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Mode selectivity and stability of continuously pumped atom lasers
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A semiclassical, multimode model of a continuously pumped atom laser is presented. For a spatially inde-
pendent coupling process it is found that the system is unstable below a critical scattering length. As large
atomic interactions will increase the phase diffusion of the lasing mode, it is desirable to obtain a stable atom
laser with low nonlinearity. It is shown that spatially dependent pumping stabilizes the atom laser to a finite
number of modes, and can induce single-mode operation.
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I. INTRODUCTION rately described as a single mode, then the quantum statistics
of that mode control the linewidth of the output beam. This
The recent development of the atom lagér6] has means that, although a semiclassical model is useful to de-
opened up the possibility of a revolution in atom optics justtermine the stability of an atom laser, a full quantum-
as the optical laser revolutionized photon optics. The usefunechanical model must be used to calculate the linewidth of
characteristics of optical lasers such as mode selectivity, tenihe beam coming from a pumped atom laser. Including the
poral coherence, and high spectral density occur for the atoffu@ntum statistics of the field dramatically increases the
laser. The last two properties in particular will be vastly im- COmplexity of the model, so current quantum theories have
proved by the realization of a truly continuous atom ldgar ~ P€en limited to a small number of modgk5]. Therefore,
For an optical laser to have minimum linewidth and hence€Se models cannot describe effects such as the non-
maximum spectral flux, it must be continuously pumped and"arkovian nature of the output coupling6], except under
come to steady state in a single-mode operainin this the approximation that the lasing mode itself is a single

paper we show that a continuously pumped atom laser will?ode[17]. It is also difficult to include the effects of the
only achieve a single-mode steady state under certain condfioMic interactions in these models except as a perturbation.
tions. Atom laser linewidths will be limited by these interactions

Atom lasers have been demonstrated experimentally b€ to Kerr-like dephasing of the lasing modeg], as well
outcoupling atoms from Bose-Einstein condensé#=C) in &5 by th.ermal effectsl]. . .
magnetic traps. This is done by changing the internal state of N this paper we add a spatially dependent pumping
the atom to one that is either untrapped or antitrajjged), mechanism to the model ¢14]. We find that the spatially

producing output fields that demonstrate spatial coherencg€Pendent pumping mechanism acts as a mode-selective

[6,9]. A narrow linewidth can be achieved by coupling the SOUrce of gain, which can favor the ground state. We find that

atoms slowly, though this obviously comes at the expense df!iS PUMping mechanism can stabilize the atom laser in an
beam flux[10]. In optical lasers, high spectral flux is gener- otherwise unsta_blg regime. As the atom _Iaser I|r_1eW|dths are
%xpected to be limited by the atom-atom interaction strength,

ated through a competition between a depletable pumpin - : ; ;
mechanism and the damping. This causes a higher pumpi sufficiently spatially dependent pumping mechanism may
rastically improve the fundamental limit to the atom laser

rate to give a narrower output spectrum as well as higher )

total flux [11]. An atom laser with gain narrowing must also Ineéwidth. , _
have a saturable pumping mechanism that operates at the In the next section we introduce the general _model used
same time as the dampifig]. Although it might be expected for our atom laser system. In Sec. Ill, we examine the sta-

that an atom laser would behave most like an optical laseP!lity criteria of the model in the absence of spatially depen-
dent pumping, as first shown in RdfL4]. In Sec. IV, we

when the two-body interactions are minimum, we show tha ! ) ] , - )
unless the pumping mechanism is sufficiently spatially selecEXplain the physics behind the instability of the linear model,

tive, this interaction is actually necessary for a stable single@nd in Sec. V we demonstrate how this instability can be
mode operation. avoided with spatially dependent pumping.

Multimode models of atom lasers using the Gross-
Pitaevskii equat|0|1il'2] are capable qf mcludln'g t'he spayal Il ATOM LASER MODEL
effects of the atomic field and the interatomic interactions
[13], and are required to determine whether pumped lasers In this section we introduce a multimode model for an
approach a single-mode operation. It was showfil# that  atom laser and discuss its strengths and weaknesses. We have
the lasing mode of an atom laser with spatially independengéxtended the model of14] to include a mode-selective
pumping is unstable below a critical value of the interactionpumping mechanism. We model the atom laser in one dimen-
strength. sion as a two-component semiclassical atomic field coupled
As for optical lasers, if the lasing system can be accuto an incoherent reservoir of atoms described by a density
n(x). The first field,(x), is trapped in a harmonic poten-
tial and will form the lasing mode. The second fielig,(x),
*Electronic address: Simon.Haine@anu.edu.au is untrapped and will form the laser beam. The pumping
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mechanism becomes mode-selective by introducing a cou- We have not included three-body losses, which are nor-
pling coefficient,x(x), between the incoherent reservoir and mally important. However, near a Feshbach resonance they
the lasing mode with a spatially dependent profile. The fieldsnay be negligible, as fof°Rb, and still allow a wide range
obey an equation of the Gross-Pitaevskii form, with dampingor the scattering lengtf20]. Both two-body and three-body
due to one- and two-body loss, and reservoir coupling actingpss act as a form of nonlinear damping. It is this nonlinear
as a source of gain. The dynamical equations for the coupledamping which is the origin of the instability presented in

system are this paper, and the results of this paper are not affected by
our choice to operate in the regime where the two-body loss

diy _iszrﬂ_. @y [Yu_ e 2+ Uw  is dominant.

'dt T 2m non no Il f It has been shown that output coupling can induce a lo-

calized bound statgl 7]. When the atom laser is pumped, the

population of this bound state increases indefinitely. Gravity

must be included in the model to make this state decay and

allow steady-state operation to be achieved. For a given set

of parameters, there is a maximum coupling ratebelow

which this metastable state has a negligible effect on the total
ﬁ dynamics.
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IIl. SPATIALLY INDEPENDENT PUMPING

. (2) 2 —ik-x
x4 )wjtl Yot kre T We found in[14] that the atom laser model with spatially
independent pumpings(= ) was unstable in the absence of
dn 5 5 repulsive nonlinear interactions. With repulsive interactions
i =" 700 = kOO O)FAVIN), (D) ipcluded, we found that there was a critical interaction
strength, above which the system was stable, with all excited
with modes damped. Increasing the pumping rate above this
- threshold caused faster damping of the excited modes.
K(X)=kKoge X7, (2 We found that the semiclassical intensity fluctuations of
the atom laser beam followed the dynamics of the lasing
whereM is the mass of the atorV, is the trapping potential, mode. For the range of output coupling rates that we con-
andg is the acceleration due to gravity, which is assumed tasider, we found in our previous work that the condensate
be along thec direction.Uij=4Trﬁza”/M is the interatomic  dynamics is very weakly affected by the output coupled
interaction betweeny; and ¢;, a;; is the scattering length beam[14]. Hence, in order to reduce the computational load,
between those same fieldﬁ(,l) is the loss rate off;, due to  itis possible to ignore the output coupling. We do this for the
background gas collisions/?) is the loss rate ofj; due to ~ following calculations. This means that we only gain infor-
two-body inelastic collisions between particles in that stateMation about the stability of the lasing mode, and not the
755) is the loss rate of each field due to two-body inelasticseMiclassical energy spectrum resultm_g from the outcoupling
collisions between particles in the other electronic state, Process. Or_1e consequence of neglecting the effect of the out-
is the coupling rate between the trapped field and the outp ut bgam is that in its absence there are no 'symmetry-
beam k is the momentum kick due to the coupling process, reakmg_ terms, so on_ly the even mode_s of_osmllauon are
Ko Is the coupling coefficient between the incoherent atomidresent in the simulation. In this approximation, our equa-
cloud n(x) and the trapped fieldg is the parameter that tions of motion for the system become
controls the width of the coupling envelopejs the rate of

density increase of the incoherent cloug, is the loss rate i%z - iv2+ &Jr ﬁ_i O]y 2= 4V
. . . . . dt oM % % Yt t Yt
from the incoherent cloud, and is the spatial diffusion co-
efficient. Periodic boundary conditions were enforced on the i
pumping reservoir to avoid diffusive loss of reservoir atoms. + 5 k(X)N(X) |,
The pumping terms in the above equations are phenom- 2

enological, describing an irreversible pumping mechanism dn

from a reservoir which is assumed to be at a constant tem- _ 2 2

perature. The reservoir can be depleted, but is replenished at H" YpN(X) = k(X)| 4 () +A VN (X). ®

a steady rate. These two features are necessary for any

pumping mechanism that generates gain-narrowing through We integrated Eqg3) numerically using a pseudospectral
the competition of the gain and loss processes of the lasingiethod with a Fourth-order Runge-Kutta time s{@@] us-
mode. \ is chosen such that the diffusion is sufficient to ing the XMDS numerical packad®4], and used the atomic
maken(x) approximately flat, with any irregularities being properties and loss rates f8tRb near a Feshbach resonance,
quickly filled in. In the low diffusion limit, the multimode where the interatomic interaction can be tuned with magnetic
behavior of the model is quite different, as the pumping fa-fields. We use the following experimentally reasonable pa-
vors gain into the excited states. rameters for all subsequent calculationsy{?=7.0
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FIG. 1. Time series and power spectra of the laser mode central density. The pumpingRat&0%s *. The scattering length i)
a,,=0.01 nm, (ii) a;=0.5 nm, (iii) a,;=1 nm, and(iv) a;;=10 nm. The spectral power is obtained from the time series f@nm=0.5
—1.0 s andb) t=1.5-2.0 s.

X103 s 1 y§2):1_7x 10 8 ms ¢, ¥,=5 s k,=6.3 We found it convenient to classify the behavior into three
X104 ms?!, a trapping potential th=Mw2x2/2, where catagories. Type | behavior is where all excited modes are
w=50rads?, and\=0.01 ms®. The total pumping rate damped. In type Il behavior, the breathing mode is damped
is R=rL, whereL is the width of the pumping region. but higher modes are undamped, so oscillations are initially
Figure 1 shows the different regimes of stability as thedecreasing, but the system is unstable over a long period. In
scattering length is changed with a fixed pumping rate. Theype Il behavior, all modes are undamped, and the system is
case with the lowest scattering length is unstable, with theinstable. We reproduce here the types of behavior found for
breathing mode of oscillation growing without bound. The different values oR anda (Fig. 2). For high pumping rates,
spectrum shows that all modes of oscillation are growing inthe high-frequency oscillations produce numerical instabili-
amplitude. The systems with intermediate scattering lengtiies, so the boundaries in the phase diagram were difficult to
show a different type of behavior, with the lowest mode Ofexplore in detail.
oscillation (breathing being damped, but higher modes in-  This pehavior is a surprising departure from the analogy
creasing over time. The system with the highest scatteringeyeen optical lasers and atom lasers, as an optical laser is
length is stable, with all excited modes being damped. Thgaple with zero interaction strength between the photons. In
power spectrum shows a smooth transition from the evepe following section, we analyze the system in the case of
harmonic oscillator eigenfrequencie€ nw, n even for  ;erq interaction strength and show why it is unstable.
the lowest scattering length, to the even Thomas-Fermi
eigenfrequencieg13,2] [ =wyn(n+1)/2,n everd for  \/ ANALYSIS OF STABILITY WITHOUT REPULSIVE
the highest scattering length. This suggests that for small INTERACTIONS
values of the scattering length, the collective excitation of
the condensate is approximated by eigenstates of the linear With the two-body repulsive interactions turned off there
harmonic oscillator, while for large scattering lengths whereis no nonlinear phase diffusion so the quantum linewidth of
the interatomic interaction dominates the energy, a linearizethe atom laser is expected to be a minimum, but we saw in
analysis such as found i21] accurately describe the fre- the previous section that the semiclassical behavior of the
quencies of the system. The collective excitation found byatom laser was unstable. In this section we present a simpli-
the method of 22] accurately describe the regime in betweenfied analytical model which shows why the atom laser with
these two extremes. no repulsive interactions is unstable, and demonstrate that a
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spatially dependent pumping mechanism can stabilize the
system, making an atom laser with minimum quantum noisgyith Lniik=J " @} & dybrdx,  &ij= 7.7 kp(X) $;dx,
a possibility. Our simplified model makes the assumptiongng £, =(n+%)%w. In the o= case, the system of

that there is infinite diffusion of the pump reservoir such thatequations is easier to ana'yze as they are diagona' in the
it has no spatial structure, and that the interaction betweegain term, i.e., kj=k,5;. Making the transformation

the output field and the lasing mode has a negligible effec =@ E/M with |b,|2=|c,? equal to the number of

on the behavior of the lasing mode. By settiag=0 and ; . .
) . . atoms in moden, and noting that the off-diagonal elements
ignoring the output beam, our equations for the system be

come of Ihijx are small compared to the diagonal elements, gives
diy h A\ . . K
'W:( “om Vg il b~ 22 Np= %2 |0y = Yl ponlbol?D,. ®)
i
+ ZK(X)Np) i, (4)  The solution to Eq(8) will grow until it is clamped by the
two-body loss term. The steady-state population will be
dN, N, (= , when
F:R_ ’ypr—T 700Kp|l,0t| dx, (5)
2PN, - 7
where we have assumex{x) takes the form b |2_2L P
==
N ')’th)l nnnn
n= T" for —L/2<x<L/2,

©) Figure 3 shows the value ¢f,,, versus mode numbaer.

The loss rate decreases because the excited states are
more spread out than the lower-energy states. This same
trend occurs for three-body loss. The pumping is saturable
“and not mode-selective so the excited states have a higher
net gain. The coupling between modes seeds the excited
52 states, which become more populated than lower states. This
V24V )¢ —E, ¢ ] growth |s_the origin of the atom_laser |nstab_|l|ty. _

2M v A spatially dependent pumping mechanism would give
unequal gain into each mode. The system would then be
and solving for the mode coefficients,, gives the equiva- stable if the net gaiiigain minus lossinto the ground state
lent set of equations, were higher than for all excited states.

n=0 otherwise.

Expanding into the basis of harmonic oscillator eigenfunc
tions i (X,t) = =;_oCn(t) Pn(x), where

[¢n(x):

023607-4



MODE SELECTIVITY AND STABILITY OF . .. PHYSICAL REVIEW A 68, 023607 (2003

10[ j ] 10.2
98t-4u. Unstable
T 0l0T el * 10t
zi | 610 o 10..1~60~~\ * - 08
a4l -~ e _98}
92} 06 010 o8 82\\ Typ | [ n = 2 mode unstable
’E\ " (e} 6 o 6 Type II 6 \s\ * E‘; 9 6 \ /
= 9r o4 o4 04 °6 ‘}; * T o) n =4, 6, 8, 10 modes unstable
= 88¢ > Z 04l /
° 86+ - - ° ° o * 8 94 \ n = 4, 6, 8, 10 modes unstable
a o o E
g: - Type I S 92 \ / n = 4, 6 modes unstable |
” a o o 9L E
8r 1/ n= 4 mode unstable
78+ a Stable 88l 4 -
L N all modes stable
761 . .
4 5 6 . oy
10 10 10 88 46 & 1012 14 15 15 20 22 54 26 26 30 32 34 36 38 40
Pumping rate (atoms/s) mode number

FIG. 4. Atom laser stability as a function of pumping rate and  FIG. 5. Critical o vs mode number. The bold line is obtained
spatial extent of the pumping for zero interatomic interactiams ( from setting(d|c,|?/dt)=0 for R=2.5x 10* s™*. This line repre-
=0). Cases that displayed type | behavior are indicated withsents the criticab- for each mode, above which the mode of oscil-
squares, cases that displayed type Il behavior are indicated witlation is undamped, below which it is damped. The horizontal lines
circles, and type Il behavior is indicated by stars. The region belowcorrespond to th&=2.5x 10* points from Fig. 4. The observed
the solid line is stable, the region above is unstable. unstable frequencies agree with the multimode model. Type Il be-

havior corresponds to the region between the minimum of the bold

V. SPATIALLY DEPENDENT PUMPING line and the criticalr for the n=2 mode of oscillation.

In the case of finites, there is unequal gain into each p,=/N,,,,b,=0.01b,, whereN,,= ‘/R/27(2)|0000 is the ap-
mode, so it may be possible to make the net gain into theroximate steady-state population of a stable lasing mode in

ground state higher than for all excited states. Because th@e ground state. The equation governing the growth or de-
equations are more complicated due to the off-diagonal gaigay of this excited mode is then

terms, our simple model of the previous section is inadequate

to determine stability of the system. To test the stability, we - Np(SS)( Cot ey — A0
integrate Eqs(3) numerically using the same parameters as nT o Vnoto™ Knnbn) T Yt "en
before, but with a finite value of-. @) %

Figure 4 shows the type of behavior found for different ~ %t L€ CnCnl nnnn

values ofR and o with a;;=0. The system is found to be

e . . +(cjc,ChtCrcoc,+Ch e Co)l
stable below a critical value of, with all excited modes (€6 CnCa+ Cn CoCnCn CnCo)nnro

being d_amped. This cr_itical value de_zcreases as the pumping +(C§ CoCnt CE CoCot CE CnCo)l nnoo
rate is increased. Again, we found it convenient to classify .
the behavior into three categories. Type | behavior is where + (€5 CoCo) I nooal 9

all modes are damped, type Il behavior is where the breath-
ing mode is damped, yet higher modes are undamped. Th&here
numbers next to the points in Fig. 4 indicate the highest

undamped mode. In type Il behavior, the breathing mode is Np(ss)=————
undamped. Type Il and 1l behavior differs from type Il and n #0oNim
[ll behavior in the absence of spatially dependent pumping, P L

as there are only a finite number of undamped modes. This _ ) )
leads to the possibility of controlling the instability with iS the approximate steady-state pump reservoir population.
feedback. We test whether the system is stable against perturbation by
We can predict when the system will become stable bychecking the sign ofl|c,|?/dt=c c,+c}c, time averaged
using a simplified two-mode model to determine when eacfover one cycle. Cases whefé|c,|?/dt) was determined to
excited mode of the system is damped. The system is detebe negative are stable, as the system is returning to the steady
mined to be stable when the ground state is stable againststate. Figure 5 shows the critical value @ffor each mode,
small perturbation in each excited state. We are assumingbove which the system is unstable. For the system to be
that the amplitude of each excited mode is small enouglstable, the system must be stable against perturbation from
such that they only interact with the ground state, andall excited modes, so must be below the criticar for each
not each other. We assume an initial condition withmode.
a large population in the ground state, with a small perturba- The results obtained from the two-mode model agree with
tion in one of the excited modes. i.al=bopo+b,d,, the behavior of the full model, with type | behavior corre-
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FIG. 6. Critical ¢ vs mode number foR=5x10 s . The FIG. 7. Atom laser stability irr and scattering length parameter
. 6. : o s . .
four horizontal lines correspond to the foRk5x 10° points from ~ SPace forR= 10°s %, The stable regiontype ) is shown as

Fig. 4. The bold line obtained from the two-mode model does noSduares, type Il systems are shown as circles, and unstgpéel|l)
agree with the results obtained from the multimode model. systems are shown as stars. The dashed lines represent the bound-

aries on thesr=co plot for (a) type | and type Il behavior, an¢b)
type Il and type Il behavior.
sponding to the region below the minimum of the bold line,
type Il behavior corresponding to the region between the . . . . .
minimum and the criticatr for then=2 mode of oscillation, spatial dependence in the pumping mechanism to remain

and type 11l behavior corresponding to the region above thestable in the presence of nonlinear interactions. The bound-

critical o for then=2 mode of oscillation. This perturbative aries between different regions of stability asymptote to the

analysis ignores all but a single pair of modes in the syste boundaries on the-= e phase plot, which are represented by

and therefore would be expected to break down in the prg;[’—ne dashed lines.

ence of significant nonlinearity. There is therefore a quite
surprising level of agreement between this model and the full

o (um) 10

model, as seen in Fig. 5. VI. CONCLUSION
If we increase the pumping, however, the two-mode ap- _
proximation breaks down. Figure 6 shows the criticabb- We have shown that a continuously pumped atom laser

tained from the two-mode approximation foR=5  Wwith no nonlinear repulsive interactions is unstable, but can
X 10° s 1. We believe that the discrepancy is between thebe stabilized by a spatially dependent pumping mechanism.
full multimode model and the two-mode approximation is This is because the spatial dependence in the pumping
due to the larger population in the lasing mode causing thenechanism causes a preference for pumping into the ground
nonlinear loss term to act as a form of coupling betweemode, to combat the effect of the nonlinear loss favoring the
modes, causing the harmonic oscillator eigenmodes to beexcited modes. There is a critical width to the pumping en-
come an inappropriate basis. velope, below which the system is stable, which depends on
Finally, we investigate the effect of spatially dependentpumping rate and nonlinear interaction strength.

pumping on the atom laser model with repulsive nonlinear cyrrent cooling techniques do not provide significant spa-
interactions present. We find that the nonlinear interactiongg) selectivity on the length scale of the condensate. Indeed,
drastically increase the width of the critical This is be- 5 continuous pumping mechanism has been demonstrated.
cause for high nonlinearity, the undamped modes have Veryperefore there may be significant experimental difficulty in
small gain due to the spatially dependent pumping mechgs,iging an extremely spatially selective pumping mecha-
tms”m Higher-order mo_des become_ damped W'thOL.‘t thg Sp lism, and some repulsive atomic interactions or feedback
tially dependent pumping mechanism as the nonl|r1'ear|ty'|§ﬂay be required to achieve modal stability.

increased, so the pumping envelope can become wider with-
out allowing significant gain into the undamped modes. If it
is difficult to produce a spatially dependent pumping mecha-

nism experimentally, by including interactions it will be pos- ACKNOWLEDGMENTS
sible to obtain a stable atom laser with only a weak spatial
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