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Abstract 

Aggregation of beta-amyloids is one of key processes responsible for the development of Alzheimer’s desease. Early 

molecular-level detection of beta-amyloid oligomers may help in early diagnosis and in the development of new 

intervention therapies. Our previous studies on changes in beta-amyloid’s single tyrosine intrinsic fluorescence response 

during aggregation demonstrated a four-exponential fluorescence intensity decay, and that the ratio of the pre-

exponential factors indicated the extent of aggregation in the early stages of the process before the beta-sheets are 

formed.  Here we present a complementary approach based on time-resolved emission spectra (TRES) of amyloid’s 

tyrosine excited at 279 nm and fluorescent in the window 240-450 nm. TRES has been used to demonstrate sturctural 

changes occuring on the nanosecond time scale after excitation which has significant advantages over using steady-state 

spectra.  We demonstrate this by resolving the fluorescent species and revealing that beta-amyloid’s monomers show 

very fast dielectric relaxation and its oligomers display a substantial spectral shift due to dielectric relaxation, which 

gradually decreases when oligomers become larger
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1. Introduction 

Beta-amyloids (Aβs) are fragments of an integral membrane Amyloid precursor protein (APP). The enzymatic processes 

responsible for the metabolism of APP to Aβ are now reasonably well understood
1
. However, the role of Aβs in normal 

physiology remains unclear. Aβs are found in nanomolar concentrations in biological fluids
2
. At these low concentrations 

Aβs remain monomeric and function as antioxidants
3
. At the higher concentrations Aβs start aggregating

4,5
– initially into 

small permeable oligomers that travel freely into the brain, and, in the later stages, into plaques that are hallmarks of 

Alzheimer’s disease
6
. Many studies

7,8
 demonstrated that Alzheimer's disease may begin at the molecular level long 

before the development of plaques because small oligomers of Aβ strongly interfere with the neuron function. Therefore, 

detecting oligomerization of Aβ at its early stages in terms of understanding how aggregation begins, how the local 

environment affects the aggregation pathway and what can be done to inhibit this aggregation before soluble toxic 

oligomers are formed is paramount for developing intervention therapies. 

A significant research effort has been done in recent years to reveal detailed molecular mechanisms of oligomerisation 

and fibrillisation of amyloids. The common approach used to detect aggregation involves labelling Aβ with the dyes 

sensitive to the formation of beta sheets like thioflavin T (ThT)
9-11

 or undergoing intramolecular interactions like 

TAMRA.
12

 In these cases the changes in the label’s fluorescence (intensity or decay) were used as the indicators of 

amyloid aggregation. Several attempts employing the fluorescence correlation spectroscopy and labelling the amyloids 

with the fluorescent probes like ARCAM-1
13

, ThT
14

 or HiLyte Fluor 488
15

 allowed characterisation of aggregation 

intermediates during the assembly process. The other techniques, like the cross-correlation spectroscopy at the single-

molecule fluorescence level 
16

 were used to investigate the impact of other proteins on inhibiting amyloid aggregation.  

Majority of the techniques used for investigating beta-amyloid performance on molecular level use the Aβ labelled dyes. 

Our approach to this task is to use the sub-ns time and sub-nm spatial resolution of the time-resolved fluorescence 

spectroscopy of intrinsic fluorophores. This allows a non-invasive detection of very small changes in the surroundings of 

the fluorophore without disturbing its native structure. For example, we have demonstrated
17

 that when exciting Aβ with 

a 279 nm pulsed LED source Aβ’s single tyrosine (Tyr) fluorescence decay responds to the changes in its environment 

induced by peptide oligomerization from the early stages. Unfortunately the intrinsic fluorescence decay of amino acids 

such as Tyr in solution is complicated and has remained unresolved over several decades. Typically, such decays are 

analysed by fitting to multi-exponential functions which are explained by one of two contradictory views of the excited 

state processes: the rotamer model (assuming discrete ground-state conformations
18,19

) and the dielectric relaxation model 

(spectral shift due to dipolar relaxation
20,21

). Our previous beta-amyloid studies
17,22,23 

, based on Tyr fluorescence and 

molecular dynamics simulations, suggested that the Tyr fluorescence decay can be adequately explained by a four-

rotamer model. Moreover, the plot of the ratio of pre-exponential factors vs. time can serve as a calibration curve for 

determining the extent of Aβ oligomerisation. More recently we have shown the alternative model with less variables, 

which also fits well to the Aβ decay during oligomerisation, and assumes a continuous stable distribution of the 

fluorescence transition rates resulting in the non-Debye fluorescence intensity decay function
24

  

𝐼𝛼,𝜅(𝑡) = 𝑒𝑥𝑝 [−
1

𝜅
∫ (1 − 𝑒𝑥𝑝 [−

1

𝑥
]) 𝑑𝑥

𝜅(
𝑡

𝜏𝜊
)

𝛼

0

]    (1) 
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where τo (of the dimension of time) and the non-dimensional parameters  and  determine the stable distributions of 

fluorescence transition rates. Tracking the evolution of τo,  and  during A aggregation has shown
25

 that α takes values 

larger than 1 during the first 40 hours of aggregation, which is not possible if the relaxation of the excited-states is the 

only process occurring, no matter what is the distribution of the transition rates . This observation led us to the conclusion 

that the experimental decay may be determined by the decay of the excited population while being interfered with by the 

dielectric relaxation. 

In this paper we present the evidence that the dielectric relaxation affects the fluorescence decays of Tyr in Aβ and 

investigate the suitability of this process as an indicator of the stage of aggregation. In our approach, we assume that both 

the dielectric relaxation and depopulation of the excited states occur at the same time scale and thus both affect the 

fluorescence decay. Previous research
26,27

 suggests that these processes can be distinguished from each other by a 

quantitative model of simultaneous decay and electrostatic relaxation. Note that this model assumes the existence of a 

single form of a fluorophore, where the transient spectra decreases its intensity and shifts towards lower energies, but 

maintains its shape. Here we investigate whether the aggregating amyloids can be described by a similar model, or 

consideration of more than one fluorescent residue is needed. For this purpose we monitor the TRES changes in Aβ 

sample during its aggregation over 8 days.  

 

2. Experimental  

The data reported here were obtained for a 50 μM sample of Aβ(1-40) (Sigma-Aldrich) in HEPES buffer of pH7.4. It is 

important to note that a freshly prepared sample may not be composed of the Aβ(1-40) monomers only and some 

contribution of small oligomers may be expected and this has been also confirmed in these studies. The sample was 

incubated at the temperature of 36
o
C over the whole period of experiment. The amyloid suspension was kept in a micro-

cuvette of the volume of ~140 μL and was not stirred during the experiment. 

Steady-state fluorescence spectra measurements of Aβ(1-40)  were obtained using the Fluorolog-3 Spectrofluorometer. The 

excitation settings were 279 nm with a slit width of 5 nm and the fluorescence was detected at the emission window of 

290-450 nm in increments of 1 nm with a slit width 5nm. 

Time Correlated Single Photon Counting (TCSPC) measurements were conducted on a Horiba Scientific DeltaFlex 

Hybrid fluorometer (Horiba Jobin Yvon IBH Ltd, Glasgow, UK). The excitation source used was a Horiba NanoLED 

with excitation at 279 nm, pulse duration 50 ps and repetition rate of 1MHz.  

For every measurement, 12 decay curves were collected at the emission wavelengths between 294 and 327 nm at 3 nm 

increments. The obtained decay curves were then analysed by a deconvolution program that assumes a 3-exponential 

decay of fluorescence and accounts for the presence of scattered excitation light in the Tyr decay (see Fig. 1a). Adding 

more components to the decay model showed no further improvements to the fit.  For example, the fourth component in 

the 4-exponential model usually appeared with the negative amplitude and the lifetime almost identical to one of the 

other three lifetimes, which supports the 3-exponential model. The fluorescence decays fλ(t) measured at different 

detection wavelengths  were then used to calculate the TRES It(λ) according to the equation 
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𝐼𝑡(𝜆) = 𝑓𝜆(𝑡) ×
𝑆(𝜆)

∫  𝐼𝜆(𝑡)𝑑𝑡
∞

0

                       (2) 

where S(λ) is the steady-state fluorescence spectrum, and the integral is proportional to the total emitted photons in the 

lifetime experiment. The obtained spectra were then converted from the wavelength 𝐼𝑡(𝜆) to the wavenumber scale 

according to It(ν) = λ
2
It(λ). 

The evolution of spectral centroid νc(t) defined as  

𝜈𝑐(𝑡) = 𝜈1(𝑡)𝐴1(𝑡)+𝜈2(𝑡)𝐴2(𝑡)

𝐴1(𝑡)+𝐴2(𝑡)
         (3) 

was also used in the data analysis.  

 

3. Results and discussion 

Experimental observations of Aβ’s fluorescence intensity decays (Fig.1b) show that the mean decay lifetime increases 

with the increase of the detection wavelength, which is consistent with the lifetime-wavelength correlation usually 

observed in protein fluorescence. We can also see that the decays evolve when the sample ages. For example, the 

fluorescence decays at detection wavelength 297 nm show that the mean lifetime at the Day 8 is shorter than at the Day 

1, whereas decays at the detection wavelength 327 nm have a similar mean lifetime. Fitting the decays to the three-

exponential model (Fig.1a), shows that at early stage of aggregation (Day1) all three lifetimes increase with the detection 

wavelength. At the late stage of aggregation (Day 8), the increase in lifetimes is smaller and the lifetime-wavelength 

correlation can hardly be observed. The contributions of scattered light (parameter C in Fig.1a) show that decay curves 

measured at short detection wavelengths are highly affected by scattered excitation light, especially at the late stages of 

aggregation. For example, the contribution of scattered light at the detection wavelength 297 nm is 10.6 % at the Day 1 

and increases to 21.5 % at the Day 8.  

The TRES It(ν) were calculated for several fixed  times. Fig.1c shows the examples of 6 spectra at different times after 

excitation measured on Day 1 and then on Day 8. In the next stage we have modelled It(ν) using the Toptygin-type 

approach
26

 where the sum of two normalised Gaussian profiles were used to represent the shape of the emission spectra  

𝐼𝑡(𝜈) = 𝜈3 (
𝐴1(𝑡)

√2𝜋𝜎1
2(𝑡)

 exp [
−(𝜈−𝜈1(𝑡))2

2𝜎1
2(𝑡)

] +  
𝐴2(𝑡)

√2𝜋𝜎2
2(𝑡)

exp [
−(𝜈−𝑣1(𝑡))2

2𝜎2
2(𝑡)

] ).                          (4) 

Here t is time after excitation in ns, 𝜈 is wavenumber in cm
-1

, A1(t) and A2(t) are the amplitudes of each component, while 

σ1(t) and σ2(t) are the standard deviations and the ν1(t) and ν2(t) are their peaks positions. 

The observed good fit of the function from Eqtn.4 to the experimental TRES data may be an indication of the existence 

of two fluorescent forms, but we cannot exclude that there is a single form with a double-peak spectrum. If the latter is 

the case the spectrum should shift as a whole monotonically towards shorter wavenumbers. To investigate this option we 

have inspected the changes in the position of the spectral centroid νc(t). 
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A plot of νc(t) against time t is shown in Fig.1d. The change in spectral centroid νc (t) is non-exponential. In fact, an 

initial increase is observed before a gradual decrease occurs. This non-monotonic behaviour of νc(t) suggest a more 

complex composition of the sample and has brought us to the hypothesis, that the sample contains two or more different 

forms both involved in the solute solvent-relaxation with the peaks undergoing the exponential decays at their own rates. 

The parameters obtained from fitting the 2-Gaussian profile to the TRES are plotted in the Fig. 2a, b and c. 

The parameters describing the position of each peak 𝜈1(𝑡) starting at 33000 cm
-1

 and 𝜈2(𝑡) starting at 30500 cm
-1

 evolve 

in time as shown in Fig.2a. The position of the first peak 𝜈1(𝑡) does not show significant changes in time indicating slow 

dielectric relaxation. Currently we associate this peak with Aβ monomers. Monomers are expected to have a short 

dielectric relaxation time due to their small size and concomitant tyrosine’s exposure to water, thus the dielectric 

relaxation process is almost completed before the fluorescence occurs and therefore has a very weak effect on the shift of 

fluorescence peak. 

The position of the second peak 𝜈2(𝑡) shifts exponentially from an initial value 𝜈2(0) to a substantially lower energy 

value 𝜈2(∞) with the relaxation time τr ≈ 8 ns. The dielectric relaxation times τr of the second form (see Table 1) increase 

as the sample ages, suggesting the gradual growth of the formed oligomers. This relaxation time can be therefore used as 

an indicator of the progress of Aβ aggregation. Oligomerisation explains the initial shift of the emission peak from 33000 

cm
-1

 to about 30500 cm
-1

 and its further red shift due to dielectric relaxation.  

Fig.2b shows that the standard deviation of the first peak σ1(t) doesn’t change significantly, as the sample ages, because 

Aβ s are still in monomeric form. On the contrary, the standard deviation of the second peak σ2(t) becomes narrower at 

later times. Our interpretation of this observation is that at early stages of aggregation the oligomers are small and have 

freedom to rotate thus the variety of tyrosine surroundings is relatively broad, which results in large spread of solvation 

energies and consequently broader spectrum. As the sample ages aggregates become larger the surroundings of the 

tyrosines become more uniform and the rotational freedom limited. 

Because the Gaussian functions used in the equation (4) are normalised, the parameters A1 and A2 can be considered as 

the fluorescence contributions of each component. Thus, the plots of A1 and A2 vs. time (Fig. 2c) represent the decays of 

fluorescence intensity of each component individually. The results show that the mean lifetime of the second peak is 

highly affected by Aβ aggregation suggesting that, at the early stages of aggregation, the impact of dielectric relaxation 

on the fluorescence decay curve is strong. The first peak doesn’t show any significant changes in the mean lifetime, 

which is consistent with the first peak representing monomers. 

The ratio A1(0)/A2(0) shows that the contribution of the monomer peak is dominant but slightly decreases as the sample 

ages (Fig. 2d). The A1(t)/A2(t) ratio changes after excitation as shown in Fig. 2e, which is a result of two components 

decaying at different rates. In the course of aggregation, the ratio A1(t)/A2(t) evolves differently on the nanosecond scale 

due to the change in the amount and mean decay time of oligomers, and therefore can be used as an indication of the 

stage of aggregation. 
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4. Conclusion 

Changes in the time resolved emission spectra of the aggregating beta-amyloids indicate at least two different sub-

systems of fluorescent tyrosine; one originating from Tyr in monomers and the other from Tyr in oligomers. The latter 

decay is highly influenced by the dielectric relaxation process, which can be used to determine the extent of aggregation. 

The observed kinetics is complex and the multi-exponential functions need to be fitted to the experimental decays to 

satisfy the goodness of fit criteria. The multi-exponential approach is sufficient for determining TRES from the raw 

fluorescence decays. However, because we demonstrated that the dielectric relaxation substantially impacts the observed 

decays, this process cannot be neglected in the proper model of the kinetics. Therefore, in the studies of protein 

aggregation the kinetic models combining both the dielectric relaxation and the specific mechanism of depopulation of 

the excited states (e.g. one governed by the stable distribution of the decay rates
27

) should be considered to represent 

properly the fluorescence characteristics of the heterogenic molecular system. 
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Table 1. The TRES second peak’s positions 2(0) and 2(), and the dielectric relaxation times 𝜏𝑟. The average error in 

the peak positions is 40 cm
-1

 and in the relaxation times is 0.9 ns.  

 1 hr 5 hrs 24 hrs 48 hrs 72 hrs 96 hrs 168 hrs 

2(0)/cm
-1 30410 30369 30374 30377 30329 30314 30323 

2()/cm
-1 29007 29032 29942 29915 30146 30169 30205 

𝜏𝑟/ns 6.6 8.4 8.5 8.9 9.0 10.6 10.9 
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Figure Captions: 

Figure 1.  a) Fluorescence decay data of beta-amyloid at the detection wavelengths 297 and 327 nm together with the 

excitation pulse, fitted 3-exponential function, the scattered light term (C) and the distribution of residuals.   b) The time-

wavelength correlation observed in two decays of beta-amyloid at detection wavelengths 297 and 327 nm and at two 

different stages of aggregation: Day 1 and Day 8. The insets show the peak areas of the experimental curves.  c) Time 

resolved emission spectra (TRES) obtained at two different stages of aggregation (Day 1 and Day 8) fitted to a two 

Gaussian profile. d) The change in the centroid of the emission spectrum (see Eqtn (3)) on the nanosecond scale at 

different stages of aggregation.  

 

Figure 2.    a) Evolution of the peak positions ν₁(t) and ν₂(t). b) Standard deviation of both peaks σ₁(t) and σ₂(t) at 

different stages of aggregation. c) Fluorescence intensity decay of each component (monomers A1, oligomers A2). d) The 

initial percentage contribution of each component A1(0)/A₂(0) at the different stages of aggregation.  e) The ratio of the 

monomer to oligomer contribution A1(t)/A₂(t) plotted against time. 
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