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SUMMARY

High-resolution techniques are the mainstay of structural biologists; however, to address 

challenging biological systems many are now turning to hybrid approaches that use complementary 

structural data. In this review we outline the types of structural problems that benefit from 

combining results of many methods, we summarise the types of data that can be generated by 

complementary approaches, and we highlight the application of combined methods in structural 

biology with recent structural studies of membrane proteins, mega-complexes and inherently 

flexible proteins. 

INTRODUCTION

Structural biologists benefit enormously by combining structural approaches to tackle biological 

systems. This is evident in the increasing use of complementary methods combined with the 

traditional structural biology techniques of macromolecular X-ray crystallography (MX), nuclear 

magnetic resonance (NMR) and electron microscopy (EM) to generate structural information. New 

approaches include mass spectrometry of intact complexes [1], synchrotron radiation circular 

dichroism spectroscopy [2], electron paramagnetic resonance spectroscopy (EPR) combined with 

site-directed spin labelling [3], and a combination of cross-linking, mass spectrometry and 

computational docking with sparse distance restraints [4,5]. The most effective process to integrate 

data from diverse sources takes advantage of computational modelling, and can be summarized as 

follows: (i) data collection; (ii) conversion of data into spatial restraints; (iii) generation of 

structural models that meet the restraints; and (iv) assessment of the accuracy and precision of the 

resulting structures. Spatial features that can be restrained include positions, contacts, proximities, 

shapes and symmetries of individual atoms, domains, macromolecules or (sub)assemblies. 

Many biochemical, biophysical and proteomic techniques can generate useful structural information

(Table 1, Figure 1). For recent reviews of methodology, sample requirements and interpretation of 

data, see [1,6-10]. Common reasons for combining methods include (1) technical limitations of 
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individual methods – eg the molecule doesn’t crystallize; (2) mega-complexity – eg multi-protein 

complexes and (3) flexibility - eg inherently disordered proteins. These three themes clearly 

overlap, but represent convenient categories for us to highlight studies from the past two years that 

used multiple approaches with spectacular success.

1. TECHNICAL LIMITATIONS

Combining multiple methods is particularly valuable when sample requirements for high-resolution

structural biology techniques cannot be met or when only low resolution data can be obtained. Non-

traditional methods can also enable interpretation of the results of traditional structural methods and 

help advance these through specific bottlenecks. Membrane proteins are a typical example because 

they are difficult to produce and crystallize. A recent review highlighted how biochemical and 

computational analyses coupled with low resolution maps from cryo-EM can allow a detailed 

mechanistic understanding of membrane protein structure and function in the absence of 

crystallographic data [11]. Moreover, a series of recent papers describing crystal structures of the 

-adrenergic receptor [12-14] represents the culmination of a combined methods tour de force. 

Thorough biophysical characterisation of the protein using fluorescence resonance energy transfer 

(FRET) [15], cross-linking, chemical reactivity studies and pharmacological evaluation of the effect 

of ligand binding [16] identified an unstructured C-terminus and a protease sensitive loop, both 

hypothesised to inhibit crystallisation. Removal of the C-terminus and stabilisation of the flexible 

loop, either through binding a monoclonal antibody or by replacement of the loop with engineered 

lysozyme, allowed crystallisation and structure determination at 3.4-3.7 and 2.4 Å resolution, 

respectively [12-14].

Proteins that interact with actin are notoriously difficult to study because they are often large, 

flexible and multi-domain. One such example is talin, a ~2500 residue protein that links members 

of the integrin family of cell adhesion molecules to filamentous action (F-actin); Gingras et al [17]

tackled this protein using hybrid methods. Secondary structure prediction and NMR of multiple 

constructs enabled structure determination of the C-terminal actin-binding domain; the adjacent 
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dimerisation helix was studied by MX and mutagenesis confirmed that dimerisation was required 

for F-actin binding. The NMR and crystal structures were docked into a small angle X-ray 

scattering (SAXS) envelope of the polypeptide comprising both domains, showing that the full-

length talin dimer likely adopts a wide range of conformations. Finally, differential scanning 

calorimetry (DSC) and actin co-sedimentation assays indicated that the two-domain polypeptide 

binds F-actin, and EM of the complex showed that the interaction involves three actin monomers 

along the long pitch helix of the F-actin filament [17]. Hybrid methods were also employed to study 

the multi-domain structure of two other actin-binding proteins, cortactin and gelsolin. MX and 

SAXS were used to demonstrate how the six domains of gelsolin convert from a compact to an 

extended form in the presence of calcium [18] and our labs used bioinformatics, SAXS and cross-

linking with mass spectrometry to show that cortactin adopts a globular rather than an extended 

structure in solution [19] (Figure 2).

Combining methods may also be necessary when traditional approaches give ambiguous results, as 

was the case for our work on acyl-CoA thioesterase 7 [20]. The intact two-domain enzyme could 

not be crystallized, but the individual structures of each domain could not explain the catalytic 

activity. Mutagenesis, analytical ultracentrifugation (AUC), cross-linking with mass spectrometry 

and molecular modelling were used to determine the full-length structure revealing how the active 

sites are generated (Figure 2) [20].

Another application of combining methods is to use one method to help advance another through a 

bottleneck. A good example is the recent de novo structure prediction of a protein by the Rosetta 

program, using cpu time donated from 70,000 home computers [21]. The model generated was so 

accurate it was able to phase crystallographic data of the same protein by molecular replacement 

[21] suggesting that this approach could be used more broadly for phasing crystal structures. Other 

examples used SAXS and EM information to phase crystallographic data [22] or SAXS data to 

resolve discrepancies between MX and EM structures [23].

2. MEGA-COMPLEXES
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Most proteins in the cell are thought to function, at least transiently, as part of complexes or as 

functional modules [24]. Understanding these biological systems – protein:protein complexes, 

mega-complexes, or even the entire cell – requires spanning several orders of magnitude in spatial 

and temporal dimensions [25]. Although MX can be used to tackle large assemblies (strategies 

reviewed in [26]), combining approaches with EM is the dominant means of studying such 

complexes [27] because the interactions between components are often weak and transient and the 

complexes very large, heterogeneous or only available in limited amounts. The classic example of 

combining approaches to study large complexes is the elucidation of the ribosome structure 

(reviewed recently in [28]). 

Arguably the most spectacular recent application of the integration of diverse data to generate 

structural information has been the determination of the architecture of the nuclear pore complex 

(NPC) [29]. One of the largest macromolecular assemblies in eukaryotic cells, the NPC comprises 

no less than 456 proteins (resulting from multiple copies of over 30 different proteins). Major 

challenges were the large size and high degree of flexibility of the NPC. Alber et al [30] used an 

iterative four step approach involving (i) experimental data generation using AUC, quantitative 

immunoblotting, affinity purification, overlay assays, EM, immuno-EM, membrane fractionation 

and bioinformatics; (ii) translation of data into spatial restraints; (iii) structure calculation by 

satisfying these restraints; and (iv) analysis of the calculated ensemble of structures to yield a final 

structure. The resulting structure provided insights into the evolutionary origins of NPC assembly 

and the mechanism of cargo transport through the pore [29]. The Integrative Modelling Platform 

software developed for the NPC project facilitates the integration of diverse types of structural data 

and has the potential to assist in many other applications [30].

Another challenging system for structural biologists is the proteasome. Sharon et al [31] recently 

characterized one of the two major sub-complexes of the 19S regulatory particle of the proteosome, 

the peripheral lid, using a combination of (i) tandem mass spectrometry of the intact nine-

component complex and (ii) chemical cross-linking. The results were incorporated with yeast-two-
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hybrid and mutant data to develop a comprehensive interaction map. The combined data enabled 

the identification of a four-subunit scaffold, elucidation of a regulatory mechanism for complex 

assembly, and comparative analysis of the sub-complex with the related COP9 signalosome [31].

3. FLEXIBILITY AND DYNAMICS

Flexibility can represent a critical extra dimension for many proteins. In such cases, combining 

techniques provides a more comprehensive description of structure and dynamics than using 

individual methods alone. Indeed, several recent high impact papers coupled high-resolution 

structure with biophysical approaches to describe protein flexibility and dynamics [32,33]. A recent 

review [34] describes how dynamic motion can be assessed in different ways, for example by 

trapping different states of a dynamic process, evaluating the structural ensemble, complementing 

structural data with kinetic information, or studying the structures and kinetics simultaneously 

(Figure 1). Figure 3 shows some of the structural tools that can be used to generate information 

about flexibility and dynamics.

An important question in understanding protein flexibility is whether structural differences between 

holo- and apo-enzymes represent induced-fit or selection of a pre-existing state. This question was 

addressed recently for maltose-binding protein [35]. High-resolution crystal structures of the holo-

and apo- forms of the protein showed that the two enzyme domains are rotated by ~35° with respect 

to each other in the two structures. Application of paramagnetic NMR (PM-NMR) relaxation 

enhancement to spin-labeled holo- and apo-enzyme solutions demonstrated for the first time the 

presence of a pre-existing holo-form-like conformation (at ~5%) in the apo-enzyme.

SAXS and NMR data can generate structural ensembles for flexible macromolecules, and these 

ensembles are thought to represent the molecule’s range of motion; how realistic is this 

assumption? One recent study focused on the enzyme matrix metalloprotease 9 that incorporates a 

putative flexible linker [36]. A combination of SAXS and high-resolution domain structures 

generated a number of full-length structures. Atomic force microscopy (AFM) was used to measure 

molecular dimensions one molecule at a time, thereby confirming the range of motion. Similarly, 
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the full-length, flexible, multi-domain p53 protein was studied by a combination of techniques [37]. 

SAXS and single particle analysis EM (SPA-EM) showed that unliganded p53 is characterized by a 

heterogeneous conformational population. When p53 is complexed with DNA, both techniques 

indicated a considerable reduction in flexibility.

The recently defined class of natively unfolded proteins (reviewed in [38]) is not amenable to 

crystallographic methods. However, NMR is particularly suited to their study [39] especially when 

combined with other methods. Recent work has combined NMR, CD and cross-linking [40]; NMR, 

CD and SAXS [41] and NMR, CD, SEC, AUC, dynamic light scattering (DLS) and cross-linking 

[42]. One example where NMR was not required is the study of the N-terminal regions of the Msh6 

and Msh3 proteins (that recognize mismatched DNA bases) [43]. These regions were evaluated by 

comparing SAXS data with theoretical models of random peptide chains, to demonstrate their 

native disorder [43]. Furthermore, the C-terminal domain of the Shaker voltage-activated potassium 

channel was shown to be intrinsically disordered by using a combination of SEC, AUC and CD 

[44]. In both cases, mutagenesis indicated that inherent flexibility is required for function.

CONCLUSIONS

On their own, individual types of structural data can have considerable limitations or uncertainties, 

but these can often be overcome or minimized by combining synergistic data. When all structures 

that satisfy various restraints cluster together, the data are adequate to define a unique state of the 

macromolecule. Calculated structures can be assessed for self-consistency by satisfying all 

restraints, by the variability of the generated structures, by cross-validating through omitting 

portions of the data, by including incorrect data (which should lead to poorly-resolved structures), 

and by evaluating the model in the light of other data not included in the structure calculation. 

Now that high-resolution macromolecular structure determination has become almost commonplace 

for standard targets, structural biologists routinely incorporate biological data to gain a better 
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understanding of function. Similarly, coupling high-resolution structure with data from techniques 

that describe dynamics also value-adds to our understanding of function. The routine nature of 

modern high-resolution structural biology means that many “low-hanging fruit” macromolecules 

are already well-characterised in structural terms. Using the same analogy, we then need a “ladder” 

to reach the more difficult “high-hanging fruit”, such as membrane proteins, mega-complexes or 

natively disordered proteins. If current trends are any indication, combining data from multiple 

methods is a means of providing such a ladder, enabling structural biologists to tackle ever larger 

and more challenging systems. 
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FIGURE LEGENDS

Figure 1. Schematic diagram highlighting the synergies and integration of different structural 

methods. The traditional methods in the blue box generate 3D structure and symmetry information. 

Non-traditional and hybrid approaches can give rise to the types of data listed in the yellow box that 

can help advance both structural and dynamic studies of macromolecules. See Table 1 for more 

information on individual methods, and abbreviations used in text and figures. 

Figure 2. Two examples from our labs that used hybrid methods to generate structural information 

for protein targets. A. Cortactin, a multidomain protein that regulates actin dynamics. We used a 

combination of bioinformatic sequence analysis and cross-linking to demonstrate interaction 

between the actin binding domains (green balls) and the C-terminal SH3 domain (red oval). A low 

resolution SAXS structure (grey density) confirmed the globular nature of the protein allowing us to 

develop a model of the structure. Intramolecular binding of the SH3 domain is likely to be a 

mechanism of autoinhibition. B. Acyl CoA thioesterase 7 (Acot7) is a two-domain protein that 

trimerises in solution. The full–length protein could not be crystallised, but both domains were 

solved independently by MX, each revealing a hotdog domain in a hexameric arrangement. 

However, neither domain has enzymatic activity on its own. We used both N-domain and C-domain 

structures (active site residues from the N- and C-terminal domains coloured red and blue, 

respectively) plus AUC, SEC, cross-linking/MS (crosslinks indicated as black lines) and 

mutagenesis data to generate the model of full-length Acot7, showing that catalytic residues from 

both domains (red, blue) are required to generate the three active sites in the trimer.

Figure 3. Schematic diagram showing some of the types of structural data that can be generated for 

flexible molecules. A hypothetical two-domain protein with freedom of movement between the 

domains is represented as a grey fan. The structure of such a flexible protein can be represented in 

different ways and several possible models are shown in red with examples of techniques that give 

information about each kind of model.
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Table 1. Examples of types of structural data and methods commonly used to generate the 

data

Structural data generated Methods that can be used

Molecular structure: medium to 
high resolution information on the 
3D position of atoms in a 
macromolecule

Macromolecular X-ray crystallography (MX), nuclear 
magnetic resonance (NMR, eg nuclear Overhaiuser effect 
(NOE))*, single particle analysis cryo-electron microscopy 
(SPA cryo-EM)*, electron crystallography, neutron 
crystallography, homology modelling

Secondary structure: percentage of 
helix, strand and coil in a protein

Circular dichroism (CD) and synchrotron radiation CD 
(SRCD), bioinformatics (secondary structure prediction)

Molecular shape, size and mass of 
macromolecules and assemblies

Small angle X-ray (SAXS) and neutron (SANS) scattering, 
scanning transmission EM (STEM), negative stain EM, 
electron and X-ray tomography, mass spectrometry (MS), 
analytical ultra-centrifugation (AUC), size-exclusion 
chromatography (SEC), dynamic light scattering (DLS), static 
light scattering (SLS), atomic force microscopy (AFM), 
bioinformatics (domain prediction)

Dynamics: flexibility and 
conformational changes

SAXS, SRCD, NMR (including paramagnetic NMR (PM-
NMR); eg relaxation data), ultraviolet-visible fluorescence, 
Raman spectroscopy, hydrogen/deuterium exchange NMR or 
MS, Laue crystallography, molecular dynamics simulations

Proximities: distances between two 
points on a macromolecule

NMR (eg NOE or PM-NMR), chemical cross-linking/mass 
spectrometry, fluorescence resonance energy transfer (FRET), 
electron paramagnetic resonance (EPR)

Composition and stoichiometry of 
complexes

Immuno-EM, labelling by fusion proteins, subcellular 
fractionation, quantitative immunoblotting

Contacts-distances: interaction 
mapping and identification of 
interacting parts of proteins

NMR (eg chemical shifts), chemical cross-linking, affinity 
purification, yeast two-hybrid, protein-fragment 
complementation assays, phage display, protein arrays, 
surface plasmon resonance (SPR), overlay assays, 
footprinting, limited proteolysis, mutagenesis, 
hydrogen/deuterium exchange NMR and MS

Contacts-energetics: binding 
interactions, energetics and kinetics

SPR, isothermal titration calorimetry (ITC), differential 
scanning calorimetry (DSC), thermal stability measurements

* Many methods, especially NMR and EM, include different approaches that can be used to derive 
different types of structural and dynamic information. We specifically mention here only some of 
the more commonly used approaches or measurements.
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