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We perform a comprehensive study of stability of a pumped atom laser in the presence of pumping,
damping, and outcoupling. We also introduce a realistic feedback scheme to improve stability by extracting
energy from the condensate and determine its effectiveness. We find that while the feedback scheme is highly
efficient in reducing condensate fluctuations, it usually does not alter the stability class of a particular set of
pumping, damping, and outcoupling parameters.
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I. INTRODUCTION

The experimental realization of Bose-Einstein conden-
sates �BECs� has provided a testbed for many fundamental
issues in interacting quantum systems, as well as providing a
general tool for investigating aspects of atomic physics
such as the behavior of weakly interacting alkali-metal gases
�1�. One major application that BECs offer is the possibility
of creating an atom laser �2�. Just as the optical laser
revolutionized optics by offering spatial and temporal coher-
ence, high spectral density, and mode selectivity, the pumped
atom laser offers the possibility of doing the same for atomic
physics.

Atom lasers have been achieved by outcoupling atoms
from a BEC using some external means to change the state
of a subset of the atoms in the condensate from a trapped to
an untrapped state �3–5�. This can produce a beam of atoms
that exhibits both spatial and temporal coherence �6,7�. As in
optical lasers, a narrow linewidth �i.e., small momentum
spread� can be attained by ensuring the outcoupling is weak,
although this results in a low beam flux �8�. In order to create
a high-flux, narrow-linewidth atomic beam, there must be
competition between a depletable pumping mechanism and
damping resulting in gain narrowing �7�.

A multimode analysis of an atom laser is possible using
semiclassical techniques such as the Gross-Pitaevskii equa-
tion �1,9�. Such a model can describe spatial variation of the
modes and determine if the laser approaches single-mode
operation. It cannot, however, calculate the linewidth of the
laser in this limit, since the linewidth of a single-mode laser
is governed by the quantum statistics of the mode, so that a
full quantum analysis is required �10�. This drastically in-
creases the difficulty of the calculation, limiting current ef-
forts to only a few modes �11�.

In order for an atom laser to reach single-mode operation
it is necessary that it is stable, such that the dynamics of the
condensate have a steady-state solution. It has previously
been shown that if the pumping of the condensate is spatially
uniform, then an atom laser will be unstable if the nonlinear
interaction strength between the atoms is below some critical
value �12�. This is because increasing nonlinearity causes
greater damping of higher-frequency trap modes, leading to
the promotion of lower trap modes, and ideally the ground
state. Stability can also be improved if a spatially dependent

pumping scheme is utilized, where the condensate is prefer-
entially pumped in a narrow range near the center of the trap
�13�. As lower-frequency modes have a greater overlap with
the central portion of the trap, these modes are more effec-
tively populated than higher-frequency modes, again leading
to the promotion of low-frequency modes and encouraging
stability.

Although interatomic interactions can lead to single-mode
operation of an atom laser, strong interactions will ultimately
limit the linewidth, as they will cause phase diffusion of the
lasing mode �14,15�. An independent method of improving
modal stability without using high interaction energies is to
use a feedback mechanism whereby energy is removed from
the condensate using continuous knowledge of the atomic
cloud’s dynamics to tune the trap parameters. It has been
shown that if one considers an isolated condensate in a trap,
with no pumping, loss, or outcoupling present, then provided
the quantities �x�, �x2�, and ����2� can be measured, where
�q�=��*q� dx, then it is almost always possible to extract
energy from the condensate, and thus draw it toward the
lowest-energy ground state �16�. It is possible, however, that
some specific �nonground� state may exist that provides no
error signal to the feedback loop causing the feedback pro-
cess to have no effect. This occurs when all the moments
chosen as error signals are stationary, i.e., do not change with
time.

The purpose of this paper is to tie these threads together
into a comprehensive analysis of atom laser stability, incor-
porating loss, outcoupling, spatially dependent pumping, a
depletable reservoir, and feedback. We will consider stability
across a broad range of pumping regimes, and include the
effects of the outcoupled beam on the condensate as this
modifies some of the stability conclusions in Ref. �13�.

II. MODEL

As discussed in the Introduction, determining the stability
of an atom laser does not require a full quantum analysis. We
will therefore use a multimode semiclassical model based on
the Gross-Pitaevskii equation. We denote the condensate
field by �t�x� and the untrapped field by �u�x�. �t�x� forms
the lasing mode, and is pumped by an incoherent reservoir of
atoms which has a density described by n�x�, with the cou-
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pling between the two given by ��x�. For calculational trac-
tability, we restrict ourselves to a one-dimensional conden-
sate, so that the dynamical equations for the fields can be
written as

i�
d�t

dt
= 	−

�2

2m
�2 + Vt − i��t

�1� + �Utt − i��t
�2����t�2

+ �Utu − i�tu
�2����u�2 +

i�

2
��x�n�x�
�t + �out�x�eikx�u,

�1�

i�
d�u

dt
= 	−

�2

2m
�2 + mgx + �Uuu − i��u

�2����u�2 + �Utu − i�tu
�2��

���t�2
�u + �out�x�e−ikx�t, �2�

dn

dt
= r − �pn�x� − ��x���t�2n�x� + ��2n�x� , �3�

where m is the atomic mass, Vt is the trapping potential, g is
the acceleration due to gravity �taken to be in the negative x
direction�, Uij =4��2aij /m is the interatomic interaction be-
tween �t and � j, and aij is the s-wave scattering length be-
tween those same fields. �i

�1� is the loss rate of �i due to
background gas collisions, �i

�2� is the loss rate of �i due to
two-body inelastic collisions between particles in that state,
�tu

�2� is the loss rate of each field due to two-body inelastic
collisions between particles in the other electronic state, �out
is the coupling rate between the trapped field and the output
beam, k is the momentum kick due to the coupling process, r
is the rate of density increase of the incoherent cloud of
atoms forming the reservoir, �p is the loss rate of that cloud,
and � is the spatial diffusion coefficient. We choose the cou-
pling between the reservoir and the trapped field to be of the
form

��x� = �0e−x2/	2
�4�

enabling us to consider a spatially dependent pumping
scheme.

The pumping terms in the above equations are phenom-
enological, describing an irreversible pumping mechanism
from a reservoir which can be depleted but is replenished at
a steady rate. These two features are necessary for any
pumping mechanism that generates gain narrowing through
the competition of the gain and loss processes of the lasing
mode. We have not included three-body losses, which can be
important. Near a Feshbach resonance they may be negli-
gible, however, and still allow a wide range of scattering
lengths �17�.

To model the feedback stabilization scheme we adopt our
previous approach �16�, and assume that we can control the
condensate in some fashion in response to a set of continu-
ously measured error signals. Realistic control parameters we
can use to affect the condensate will be the position of the
trap minimum potential, the trap strength, and the nonlinear
interaction strength. Consequently we assume it is possible
to control an external potential of the form Vfb

1 =a1�t�x

+a2�t�x2 and a nonlinear interaction strength of the form
Vfb

2 =b�t���t�2. The a1�t�, a2�t�, and b�t� correspond to time-
dependent control parameters that can be manipulated ac-
cording to the measured error signals. Altering a1 and a2
corresponds to changing the position of the trap minimum
and its curvature, while tuning b�t� corresponds to manipu-
lating the nonlinear interaction strength between the atoms in
the trap. The latter can be accomplished by manipulating a
magnetic field close to a Feshbach resonance �18�. This is
equivalent to controlling the bias magnetic field in a mag-
netic trap, or applying a constant magnetic field in an optical
trap, and has been achieved with high precision �19�. Pro-
vided the parameters a1, a2, and b are chosen correctly, the
rate of change of energy of the condensate must always be
nonpositive. This conclusion assumes that the condensate is
not pumped and has no losses. As we shall see later, the
presence of such features can mean that this feedback
scheme is not always guaranteed to remove energy from the
condensate, although in practice it normally still does a very
good job.

For our error signals we have chosen the moments �x� and
�x2�, corresponding to the first and second position moments
of the condensate, as well as the moment ���t�2�, which we
have dubbed “pointiness.”

In a real system feedback is likely to be limited due to
finite detection speed and the ability to dynamically modify
the potentials. As with all oscillatory systems controlled with
feedback, when the response time of the feedback becomes a
significant fraction of the smallest time scale in the dynamics
of the system, the control may operate as positive feedback.
For this reason, it is only safe to use control system where
the dynamics of the relevant fluctuating moments are within
the bandwidth of the feedback. For most BEC systems this is
not a problem as a control bandwidth of kilohertz should be
sufficient to respond to fluctuations in the system. The key
difficulty in applying feedback in an experimental situation
will be the destructive effects of the continuous detection. It
has recently been demonstrated that optical detection cannot
be arbitrarily nondestructive, and that for a given atomic
spontaneous emission rate, increasing sensitivity over stan-
dard techniques requires multipass interferometry �20–23�.

We solved Eqs. �1�–�3� both with and without feedback
terms using a pseudospectral method with a fourth-order
Runge-Kutta time step �24� with the XMDS numerical pack-
age �25� using the atomic properties and loss rates for 85Rb
near a Feshbach resonance, where the interatomic interaction
can be tuned with magnetic fields. We used the following
physically reasonable parameters for all calculations: �t

�1�

=7.0�10−3 s−1, �t
�2�=1.7�10−8 ms−1, �u

�1�=7.0�10−3 s−1,
�u

�2�=3.3�10−9 ms−1, �tu
�2�=8.3�10−9 ms−1, �p=5.0 s−1,

�out=300, �0=4.2�10−4 ms−1, �=0.01 ms−1, k=1.0
�10−6 m−1, with a harmonic trapping potential of the form
Vt=m
2x2 /2 where 
=50 rad s−1 and m=1.4095�10−25 kg.
The simulation region was 2.7�10−4 m in length. As the
interatomic interaction strengths between different Zeeman
levels are unknown for 85Rb we assume Utt=Uuu=2Utu.

III. STABILITY ANALYSIS WITHOUT FEEDBACK

First we will consider an analysis where feedback is ab-
sent. Previous analysis has shown that the general rule of
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stability for pumped atom lasers is that they are unstable
when the interatomic nonlinear interaction strength is below
a certain critical value, and become more stable as the non-
linear interaction strength increases �12�. Furthermore, the
onset of stability occurs earlier �i.e., at a lower nonlinear
interaction strength� if the condensate is preferentially
pumped toward the center of the trap; the more narrowly
defined the pumping region in space, the more stable is the
laser �13�.

Our more detailed analysis broadly confirms these find-
ings. The general behavior of the condensate is as follows.
The trap rapidly fills with atoms, reaching a certain popula-
tion governed by a balance between pumping and loss. The
population and condensate density are initially fluctuating,
and these fluctuations will either grow in magnitude or be-
come damped out over time, depending on whether the con-
densate exhibits long-term stability or not. An example of a
borderline stable case is displayed in Fig. 1, which shows the
dynamics of the trapped �condensate� and untrapped �out-
coupled� field densities over a period of 2 s. The condensate

population and density rise rapidly, and then fluctuate about a
steady state value, and then slowly stabilize. The density of
the outcoupled field is highest near the outcoupling region,
and decreases monotonically in the negative z direction, re-
flecting the fact that the atoms are accelerating under the
influence of gravity. The density fluctuations of the out-
coupled field mimic those of the condensate. Non-Markovian
effects are minimized due to the Raman outcoupling method,
which means the outcoupled atoms spend very little time
within the condensate.

The dependence of stability on the interaction strength is
also clear in our simulations, as demonstrated in Fig. 2. The
plots show increasing stability as the nonlinear interaction
strength between the atoms is increased. The fact that the
dynamics of the untrapped field closely follow the fluctua-
tions of the trapped field is again clear. Consequently we
need only examine the stability of the condensate in order to
determine the stability of the atom beam.

Determining absolute stability from our simulations can
be difficult, particularly in borderline cases where long time
scales are required in order to determine the asymptotic be-
havior of the system. A good technique for determining sta-
bility is to decompose the density fluctuations of the conden-
sate into their Fourier components and to perform a modal
analysis. The ground state of the condensate has the mini-
mum energy allowed and is stable in the trap. As the energy
of the condensate is increased, it acquires components of
higher-order modes, for example, breathing modes or slosh-
ing modes. Each mode will experience gain and loss at a
different rate, so between absolute stability and absolute in-
stability exists a regime where the energy of only a subset of
all available modes is increasing. This regime is ultimately
unstable, but can provide a useful distinction.

Figure 3 shows an example of the Fourier technique. The
quantity of interest is the density of the condensate at the
center of the trap. A time series of this quantity over a two
second simulation is taken, and a Fourier decomposition is
made of the two periods 1.0–1.5 s and 1.5–2.0 s. Compari-

FIG. 1. General behavior of the condensate and outcoupled
fields. Shown are the condensate density over a 2 s period �top�
and the outcoupled field density over the same period �bottom�.
Note that the fluctuations of the untrapped field follow those
of the trapped field. System parameters were a=1.0�10−10,
	=9.0�10−6 m, r=3.7�108 s−1.

FIG. 2. Increasing the nonlinear interaction leads to stability.
Left, trapped field density; right, untrapped field density. Darker
regions indicate higher densities. From top to bottom the scattering
lengths are a=0, 1.0�10−10, and a=4.65�10−10 m. Other param-
eters were 	=9.0�10−6 m, r=3.7�108 s−1.
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son of these two results can determine which modes are gain-
ing energy and which are losing energy. In the case of Fig. 3,
the energy in every mode has decreased in the second time
series, indicating that for this set of parameters the conden-
sate is stable and is attracted to the ground state.

Our previous analysis neglected the coupling between the
trapped field and the untrapped field on the grounds that the
effect of this coupling on the dynamics was usually negli-
gible. In this approximation the dynamical equations have
even parity, and consequently only even modes can be ex-
cited. The odd parity of the gravitational potential means that
odd excitations can be excited when the coupling is included.
The odd modes can have a higher gain-to-loss ratio than the
even modes, so including the outcoupling can affect the de-
tails of the behavior of the model. This is particularly evident
near the border of stable and unstable behavior, where the
odd modes can grow over time, resulting in instability, where
a model without outcoupling would predict stability. The
precise boundaries depend sensitively on the interaction of
many variables, including the pumping rate. As we saw in
the absence of spatially selective pumping �12�, our simula-
tions show that higher pumping rates lead to greater stability.
A stability phase diagram is shown in Fig. 4, showing how
the boundaries of stability and instability are affected by al-
tering the pumping rate. While the long-term behavior be-
comes asymptotically difficult to integrate near the stability
boundaries, the resolution in our simulations is finer than the
size of the features in those boundaries. This means that the
stability boundaries are not smooth, and are very sensitive to
the details of the system.

There is also the interesting possibility that there exist
stable condensate configurations that are not the ground
state. For example, Fig. 5�a� shows an example where the
trapped condensate is attracted to the first excited trap mode.
As this represents a case where the scattering length is zero,
the energy of the condensate has no nonlinear component
and is simply 3/2�
, the first excited state of the harmonic
oscillator.

IV. STABILITY ANALYSIS WITH FEEDBACK

Stabilizing the condensate can also be achieved by remov-
ing energy from it via feedback. If enough energy can be

FIG. 3. Top: Central density of the condensate over a 2 s period.
Bottom: The associated frequency power spectrum over the periods
1.0–1.5 s �solid line� and 1.5–2.0 s �dashed line�.

FIG. 4. �Color online� The effect of the pumping rate on the
stability of the laser when feedback is not present. Above the upper
line in each plot the laser is absolutely unstable; below the lower
line it is absolutely stable. Between the lines only certain modes are
stable. Shown are pumping rates of r=3.0�107 �top left�, 1.0
�108 �top right�, 6.0�108 �bottom left�, and 3.0�109 s−1 �bottom
right�.

FIG. 5. An example of a set of parameters where the attractor
for the condensate is not the ground state, but rather the first excited
state with energy 3/2�
 per particle. The top figure shows the
density distribution of the condensate over time, and the lower fig-
ure shows the energy per particle of the condensate in units of �
.
Parameters are a=0, 	=10.0�106, and r=3.7�108.
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removed the condensate will be in the ground state and
stable, and single-mode operation of the atom laser will au-
tomatically follow. We will treat the feedback as a set of
external potentials which we can continuously modify based
on continous measurement of various condensate properties.
Ideally we wish to show that if given a certain set of con-
trols, it is possible to adjust them in such a way that the
energy of the condensate will always be reduced. As ex-
plained in Sec. I, it is necessary that we can measure these
quantities and modify them on a time scale shorter than the
shortest relevant time scale of the moments we are using as
error signals.

We begin by considering the case where the condensate is
isolated, so that there is no pumping, damping, or outcou-
pling, present. In this case the condensate evolves via

i�
d

dt
��r,t� = �Ĥ0 + V̂fb���r,t� �5�

where V̂fb describes the external feedback potential. Ĥ0 de-
scribes the evolution of the condensate when feedback is not
present and is given by

Ĥ0 = T̂ + V0�r� + U0���2, T̂ = −
�2

2m
�2, �6�

where V0 is the trap potential and U0 the nonlinear interac-
tion strength. Defining the energy of the system as

E0��� = �T̂ + V0� +
1

2
U0����2� �7�

it is possible to show that once feedback is applied, the rate
of change of energy is given by �16�

dE0

dt
= −

i�

2m
� Vfb��*�2� − ��2�*�d3r . �8�

As mentioned in Sec. I we choose our feedback potential to
be given by

Vfb = a1�t�x + a2�t�x2 + b�t���t�2. �9�

If the parameters a1�t�, a2�t�, and b�t� are chosen to be

a1�t� = c1	d�x�
dt


 , �10�

a2�t� = c2	d�x2�
dt


 , �11�

b�t� = c3	d���t�2�
dt


 , �12�

where c1, c2, and c3 are positive constants and
�q�=��t

*q�tdx, then the rate of change of energy becomes

dE0

dt
= − c1	d�x�

dt

2

− c2	d�x2�
dt


2

−
c3

2
	d���t�2�

dt

2

. �13�

This is clearly nonpositive and demonstrates that in this sys-
tem the energy of the condensate can always be removed
with this feedback scheme.

In what follows, we will choose the constants to be

c1 = 2�m�m
2 + 2c2d�x2�/dt� , �14�

c2 = m2
2/� , �15�

u1 = �2/m
N , �16�

where N is the number of particles in the condensate. The
values of c1 and c2 are chosen to ensure critical damping of
trap oscillations in the absence of any nonlinear interaction
between atoms, and u1 is chosen such that it is an experi-
mentally feasible nonlinearity that is efficient in removing
energy from a condensate in the absence of pumping and
damping. On the occasions where the term proportional to c2
in Eq. �14� is negative and large enough to cause the quantity
under the square root to be less than zero, c2 is set to zero.

The previous analysis becomes more complex, however,
when pumping and loss terms are introduced. Now when the
dE0 /dt is calculated one finds that there are two seperate
contributions, one involving the feedback potential and the
other involving the pump and loss terms. These two contri-
butions are decoupled; that is there is no term involving a
combination of Vfb and pump or loss terms. Consequently
the two can be considered independently. The first contribu-
tion is due to the feedback potential, and in the notation of
Eqs. �1� and �2� is given by

dE0

dt


fb
=

i

�
� �Vfb��out�t

*�u − �out
* �t�u

*�

+
i�

2m
Vfb	�t

d2

dx2�t
* − �t

* d2

dx2�t
�d3r . �17�

The second part of �17� is equal to �8�, which is known to be
always nonpositive in our scheme. The first part of �17� rep-
resents the interaction between the outcoupling and the feed-
back, and can be positive or negative depending on the wave
functions of the trapped and untrapped fields.

The second contribution to dE0 /dt is independent of the
feedback potential and can be broken into six parts, five parts
proportional to the loss terms �t

�1�, �u
�1�, �t

�2�, �u
�2�, and �tu

�2�,
and one part proportional to the pumping rate ��x�n�x�. The
exact form of the terms is lengthy and will not be reproduced
here. The crucial point is that some of the terms can be
positive depending on the form of the trapped and untrapped
fields. Consequently the feedback cannot be guaranteed to
reduce the energy of the condensate in all circumstances,
although the smaller the pumping, outcoupling and loss
terms, the better it will do.

Although the feedback scheme does not produce stable
steady-state operation in all parameter regimes, it is still re-
markably efficient at stabilizing fluctuations in the conden-
sate. Figure 6 shows an example of feedback being applied
to a condensate which is in a region of parameter space
where it is normally highly unstable. The introduction of
feedback will often damp the condensate fluctuations by up
to two orders of magnitude or more, making it useful where
all that is required is an “effective” stability requirement.
That is, if one requires the atom laser to be in single-mode
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operation for a short period of time then this feedback
scheme can be very useful. The length of time over which
the laser is stable is also increased, since if feedback is
present it takes much longer for the instabilities to reach the
levels manifested when feedback is not present.

It is difficult to be precise as to how much longer the laser
will meet this definition of effective stablility since it varies
widely with the laser parameters. In our simulations the fluc-
tuations were generally suppressed by two to three orders of
magnitude over the entire 2 s simulation time, and the very
small growth rate of the instabilities suggest that stability
would be maintained for considerably longer. It should also
be noted that 2 s is a very long time for current experiments.

If, on the other hand, the required criterion is absolute
stability, then our feedback scheme offers a marginal im-
provement. In general, the introduction of feedback does not
greatly alter the stability class of a particular set of param-
eters. If a condensate is unstable, such that there exist non-
ground-state modes whose energy increases with time, then
applying feedback will drastically damp the oscillations and
slow their rate of growth, but given time the condensate will
still show the same level of fluctuations as before. Neverthe-
less, there are regions of parameter space which show an
absolute improvement in stability when feedback is applied.
Figure 7 shows an example of such a case.

V. CONCLUSION

We have numerically simulated a pumped atom laser, tak-
ing into account the back action of the outcoupled beam as
well as a variety of loss mechanisms, in order to determine
what factors act to stabilize the laser. As well as considering
the effects of altering the pumping envelope, the pump rate,
and the atomic scattering length, we introduced a feedback

scheme which dynamically alters the trap parameters and
atomic scattering lengths in order to remove energy from the
condensate and reduce fluctuations.

As noted in previous work, the three significant determin-
ers of stability are the atomic scattering length, the pumping
rate, and the shape of the pumping envelope. This does not
change significantly in the presence of the feedback scheme.
Stability increases with scattering length and pumping rate,
and also increases as the width of the pumping region is
decreased. The latter occurs because a narrow pump region
preferentially excites lower-energy modes at the expense of
higher-energy modes. In contrast to previous work, we in-
cluded the effect of the back action of the outcoupled beam
on the condensate, and demonstrated that odd modes are the
first to become unstable.

Introducing a feedback scheme had mixed results. It is
certainly highly efficient at damping fluctuations in the con-
densate, leading to approximately single-mode operation.
However, in many cases it does not change the stability class
of a set of parameters. That is, if a particular combination of
pump rate, pump envelope, and scattering length is known to
lead to an unstable condensate, where the fluctuations grow
with time, applying feedback will drastically reduce the rate
at which the fluctuations grow, but the system is still ulti-
mately unstable.

Finally, given that our numerical analysis is one dimen-
sional, we would like to address the applicability of our re-
sults to a three-dimensional condensate. Our one-
dimensional analysis is only rigorously true in the limit
of a near-one-dimensional condensate, i.e., one that is tightly
confined in two transverse dimensions and much more
loosely in the third, longitudinal, dimension. Detailed
discussions of the conditions under which such an assump-
tion allows a one-dimensional analysis can be found in
Refs. �26,27� and references therein. Nonetheless, we expect
our analysis to broadly hold true in a full three-dimensional
setting. This is due to the fact that instability and fluctuations
grow when the gain into higher-order modes is larger
than the loss from those modes. To attain stability it is nec-
essary to preferentially populate the ground state at the ex-

FIG. 6. �Color online� The effect of feedback. Top row: central
density of the condensate and its energy when no feedback is
present. Bottom row: central density of the condensate and its en-
ergy when feedback is turned on at t=0.3 s. Energies are in units of
�
 per particle. Note that the ground-state energy for this system is
0.839�
 per particle after the particle number has reached steady
state �calculated using an imaginary-time algorithm�. Parameters
used are r=3.7�108 s−1, 	=9.0�10−6 m, a=4.65�10−11 m.

FIG. 7. �Color online� How adding feedback improves stability.
Dashed line is the boundary of stability with feedback; solid line the
boundary of stability without feedback. Pumping rate was r=6.0
�107 s−1. Note that the stable-unstable boundary indicates where at
least one higher mode begins to grow without limit, and therefore
corresponds to the lower lines of the plots in Fig. 4.
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pense of higher-energy states. This must be the case
regardless of whether the system is one or three dimensional,
and the basic mechanisms for achieving it will be the same.
First, one can use a narrow pumping envelope to preferen-
tially pump the center of the condensate, ensuring that
the ground state, which has the highest amplitude in this
region, is preferentially populated. This clearly works
regardless of the dimension of the condensate, as relative
to the ground state higher-order modes will always have a
greater part of their wave function further from the

condensate center. Second, one can increase the net loss of
higher-order modes by increasing the nonlinearity �13�.
This also holds in three dimensions. Last, the feedback
scheme has been shown to remove energy in a three-
dimensional system where pumping and loss is not present
�16�. Although it is possible that the addition of pumping
and loss will qualitatively �rather than quantitatively�
alter this result, it seems unlikely. These points indicate
that our analysis will also be broadly applicable in higher
dimensions.
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