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Mode selectivity and stability of continuously pumped atom lasers

S. A. Haine* and J. J. Hope
Australian Centre for Quantum Atom Optics, Department of Physics, Australian National University, ACT 0200, Australia

~Received 6 April 2003; published 25 August 2003!

A semiclassical, multimode model of a continuously pumped atom laser is presented. For a spatially inde-
pendent coupling process it is found that the system is unstable below a critical scattering length. As large
atomic interactions will increase the phase diffusion of the lasing mode, it is desirable to obtain a stable atom
laser with low nonlinearity. It is shown that spatially dependent pumping stabilizes the atom laser to a finite
number of modes, and can induce single-mode operation.
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I. INTRODUCTION

The recent development of the atom laser@1–6# has
opened up the possibility of a revolution in atom optics ju
as the optical laser revolutionized photon optics. The us
characteristics of optical lasers such as mode selectivity, t
poral coherence, and high spectral density occur for the a
laser. The last two properties in particular will be vastly im
proved by the realization of a truly continuous atom laser@7#.
For an optical laser to have minimum linewidth and hen
maximum spectral flux, it must be continuously pumped a
come to steady state in a single-mode operation@8#. In this
paper we show that a continuously pumped atom laser
only achieve a single-mode steady state under certain co
tions.

Atom lasers have been demonstrated experimentally
outcoupling atoms from Bose-Einstein condensates~BEC! in
magnetic traps. This is done by changing the internal stat
the atom to one that is either untrapped or antitrapped@2–5#,
producing output fields that demonstrate spatial cohere
@6,9#. A narrow linewidth can be achieved by coupling th
atoms slowly, though this obviously comes at the expens
beam flux@10#. In optical lasers, high spectral flux is gene
ated through a competition between a depletable pump
mechanism and the damping. This causes a higher pum
rate to give a narrower output spectrum as well as hig
total flux @11#. An atom laser with gain narrowing must als
have a saturable pumping mechanism that operates a
same time as the damping@7#. Although it might be expected
that an atom laser would behave most like an optical la
when the two-body interactions are minimum, we show t
unless the pumping mechanism is sufficiently spatially se
tive, this interaction is actually necessary for a stable sing
mode operation.

Multimode models of atom lasers using the Gro
Pitaevskii equation@12# are capable of including the spati
effects of the atomic field and the interatomic interactio
@13#, and are required to determine whether pumped la
approach a single-mode operation. It was shown in@14# that
the lasing mode of an atom laser with spatially independ
pumping is unstable below a critical value of the interact
strength.

As for optical lasers, if the lasing system can be ac
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rately described as a single mode, then the quantum stati
of that mode control the linewidth of the output beam. Th
means that, although a semiclassical model is useful to
termine the stability of an atom laser, a full quantum
mechanical model must be used to calculate the linewidth
the beam coming from a pumped atom laser. Including
quantum statistics of the field dramatically increases
complexity of the model, so current quantum theories ha
been limited to a small number of modes@15#. Therefore,
these models cannot describe effects such as the
Markovian nature of the output coupling@16#, except under
the approximation that the lasing mode itself is a sin
mode @17#. It is also difficult to include the effects of the
atomic interactions in these models except as a perturba
Atom laser linewidths will be limited by these interaction
due to Kerr-like dephasing of the lasing mode@18#, as well
as by thermal effects@19#.

In this paper we add a spatially dependent pump
mechanism to the model of@14#. We find that the spatially
dependent pumping mechanism acts as a mode-sele
source of gain, which can favor the ground state. We find t
this pumping mechanism can stabilize the atom laser in
otherwise unstable regime. As the atom laser linewidths
expected to be limited by the atom-atom interaction streng
a sufficiently spatially dependent pumping mechanism m
drastically improve the fundamental limit to the atom las
linewidth.

In the next section we introduce the general model u
for our atom laser system. In Sec. III, we examine the s
bility criteria of the model in the absence of spatially depe
dent pumping, as first shown in Ref.@14#. In Sec. IV, we
explain the physics behind the instability of the linear mod
and in Sec. V we demonstrate how this instability can
avoided with spatially dependent pumping.

II. ATOM LASER MODEL

In this section we introduce a multimode model for
atom laser and discuss its strengths and weaknesses. We
extended the model of@14# to include a mode-selective
pumping mechanism. We model the atom laser in one dim
sion as a two-component semiclassical atomic field coup
to an incoherent reservoir of atoms described by a den
n(x). The first field,c t(x), is trapped in a harmonic poten
tial and will form the lasing mode. The second field,cu(x),
is untrapped and will form the laser beam. The pump
©2003 The American Physical Society07-1
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mechanism becomes mode-selective by introducing a c
pling coefficient,k(x), between the incoherent reservoir a
the lasing mode with a spatially dependent profile. The fie
obey an equation of the Gross-Pitaevskii form, with damp
due to one- and two-body loss, and reservoir coupling ac
as a source of gain. The dynamical equations for the cou
system are

i
dc t

dt
5F2

\

2M
¹21

Vt

\
2 ig t

(1)1S Utt

\
2 ig t

(2)D uc tu21S Utu

\

2 ig tu
(2)D ucuu21

i

2
k~x!n~x!Gc t

1kReik•xcu ,

i
dcu

dt
5F2

\

2M
¹21

Mgx

\
1S Uuu

\
2 igu

(2)D ucuu21S Utu

\

2 ig tu
(2)D uc tu2Gcu1kRe2 ik•xc t ,

dn

dt
5r 2gpn~x!2k~x!uc tu2n~x!1l¹2n~x!, ~1!

with

k~x!5k0e2x2/s2
, ~2!

whereM is the mass of the atom,Vt is the trapping potential
andg is the acceleration due to gravity, which is assumed
be along thex direction.Ui j 54p\2ai j /M is the interatomic
interaction betweenc i and c j , ai j is the scattering length

between those same fields,g i
(1) is the loss rate ofc i due to

background gas collisions,g i
(2) is the loss rate ofc i due to

two-body inelastic collisions between particles in that sta
g tu

(2) is the loss rate of each field due to two-body inelas
collisions between particles in the other electronic state,kR
is the coupling rate between the trapped field and the ou
beam,k is the momentum kick due to the coupling proce
k0 is the coupling coefficient between the incoherent atom
cloud n(x) and the trapped field,s is the parameter tha
controls the width of the coupling envelope,r is the rate of
density increase of the incoherent cloud,gp is the loss rate
from the incoherent cloud, andl is the spatial diffusion co-
efficient. Periodic boundary conditions were enforced on
pumping reservoir to avoid diffusive loss of reservoir atom

The pumping terms in the above equations are phen
enological, describing an irreversible pumping mechan
from a reservoir which is assumed to be at a constant t
perature. The reservoir can be depleted, but is replenishe
a steady rate. These two features are necessary for
pumping mechanism that generates gain-narrowing thro
the competition of the gain and loss processes of the la
mode. l is chosen such that the diffusion is sufficient
maken(x) approximately flat, with any irregularities bein
quickly filled in. In the low diffusion limit, the multimode
behavior of the model is quite different, as the pumping
vors gain into the excited states.
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We have not included three-body losses, which are n
mally important. However, near a Feshbach resonance
may be negligible, as for85Rb, and still allow a wide range
for the scattering length@20#. Both two-body and three-body
loss act as a form of nonlinear damping. It is this nonline
damping which is the origin of the instability presented
this paper, and the results of this paper are not affected
our choice to operate in the regime where the two-body l
is dominant.

It has been shown that output coupling can induce a
calized bound state@17#. When the atom laser is pumped, th
population of this bound state increases indefinitely. Grav
must be included in the model to make this state decay
allow steady-state operation to be achieved. For a given
of parameters, there is a maximum coupling ratekR below
which this metastable state has a negligible effect on the t
dynamics.

III. SPATIALLY INDEPENDENT PUMPING

We found in@14# that the atom laser model with spatial
independent pumping (s5`) was unstable in the absence
repulsive nonlinear interactions. With repulsive interactio
included, we found that there was a critical interacti
strength, above which the system was stable, with all exc
modes damped. Increasing the pumping rate above
threshold caused faster damping of the excited modes.

We found that the semiclassical intensity fluctuations
the atom laser beam followed the dynamics of the las
mode. For the range of output coupling rates that we c
sider, we found in our previous work that the condens
dynamics is very weakly affected by the output coupl
beam@14#. Hence, in order to reduce the computational loa
it is possible to ignore the output coupling. We do this for t
following calculations. This means that we only gain info
mation about the stability of the lasing mode, and not
semiclassical energy spectrum resulting from the outcoup
process. One consequence of neglecting the effect of the
put beam is that in its absence there are no symme
breaking terms, so only the even modes of oscillation
present in the simulation. In this approximation, our equ
tions of motion for the system become

i
dc t

dt
5F2

\

2M
¹21

Vt

\
1S Utt

\
2 ig t

(2)D uc tu22 ig t
(1)

1
i

2
k~x!n~x!Gc t ,

dn

dt
5r 2gpn~x!2k~x!uc tu2n~x!1l¹2n~x!. ~3!

We integrated Eqs.~3! numerically using a pseudospectr
method with a Fourth-order Runge-Kutta time step@23# us-
ing the XMDS numerical package@24#, and used the atomic
properties and loss rates for85Rb near a Feshbach resonanc
where the interatomic interaction can be tuned with magn
fields. We use the following experimentally reasonable
rameters for all subsequent calculations:g t

(1)57.0
7-2
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FIG. 1. Time series and power spectra of the laser mode central density. The pumping rate isR5105 s21. The scattering length is~i!
att50.01 nm,~ii ! att50.5 nm, ~iii ! att51 nm, and~iv! att510 nm. The spectral power is obtained from the time series from~a! t50.5
21.0 s and~b! t51.522.0 s.
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31023 s21, g t
(2)51.731028 ms21, gp55 s21, kp56.3

31024 ms21, a trapping potential ofVt5Mv2x2/2, where
v550 rad s21, andl50.01 ms21. The total pumping rate
is R5rL , whereL is the width of the pumping region.

Figure 1 shows the different regimes of stability as t
scattering length is changed with a fixed pumping rate. T
case with the lowest scattering length is unstable, with
breathing mode of oscillation growing without bound. T
spectrum shows that all modes of oscillation are growing
amplitude. The systems with intermediate scattering len
show a different type of behavior, with the lowest mode
oscillation ~breathing! being damped, but higher modes i
creasing over time. The system with the highest scatte
length is stable, with all excited modes being damped. T
power spectrum shows a smooth transition from the e
harmonic oscillator eigenfrequencies (V5nv, n even! for
the lowest scattering length, to the even Thomas-Fe
eigenfrequencies@13,21# @V5vAn(n11)/2, n even# for
the highest scattering length. This suggests that for sm
values of the scattering length, the collective excitation
the condensate is approximated by eigenstates of the li
harmonic oscillator, while for large scattering lengths whe
the interatomic interaction dominates the energy, a lineari
analysis such as found in@21# accurately describe the fre
quencies of the system. The collective excitation found
the method of@22# accurately describe the regime in betwe
these two extremes.
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We found it convenient to classify the behavior into thr
catagories. Type I behavior is where all excited modes
damped. In type II behavior, the breathing mode is dam
but higher modes are undamped, so oscillations are initi
decreasing, but the system is unstable over a long period
type III behavior, all modes are undamped, and the syste
unstable. We reproduce here the types of behavior found
different values ofR anda ~Fig. 2!. For high pumping rates
the high-frequency oscillations produce numerical instab
ties, so the boundaries in the phase diagram were difficu
explore in detail.

This behavior is a surprising departure from the analo
between optical lasers and atom lasers, as an optical las
stable with zero interaction strength between the photons
the following section, we analyze the system in the case
zero interaction strength and show why it is unstable.

IV. ANALYSIS OF STABILITY WITHOUT REPULSIVE
INTERACTIONS

With the two-body repulsive interactions turned off the
is no nonlinear phase diffusion so the quantum linewidth
the atom laser is expected to be a minimum, but we saw
the previous section that the semiclassical behavior of
atom laser was unstable. In this section we present a sim
fied analytical model which shows why the atom laser w
no repulsive interactions is unstable, and demonstrate th
7-3
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S. A. HAINE AND J. J. HOPE PHYSICAL REVIEW A68, 023607 ~2003!
spatially dependent pumping mechanism can stabilize
system, making an atom laser with minimum quantum no
a possibility. Our simplified model makes the assumpt
that there is infinite diffusion of the pump reservoir such th
it has no spatial structure, and that the interaction betw
the output field and the lasing mode has a negligible ef
on the behavior of the lasing mode. By settingatt50 and
ignoring the output beam, our equations for the system
come

i
dc t

dt
5S 2

\

2M
¹21

Vt

\
2 ig t

(1)2 ig t
(2)uc tu2

1
i

2L
k~x!NpDc t , ~4!

dNp

dt
5R2gpNp2

Np

L E
2`

`

kpuc tu2dx, ~5!

where we have assumedn(x) takes the form

n5
Np

L
for 2L/2,x,L/2,

~6!
n50 otherwise.

Expanding into the basis of harmonic oscillator eigenfu
tions c t(x,t)5(n50

` cn(t)fn(x), where

H fn~x!:S 2
\2

2M
¹21VtDfn5EnfnJ

and solving for the mode coefficients,cn , gives the equiva-
lent set of equations,

FIG. 2. This shows the regions of parameter space in which
atom laser is stable when the pumping is spatially independens
5`). The stable region~type I! is shown as squares, type II sy
tems are shown as circles, and unstable~type III! systems are shown
as stars.
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\
Encn1

Np

2L (
m50

`

kmncm2g t
(1)cn

2g t
(2)(

i jk
ci* cjckI ni jk ~7!

with I ni jk5*2`
` fn* f i* f jfkdx, k i j 5*2`

` f i* kp(x)f jdx,
and En5(n1 1

2 )\v. In the s5` case, the system o
equations is easier to analyze as they are diagonal in
gain term, i.e., k i j 5kpd i j . Making the transformation

bn5cnei (En /\)t with ubnu25ucnu2 equal to the number o
atoms in moden, and noting that the off-diagonal elemen
of I ni jk are small compared to the diagonal elements, giv

ḃn'S kp

2L
Np2g t

(1)Dbn2g tt
(2)I nnnnubnu2bn . ~8!

The solution to Eq.~8! will grow until it is clamped by the
two-body loss term. The steady-state population will
when

ubnu25

kp

2L
Np2g t

(1)

g tt
(2)I nnnn

.

Figure 3 shows the value ofI nnnn versus mode numbern.
The loss rate decreases because the excited state

more spread out than the lower-energy states. This s
trend occurs for three-body loss. The pumping is satura
and not mode-selective so the excited states have a hi
net gain. The coupling between modes seeds the exc
states, which become more populated than lower states.
growth is the origin of the atom laser instability.

A spatially dependent pumping mechanism would g
unequal gain into each mode. The system would then
stable if the net gain~gain minus loss! into the ground state
were higher than for all excited states.

e

FIG. 3. Relative loss from each mode.I nnnn ~in units of
AMv/\) plotted against mode numbern. The loss from each mode
decreases for higher modes, so they will grow to a higher stea
state population.
7-4
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V. SPATIALLY DEPENDENT PUMPING

In the case of finites, there is unequal gain into eac
mode, so it may be possible to make the net gain into
ground state higher than for all excited states. Because
equations are more complicated due to the off-diagonal g
terms, our simple model of the previous section is inadequ
to determine stability of the system. To test the stability,
integrate Eqs.~3! numerically using the same parameters
before, but with a finite value ofs.

Figure 4 shows the type of behavior found for differe
values ofR and s with att50. The system is found to b
stable below a critical value ofs, with all excited modes
being damped. This critical value decreases as the pum
rate is increased. Again, we found it convenient to class
the behavior into three categories. Type I behavior is wh
all modes are damped, type II behavior is where the bre
ing mode is damped, yet higher modes are undamped.
numbers next to the points in Fig. 4 indicate the high
undamped mode. In type III behavior, the breathing mod
undamped. Type II and III behavior differs from type II an
III behavior in the absence of spatially dependent pumpi
as there are only a finite number of undamped modes. T
leads to the possibility of controlling the instability wit
feedback.

We can predict when the system will become stable
using a simplified two-mode model to determine when e
excited mode of the system is damped. The system is d
mined to be stable when the ground state is stable again
small perturbation in each excited state. We are assum
that the amplitude of each excited mode is small eno
such that they only interact with the ground state, a
not each other. We assume an initial condition w
a large population in the ground state, with a small pertur
tion in one of the excited modes. i.e.,c tt5b0f01bnfn ,

FIG. 4. Atom laser stability as a function of pumping rate a
spatial extent of the pumping for zero interatomic interactionsa
50). Cases that displayed type I behavior are indicated w
squares, cases that displayed type II behavior are indicated
circles, and type III behavior is indicated by stars. The region be
the solid line is stable, the region above is unstable.
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b05ANlm,bn50.01b0, whereNlm5AR/2g (2)I 0000 is the ap-
proximate steady-state population of a stable lasing mod
the ground state. The equation governing the growth or
cay of this excited mode is then

ċn5
Np~ss!

2L
~kn0c01knncn!2g t

(1)cn

2g tt
(2)@cn* cncnI nnnn

1~c0* cncn1cn* c0cn1cn* cnc0!I nnn0

1~c0* c0cn1cn* c0c01c0* cnc0!I nn00

1~c0* c0c0!I n000#, ~9!

where

Np~ss!5
R

gp1
k00Nlm

L

is the approximate steady-state pump reservoir populat
We test whether the system is stable against perturbatio
checking the sign ofducnu2/dt5 ċn* cn1cn* ċn time averaged
over one cycle. Cases where^ducnu2/dt& was determined to
be negative are stable, as the system is returning to the st
state. Figure 5 shows the critical value ofs for each mode,
above which the system is unstable. For the system to
stable, the system must be stable against perturbation f
all excited modes, sos must be below the criticals for each
mode.

The results obtained from the two-mode model agree w
the behavior of the full model, with type I behavior corr

h
ith
w

FIG. 5. Critical s vs mode number. The bold line is obtaine
from setting^ducnu2/dt&50 for R52.53104 s21. This line repre-
sents the criticals for each mode, above which the mode of osc
lation is undamped, below which it is damped. The horizontal lin
correspond to theR52.53104 points from Fig. 4. The observed
unstable frequencies agree with the multimode model. Type II
havior corresponds to the region between the minimum of the b
line and the criticals for the n52 mode of oscillation.
7-5
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sponding to the region below the minimum of the bold lin
type II behavior corresponding to the region between
minimum and the criticals for then52 mode of oscillation,
and type III behavior corresponding to the region above
critical s for then52 mode of oscillation. This perturbativ
analysis ignores all but a single pair of modes in the syst
and therefore would be expected to break down in the p
ence of significant nonlinearity. There is therefore a qu
surprising level of agreement between this model and the
model, as seen in Fig. 5.

If we increase the pumping, however, the two-mode
proximation breaks down. Figure 6 shows the criticals ob-
tained from the two-mode approximation forR55
3105 s21. We believe that the discrepancy is between
full multimode model and the two-mode approximation
due to the larger population in the lasing mode causing
nonlinear loss term to act as a form of coupling betwe
modes, causing the harmonic oscillator eigenmodes to
come an inappropriate basis.

Finally, we investigate the effect of spatially depende
pumping on the atom laser model with repulsive nonlin
interactions present. We find that the nonlinear interacti
drastically increase the width of the criticals. This is be-
cause for high nonlinearity, the undamped modes have v
small gain due to the spatially dependent pumping mec
nism. Higher-order modes become damped without the s
tially dependent pumping mechanism as the nonlinearit
increased, so the pumping envelope can become wider w
out allowing significant gain into the undamped modes. I
is difficult to produce a spatially dependent pumping mec
nism experimentally, by including interactions it will be po
sible to obtain a stable atom laser with only a weak spa
dependence in the pumping mechanism.

Figure 7 shows the types of behavior found for finite v
ues ofatt , for R5105 s21. The system in the presence
repulsive nonlinear interactions does not require as m

FIG. 6. Critical s vs mode number forR553105 s21. The
four horizontal lines correspond to the fourR553105 points from
Fig. 4. The bold line obtained from the two-mode model does
agree with the results obtained from the multimode model.
02360
,
e

e

,
s-
e
ll

-

e

e
n
e-

t
r
s

ry
a-
a-
is
h-
t
-

l

-

h

spatial dependence in the pumping mechanism to rem
stable in the presence of nonlinear interactions. The bou
aries between different regions of stability asymptote to
boundaries on thes5` phase plot, which are represented
the dashed lines.

VI. CONCLUSION

We have shown that a continuously pumped atom la
with no nonlinear repulsive interactions is unstable, but c
be stabilized by a spatially dependent pumping mechani
This is because the spatial dependence in the pum
mechanism causes a preference for pumping into the gro
mode, to combat the effect of the nonlinear loss favoring
excited modes. There is a critical width to the pumping e
velope, below which the system is stable, which depends
pumping rate and nonlinear interaction strength.

Current cooling techniques do not provide significant s
tial selectivity on the length scale of the condensate. Inde
no continuous pumping mechanism has been demonstra
Therefore there may be significant experimental difficulty
providing an extremely spatially selective pumping mech
nism, and some repulsive atomic interactions or feedb
may be required to achieve modal stability.
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t

FIG. 7. Atom laser stability ins and scattering length paramete
space forR5105 s21. The stable region~type I! is shown as
squares, type II systems are shown as circles, and unstable~type III!
systems are shown as stars. The dashed lines represent the b
aries on thes5` plot for ~a! type I and type II behavior, and~b!
type II and type III behavior.
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