R., Mbunda, E. M.,

Makungu, S., . . . Hampson, K. (2017). Toward elimination of dog-

mediated human rabies: Experiences from implementing a large-scale

demonstration project in Southern Tanzania. Frontiers in Veterinary

Science, 4(March), https://doi.org/10.3389/fvets.2017.00021

Ostfeld, R. S., Glass, G. E., & Keesing, F. (2005). Spatial epidemiology: An

emerging (or re-emerging) discipline. Trends in Ecology & Evolution, 20

(6), 328–336. https://doi.org/10.1016/j.tree.2005.03.009

Pagel, M., Meade, A., & Barker, D. (2004). Bayesian estimation of ances-

tral character states on phylogenies. Systematic Biology, 53(5), 673–

684. https://doi.org/10.1080/10635150490522232

Pavlovsky, E. N., & Levine, N. D. (1966). Natural nidality of transmissible

diseases: With special reference to the landscape epidemiology of zooan-

throponoses. Champaign, IL: University of Illinois Press. Retrieved

from https://books.google.co.uk/books?id=S0xLpwAACAAJ

Putra, A., Hampson, K., & Girardi, J. (2013). Response to a rabies epi-

demic, Bali, Indonesia, 2008–2011. Emerging Infectious, 19(4), 2008–

2011.

Pybus, O. G., Tatem, A. J., & Lemey, P. (2015). Virus evolution and trans-

mission in an ever more connected world. Proceedings of the Royal

Society B: Biological Sciences, 282(1821), 20142878. https://doi.org/

10.1098/rspb.2014.2878

Raghwani, J., Rambaut, A., Holmes, E. C., Hang, V. T., Hien, T. T., Farrar,

J., . . . Simmons, C. P. (2011). Endemic dengue associated with the

co-circulation of multiple viral lineages and localized density-depen-

dent transmission. PLoS Pathogens, 7(6), e1002064. https://doi.org/

10.1371/journal.ppat.1002064

Rambaut, A., & Drummond, A. J. (2014). Tracer V1.6. Retrieved from

http://beast.bio.ed.ac.uk/software/tracer/

Real, L. A., & Biek, R. (2007). Spatial dynamics and genetics of infectious

diseases on heterogeneous landscapes. Journal of the Royal Society

Interface, 4(16), 935–948. https://doi.org/10.1098/rsif.2007.1041

Rees, E. E., Pond, B. A., Cullingham, C. I., Tinline, R., Ball, D., Kyle, C. J., &

White, B. N. (2008). Assessing a landscape barrier using genetic simu-

lation modelling: Implications for raccoon rabies management. Preven-

tive Veterinary Medicine, 86(1–2), 107–123. https://doi.org/10.1016/j.

prevetmed.2008.03.007

Russell, C. A., Real, L. A., & Smith, D. L. (2006). Spatial control of rabies

on heterogeneous landscapes. PLoS ONE, 1(1), 7. https://doi.org/10.

1371/journal.pone.0000027

Sambo, M., Johnson, P. C. D., Hotopp, K., Changalucha, J., Cleaveland, S.,

Kazwala, R., . . . Hampson, K. (2017). Comparing methods of assessing

dog rabies vaccination coverage in rural and urban communities in

BRUNKER ET AL. | 787

https://doi.org/10.1073/pnas.0609122104
https://doi.org/10.1371/journal.pbio.1000053
http://journal.r-project.org/archive/2013-1/kahle-wickham.pdf
http://journal.r-project.org/archive/2013-1/kahle-wickham.pdf
https://doi.org/10.1126/science.1065973
https://doi.org/10.1126/science.1256306
https://doi.org/10.1126/science.1256306
https://doi.org/10.1136/vr.148.16.511
https://doi.org/10.1111/j.1365-2664.2008.01468.x
https://doi.org/10.1371/journal.pntd.0000626
https://doi.org/10.1098/rspb.2007.0664
https://doi.org/10.1098/rspb.2007.0664
https://doi.org/10.1371/journal.ppat.1003932
https://doi.org/10.1371/journal.ppat.1003932
https://doi.org/10.1371/journal.pcbi.1000520
https://doi.org/10.1093/molbev/msq067
https://doi.org/10.1093/molbev/msq067
https://doi.org/10.1093/molbev/msq067
https://doi.org/10.1093/molbev/msq067
https://doi.org/10.2307/1941447
http://cran.r-project.org/web/packages/maptools/index.html
http://cran.r-project.org/web/packages/maptools/index.html
https://doi.org/10.1554/05-321.1
https://doi.org/10.1890/es10-00192.1
https://doi.org/10.1890/es10-00192.1
https://doi.org/10.1146/annurev-phyto-081211-172938
https://doi.org/10.1007/s00285-007-0120-8
https://doi.org/10.1111/j.1365-2656.2012.02033.x
https://doi.org/10.3389/fvets.2017.00021
https://doi.org/10.1016/j.tree.2005.03.009
https://doi.org/10.1080/10635150490522232
https://books.google.co.uk/books?id=S0xLpwAACAAJ
https://doi.org/10.1098/rspb.2014.2878
https://doi.org/10.1098/rspb.2014.2878
https://doi.org/10.1371/journal.ppat.1002064
https://doi.org/10.1371/journal.ppat.1002064
http://beast.bio.ed.ac.uk/software/tracer/
https://doi.org/10.1098/rsif.2007.1041
https://doi.org/10.1016/j.prevetmed.2008.03.007
https://doi.org/10.1016/j.prevetmed.2008.03.007
https://doi.org/10.1371/journal.pone.0000027
https://doi.org/10.1371/journal.pone.0000027


Tanzania. Frontiers in Veterinary Science, 4(March), 33. https://doi.org/

10.3389/fvets.2017.00033

Shah, V. B., & McRae, B. (2008). Circuitscape : A tool for landscape ecology.

In Proceedings of the 7th Python in Science Conference (Vol. 7, pp. 62–

65). Retrieved from http://scholar.google.com/scholar?hl=en&btnG=

Search&q=intitle:Circuitscape+:+A+Tool+for+Landscape+Ecology#0

Smith, D. L., Lucey, B., Waller, L. A., Childs, J. E., & Real, L. A. (2002).

Predicting the spatial dynamics of rabies epidemics on heterogeneous

landscapes. Proceedings of the National Academy of Sciences, 99,

https://doi.org/10.1073/pnas.042400799

Spear, S. F., Balkenhol, N., Fortin, M. J., McRae, B. H., & Scribner, K.

(2010). Use of resistance surfaces for landscape genetic studies: Con-

siderations for parameterization and analysis. Molecular Ecology, 19,

3576–3591. https://doi.org/10.1111/j.1365-294X.2010.04657.x

Stamatakis, A., Aberer, A. J., Goll, C., Smith, S. A., Berger, S. A., &

Izquierdo-Carrasco, F. (2012). RAxML-Light: A tool for computing ter-

abyte phylogenies. Bioinformatics (Oxford, England), 28(15), 2064–

2066. https://doi.org/10.1093/bioinformatics/bts309

Talbi, C., Holmes, E. C., de Benedictis, P., Faye, O., Nakoun�e, E., Gamati�e,

D., . . . Bourhy, H. (2009). Evolutionary history and dynamics of dog

rabies virus in western and central Africa. The Journal of General Virol-

ogy, 90(Pt 4), 783–791.

Talbi, C., Lemey, P., Suchard, M. A., Abdelatif, E., Elharrak, M., Nourlil, J.,

. . . Bourhy, H. (2010). Phylodynamics and human-mediated dispersal

of a zoonotic virus. PLoS Pathogens, 6(10), e1001166.

Tenzin, Dhand, N. K., Dorjee, J., & Ward, M. P. (2011). Re-emergence of

rabies in dogs and other domestic animals in eastern Bhutan, 2005-

2007. Epidemiology and Infection, 139(2), 220–225. https://doi.org/

10.1017/S0950268810001135

Townsend, S. E., Sumantra, I. P., Pudjiatmoko, Bagus, G. N., Brum, E.,

Cleaveland, S., . . . Hampson, K. (2013). Designing programs for elimi-

nating canine rabies from islands: Bali, Indonesia as a case study.

PLoS Neglected Tropical Diseases, 7(8), e2372. https://doi.org/10.

1371/journal.pntd.0002372

Trov~ao, N. S., Baele, G., Vrancken, B., Bielejec, F., Suchard, M. A., Far-

gette, D., & Lemey, P. (2015). Host ecology determines the dispersal

patterns of a plant virus. Virus Evolution, 1(1), vev016. https://doi.

org/10.1093/ve/vev016

Viboud, C., Bjørnstad, O. N., Smith, D. L., Simonsen, L., Miller, M. A., &

Grenfell, B. T.(2006). Synchrony, waves, and spatial hierarchies in the

spread of influenza. Science (New York, N.Y.), 312(5772), 447–451.

https://doi.org/10.1126/science.1125237

Wang T., Donaldson Y., Brettle R., Bell J. & Simmonds P. (2017) Identifi-

cation of shared populations of human immunodeficiency virus type

1 infecting microglia and tissue macrophages outside the central ner-

vous system. Journal of Virology, 75:11686–11699. https://doi.org/

10.1128/JVI.75.23.1168611699.2001

Wheeler, D. C., & Waller, L. A. (2008). Mountains, valleys, and rivers: The

transmission of raccoon rabies over a heterogeneous landscape. Jour-

nal of Agricultural, Biological, and Environmental Statistics, 13(4), 388.

https://doi.org/10.1198/108571108X383483

WHO. (2013). WHO expert consultation on rabies. Second report. World

Health Organization Technical Report Series (No. 982). Geneva: WHO.

Windiyaningsih, C., Wilde, H., Meslin, F. X., Suroso, T., & Widarso, H. S.

(2004). The rabies epidemic on Flores Island, Indonesia (1998-2003).

Journal of the Medical Association of Thailand = Chotmaihet Thang-

phaet, 87(11), 1389–1393.

Woodroffe, R., & Donnelly, C. A. (2011). Risk of contact between

endangered African wild dogs Lycaon pictus and domestic dogs:

Opportunities for pathogen transmission. Journal of Applied Ecology,

48(6), 1345–1354. https://doi.org/10.1111/j.1365-2664.2011.

02059.x

Wright, S. (1943). Isolation by distance. Genetics, 28(2), 114–138.

https://doi.org/Article

Wu, J. (2004). Effects of changing scale on landscape pattern analysis:

Scaling relations. Landscape Ecology, 19(2), 125–138. https://doi.org/

10.1023/B:LAND.0000021711.40074.ae

Zeller, K. A., McGarigal, K., & Whiteley, A. R. (2012). Estimating

landscape resistance to movement: A review. Landscape Ecol-

ogy, 27(6), 777–797. https://doi.org/10.1007/s10980-012-9737-

0

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the

supporting information tab for this article.

How to cite this article: Brunker K, Lemey P, Marston DA,

et al. Landscape attributes governing local transmission of an

endemic zoonosis: Rabies virus in domestic dogs. Mol Ecol.

2018;27:773–788. https://doi.org/10.1111/mec.14470

788 | BRUNKER ET AL.

https://doi.org/10.3389/fvets.2017.00033
https://doi.org/10.3389/fvets.2017.00033
http://scholar.google.com/scholar?hl=en%26btnG=Search%26q=intitle:Circuitscape+:+A+Tool+for+Landscape+Ecology#0
http://scholar.google.com/scholar?hl=en%26btnG=Search%26q=intitle:Circuitscape+:+A+Tool+for+Landscape+Ecology#0
https://doi.org/10.1073/pnas.042400799
https://doi.org/10.1111/j.1365-294X.2010.04657.x
https://doi.org/10.1093/bioinformatics/bts309
https://doi.org/10.1017/S0950268810001135
https://doi.org/10.1017/S0950268810001135
https://doi.org/10.1371/journal.pntd.0002372
https://doi.org/10.1371/journal.pntd.0002372
https://doi.org/10.1093/ve/vev016
https://doi.org/10.1093/ve/vev016
https://doi.org/10.1126/science.1125237
https://doi.org/10.1128/JVI.75.23.1168611699.2001
https://doi.org/10.1128/JVI.75.23.1168611699.2001
https://doi.org/10.1198/108571108X383483
https://doi.org/10.1111/j.1365-2664.2011.02059.x
https://doi.org/10.1111/j.1365-2664.2011.02059.x
https://doi.org/Article
https://doi.org/10.1023/B:LAND.0000021711.40074.ae
https://doi.org/10.1023/B:LAND.0000021711.40074.ae
https://doi.org/10.1007/s10980-012-9737-0
https://doi.org/10.1007/s10980-012-9737-0
https://doi.org/10.1111/mec.14470

