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Abstract

Recently, Munsky and Khammash suggested the Finite State Pro-
jection (fsp) algorithm for the numerical solution of the Chemical
Master Equation, which provides a discrete and stochastic modelling
framework for chemical kinetics. The important question of whether
or not the algorithm is guaranteed to terminate is not addressed in
the original work. We show that the well-known explosive birth pro-
cess provides a counter example. We also give sufficient criteria for
a model to be suitable for the fsp technique. We demonstrate the
fsp technique on three novel applications. Results are presented for:
(i) the Schlögl reactions; (ii) another example from Gillespie’s cele-
brated book; and (iii) models for the role that dimerization plays in
reducing noise in simple gene regulatory networks. Finally, we aug-
ment the dimerization model to include tetramers and show that this
enhances the noise reduction properties of the network.
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1 Introduction

Computational and mathematical models of cellular processes promise great
benefits in important fields such as molecular biology and medicine. Increas-
ingly, researchers are incorporating the fundamentally discrete and stochastic
nature of the biochemical processes into the mathematical models that are
intended to represent them [1]. This has led to the formulation of models for
genetic networks as continuous time, discrete state, Markov processes [7, 15],
giving rise to the so-called chemical master equation (cme) that governs the
evolution of the associated probability density. While promising many in-
sights, the cme is computationally intensive, especially as the dimension of
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the model grows. This article focuses on the recently suggested fsp algo-
rithm [10], designed for the numerical solution of the chemical master equa-
tion, and describes situations for which it is appropriate as well as demon-
strates its utility to some new applications.

The rest of this section sets up the mathematical framework of the cme
that is used to model chemical kinetics and Section 2 reviews the fsp algo-
rithm for its numerical solution. Section 3 describes how a careful enumer-
ation of the states within the projection can improve the efficiency of the
technique and discusses the conditions under which the algorithm is guaran-
teed to terminate, whereas Section 4.1 applies the algorithm to the Schlögl
reactions, and models of dimerization.

1.1 Chemical kinetics as Markov processes

Many different kinds of mathematical equations have been proposed to model
gene regulatory networks, such as boolean networks or pdes—Burrage et
al. [6] provide a good review. This article works within the framework of the
cme [7, 15].

In this article a biochemical system consists of N ≥ 1 different kinds
of chemical species {S1, . . . , SN}, interacting via M ≥ 1 chemical reactions
{R1, . . . , RM}. It is assumed that the mixture has constant volume, is homo-
geneous and that the mixture is at thermal equilibrium. The system is mod-
eled as a temporally homogeneous, continuous time, discrete state, Markov
process. The state of the system is defined by the number of copies of each
different kind of chemical species. Thus the state x ≡ (x1, . . . , xN)T is a
vector of non-negative integers where xi is the number of copies of species Si.
Each possible configuration of the system defines a distinct vector and so
must be interpreted as a state in the Markov chain, thus defining the state
space. Transitions between states occur when (and only when) a reaction
occurs. Associated with each reaction Rj is a stoichiometric vector νj, of the
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same dimension as the state vector, that defines the way the state changes
when the reaction occurs: if the system is in state x and reaction j occurs,
then the system transitions to state x+ νj . Associated with each state is a
set of M propensities, α1(x), . . . , αM(x), that determine the relative chance
of each reaction occurring if the system is in state x. The propensities are
defined by the requirement that, given x(t) = x , αj(x)dt is the probability
of reaction j occurring in the next infinitesimal time interval [t, t+dt), where
the dependence on time has now been made explicit.

1.2 The chemical master equation

Having defined the Markov chain we now consider the probability density
associated with it. Let the probability of being in state x at time t be denoted
by P (x; t) and consider the way that this changes over time. For each state x,
the previous description of the model implies that this probability satisfies
the following discrete, parabolic, pde,

∂P (x; t)

∂t
=

M∑
j=1

αj(x− νj)P (x− νj; t)− P (x; t)
M∑

j=1

αj(x) .

This chemical master equation may be written in an equivalent matrix-vector
form so that the evolution of the probability density p(t) (which is a vector
of probabilities P (x; t), indexed by the states x) is described by a system of
linear, constant coefficient, ordinary differential equations:

ṗ(t) = Ap(t) ,

where the matrix A = [aij] is populated by the propensities and repre-
sents the infinitesimal generator of the Markov process as defined by Stew-
art [14], for example. The rows and columns of the matrix are indexed by
the states, so the states have now been implicitly enumerated. For i 6= j ,
the non-negative aij entry of the matrix gives the propensity for the system
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to transition to state i, given that it is in state j, and the diagonal terms
are ajj = −

∑
i 6=j aij , which means the matrix has zero column sum and so

probability is conserved. Given an initial density p(0), the solution at time t
is the familiar matrix-exponential function

p(t) = exp(tA)p(0) , (1)

where the exponential of a bounded operator is usually defined via a Taylor
series:

exp(tA) = I +
∞∑

n=1

(tA)n

n!
. (2)

The numerical solution of (1), for the special class of matrices arising in bi-
ological applications, is the focus of this article, and numerical methods for
linear odes [4] are closely related. The matrix exponential is well studied
and many numerical methods are surveyed by Moler and Van Loan [9]. Since
biological models may involve huge state spaces, special techniques are nec-
essary. In particular, the fsp algorithm [10] proposed to truncate the system
to a finite subsystem that captures enough of the information in the model
while remaining tractable and is justified by the accompanying approxima-
tion theorems. This also seems intuitive from a biological point of view since
a cell will only ever have a finite number of molecules of each species.

2 Review of the FSP algorithm

In the fsp algorithm the matrix in (1) is replaced by Ak where

A =

(
Ak ∗
∗ ∗

)
. (3)

That is, Ak is a k× k submatrix of the true operator A. The states indexed
by {1, . . . , k} then form the finite state projection, denoted by Xk. The fsp
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algorithm then takes the form

p(tf ) ≈ exp(tfAk)pk(0) , (4)

which is an approximation of (1) at the final time tf . Here we use the
subscript k to denote the truncation just described and note that a similar
truncation is applied to the initial distribution. Munsky and Khammash [10]
then consider the column sum

Γk = 11T exp(tfAk)pk(0) , (5)

where 11 = (1, . . . , 1)T with appropriate length. Normally the exact solu-
tion (1) would be a proper probability vector with unit column sum; how-
ever, due to the truncation, the sum Γk may be less than one because in the
approximate system the probability sum condition is no longer conserved.
Munsky and Khammash [10] showed that as k is increased, Γk increases too,
so that the approximation gradually improves. Additionally, Munsky and
Khammash show [10, Theorem 2.2] that, for small ε > 0 , if Γk ≥ 1− ε then(

exp(tfAk)pk(0)
0

)
≤ p(tf ) ≤

(
exp(tfAk)pk(0)

0

)
+ ε11 .

This is the basis of the fsp algorithm outlined in Algorithm 1. Note that
X0 is used for the set of states forming the initial projection, Xk for the
projection at the kth step, Ak for the corresponding approximating matrix,
and pk(0) for the corresponding approximate initial distribution.

In the original example the state space projection is expanded simply by
increasing k. More generally the fsp allows expanding the projection in a
way that respects the reachability of the model. If, from state x, reaction j
occurs with strictly positive probability, we say that the state x + νj is
reachable in a single step. Expanding by reachability refers to computing
the subset of the state space that is reachable by a sequence of first one or
less reactions, then two or less reactions, and so on. Thus, depending on the
way the states are enumerated, expanding by reachability may mean that
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Algorithm 1 fsp(A,p0(0), tf , ε,X0)

1: A0 := submatrix(X0)
2: Γ0 := 11T exp(tfA0)p1(0)
3: repeat
4: increment k
5: Xk := expand(Xk−1)
6: Ak := submatrix(Xk)
7: Γk := 11T exp(tfAk)pk(0)
8: until Γk ≥ 1− ε
9: return exp(tfAk)pk(0)

the principal submatrix of the true operator is not simply the intersection of
the first k rows and columns.

In summary, given a fixed final time tf and a starting state, the fsp al-
gorithm gradually expands the projection around the initial state, via reach-
ability. This method was recently improved to a Krylov based approach [5],
by adapting Sidje’s Expokit codes [12, 13] and that is the method we employ.
Apart from Figure 1, which was done in Matlab, all numerical experiments
were conducted on the hpc located at the University of Queensland and
running the Linux operating system. The system is known as ‘Storm’ and is
an sgi Altix with 64 Itanium 2 cpu and 120 Gbytes of memory. However,
only a single processor was used. The codes were developed in Fortran and
compiled with the Intel ifort compiler.

3 Existence and structure of the projection

Section 3.3 shows that a suitable finite state projection does not always
exist. In those cases where it does, we describe how exploiting the reachable
structure in the Markov model and also tracking the region where most of
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the probability density is concentrated, gives a more efficient algorithm.

3.1 Efficient enumerations of the state space

The state space of the Markov process associated with the cme may be stored
in memory as a multidimensional array, with a particular state indexed by
the number of molecules of each species. Often, only some fraction of the
full state space is reachable and so a sparse storage technique is desirable.
One approach is to use ‘hand crafted’ enumerations, as do Burrage et al. [5],
while an alternative that was used here, is to store the states in a hash table.
A Fortran hash table code of Brent’s [2] was adapted for this purpose. This
allowed efficient sparse storage and extraction of principal submatrices, as
required in the next section.

3.2 A dynamic, nested projection

As observed by Burrage et al. [5], adaptively tracking the support of the dis-
tribution can speed up the algorithm significantly. Although empirically this
approach gave good results, providing theoretical bounds for the accuracy of
the approximation is difficult. Alternatively, there is a slight variation of that
implementation, intermediate between the original fsp [10] and the inexact
Krylov approach used by Burrage et al. [5], which allows a natural exten-
sion of the fsp theorems, so that error analysis is straightforward. In this
variation the sequence of matrices Ak used at each integration step are still
principal submatrices of A that correspond to the region of the state space
where most of the support is concentrated but exact matrix vector products
are used in the Arnoldi process. Requiring the conserved probability to be
greater than 1− εt/tf at the step computing the solution at time t, and re-
peatedly applying the fsp theorems then gives a global error bound of ε at
the final time tf . We tested the approach in one preliminary numerical exper-
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iment to provide evidence that the approach is worthwhile. The method was
applied to the system of Michaelis–Menten enzyme kinetics [5], on which pre-
vious methods have been tested. The test problem was to compute the cme
solution at tf = 20 s with an initial condition of 100 substrates and 1000 en-
zymes. The original fsp [10] takes more than 200 s to complete, while the
adaptive method described here takes only 91 s. The differences between the
computed solutions were about 10−6 and 10−5 in the 1-norm and ∞-norm
respectively. Note that the fsp tolerance was set to ε := 10−5 in both cases
which is consistent with the difference as measured by the∞-norm. For this
experiment the adaptive tracking was not performed at each step but only
periodically and the nested projection was arbitrarily set to be about 40%
of the size of the full state space. In the future a more sophisticated, robust
implementation with an automated step-size control strategy is planned but
even this simple strategy led to an improvement.

3.3 Existence counter example

Munsky and Khammash [10] demonstrated their new fsp algorithm on a
Markov model (of the Pap-pili epigenetic switch) with a countably infinite
state space, and suggest their method as a way of dealing with models with
infinite or very large state spaces. Gillespie [7] also formulates some models
of chemical reaction kinetics with infinite state spaces, and two of these are
considered in the next section. In the case of finite models the existence of a
suitable fsp is guaranteed and so the algorithm is guaranteed to terminate.
Munsky and Khammash [10] seemed to imply that this would also be true for
infinite models but this is not the case in general, as shown by the following
example.

Consider the explosive birth process described, for example, by Norris [11,
p.90]. Perhaps the simplest example for our purposes would be a continuous
time, Markov process, on a discrete set of states indexed by the natural
numbers i ∈ N , such that i transitions to i + 1 with propensity i2. In this
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Figure 1: The fsp accuracy criteria for the explosive birth process described
above, at tf = 1 s (left) and tf = 10 s (right). In each case the conserved
probability is converging to a limit strictly less than unity.

case the chain explodes with probability 1 at a finite time. Since an infinite
set of states are reachable in finite time, no finite subset will do for the fsp
algorithm, and it does not converge when run on an example such as this.
This provides a counter example and we see that the fsp algorithm does not
always terminate, as shown in Figure 1. For a birth process like this example
the probability of explosion increases with the final time tf so the plot on
the right of Figure 1 shows that much less probability is conserved by a finite
projection than the plot on the left, which explains the large difference in
the scales for Γ on these two plots. Criteria for a process to be non-explosive
are also identified by Norris [11]. From a computational point of view, the
simplest of these is that the diagonal of the matrix be bounded.

While on the subject of applying the fsp to infinite models, another tech-
nicality is identified. In the original fsp article the exponential of the linear
operator is defined via the usual power series as do we in (2), but in the case of
unbounded operators—and the model of the Pap-pili epigenetic switch that
Munsky and Khammash use may be considered an example of this—it is not
clear that this is well-defined. Kato [8, p.481], for example, discusses this
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issue. However, we emphasize that, from the computational point of view,
the fsp is a very reasonable approach. In particular, physically reasonable
models arising in biological applications should be finite and bounded. De-
spite this, infinite models have been formulated previously, perhaps because
a bound on the number of molecules in the system is not known. In such
cases the truncated version of the full operator used by the fsp algorithm is
always finite and bounded, and provides an approximation to the behaviour
of the model.

4 Applications

Some novel applications of the Krylov fsp algorithm [5], to models that had
previously been studied only via Gillespie’s stochastic simulation algorithm
(ssa) [7], are now presented.

4.1 The Schlögl reactions

In this section the fsp technique is applied to a pair of models of chemi-
cal kinetics described by Gillespie [7]. Gillespie felt that neither would be
amenable to a numerical solution since the state space is infinite and so would
require a corresponding infinite set of memory. As an example of the utility
of the fsp algorithm we successfully apply it to these models, showing that
the associated cme may indeed be solved to arbitrary precision with only
a finite projection. Although these models are infinite, and thus subject to
the considerations discussed in the previous section, the issue of existence,
is resolved affirmatively merely by running the fsp algorithm. Consider the
cme associated with the two chemical reaction systems described in Table 1.
The solutions of the associated cme, as well as sample trajectories, are de-
picted in Figures 2, 3, 4 and 5. These are consistent with the simulations
shown by Gillespie [7, Figures 6-17 and 5-4]. The solutions in Figure 3 show
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Table 1: Reactions and rate constants for two examples from Gillespie’s [7].
The Bi species are buffered and assumed constant in both examples. Left:
Description of the Schlögl reactions [7, p.520]. The parameters were chosen
to match that of Gillespie [7, Figure 6–17, p.525] so that the numbers of
species B1 and B2 are N1 = 105 and N2 = 2 × 105 respectively. Right:
Description of a set of example reactions [7, p.362]. The parameters were
chosen to match that of Gillespie [7, Figure 5–4, p.371] so that the numbers of
species B1, B2 and B3 were all 104 in simulation (a) and 106 in simulation (b).

Schlögl reactions

1 B1 + 2X
3.0E−7−→ 3X

2 B1 + 2X
1.0E−4←− 3X

3 B2
1.0E−3−→ X

4 B2
3.5←− X

1 B1 +X
0.025−→ X +X

2 B1 +X
20.0←− X +X

3 X +X
80.0−→ B2 +B3

4 X +X
0.00025←− B2 +B3

the characteristic bimodal behaviour of the Schlögl reactions for intermediate
initial numbers of species X, but not for very large or very small initial num-
bers. From top to bottom, the cme solutions presented in Figure 3 took 9 s,
240 s, 248 s and 554 s to compute, with final fsp sizes of about 1001, 2239,
2259 and 2801, for the initial numbers of species X as 0, 238, 258, and 800,
respectively. For the second model taken from Gillespie [7, p.362], the cme
solutions are shown in Figure 5. For part (a), for both initial conditions (ini-
tial numbers of species X were 0 and 70), the cme solution took less than 3 s
to compute, with final fsp sizes of about 1100. For part (b), with initial
numbers of species X at zero, the solution still took less than 3 s to compute
with a final fsp size of around 3000, while with initial numbers of 7000, it
took 335 s to compute the solution with a final fsp size of about 17000.
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Figure 2: Four sample trajectories generated by the Stochastic Simulation
Algorithm (ssa), for the Schlögl reactions, to match those given by Gille-
spie [7, Figure 6-17]. Initial numbers of species X were 0 (Blue), 238 (Green),
258 (Red), and 800 (Aqua).

4.2 Exploring noise reduction via dimerization

A study comparing models of gene regulatory networks, with and without
dimerization [3], found that dimerization serves to buffer against stochastic
fluctuations. These two models are defined in Table 2 and the result of an
application of the fsp is shown in Figure 6.

The Fano factor, defined as the ratio of the variance to the mean, is
used by Bundschuh et al. [3] to characterize and compare the fluctuations
arising in the pathways with and without dimerization. The Fano factors
of the cme solutions presented in Figure 6 are about 6.55 and 4.15, for
the pathways with and without dimerization, respectively. Each is more
than unity, indicating larger fluctuations than the Poisson process, and the
monomeric pathway shows increased fluctuations compared to the dimeric
pathway. Both of these results are consistent with the original findings but
show that the same trend also holds for the transient solutions, although with
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Figure 3: cme solutions, for the Schlögl reactions at tf = 10 s, computed
to within a tolerance of 10−5 via the fsp, with initial conditions matching
ssa plots in Figure 2. Initial numbers of species X were, from top-left to
bottom-right: 0, 238, 258 and 800.
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Figure 4: Four sample trajectories, generated by the Stochastic Simulation
Algorithm (ssa), for the model given by Gillespie [7, p.362]. Parameters for
top and bottom as in Table 1, (a) and (b), respectively. Initial numbers of
species X were, for the top, 0 (blue) and 70 (green), and, for the bottom,
0 (blue) and 7000 (green).
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Figure 5: cme solutions, for the model given by Gillespie [7, p.362], com-
puted to within a tolerance of 10−5 via the fsp, with initial conditions match-
ing ssa plots in Figure 4. cme solutions computed at at tf = 1 millisecond
(top two plots) and at tf = 12 microseconds (bottom two plots). Initial
numbers of species X were, from top-left to bottom-right: 0, 70, 0 and 7000.
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Table 2: Description of the reactions for two pathways, one with and one
without dimerization, in a simple gene regulatory networks of Bundschuh et
al. [3]. The first six reactions are common to both models. The number of
dna molecules is fixed at 1 and the number of rna polymerases is fixed at
R = 30 . Parameters: C = 2.0 , k1 = 0.0078 , k2 = 0.043 , k3 = 0.0039 ,
k4 = 0.0007 , k5 = 0.038 , k6 = 0.3 . Monomeric pathway: k7 = 0.00526

√
C ,

k8 = 7.75/
√
C , k9 = 0.2/

√
C , k10 = 0.2

√
C . Dimeric Pathway: k7 = 0.025 ,

k8 = 0.5 , k9 = 0.012 , k10 = 0.9 .
Monomeric pathway
reactions propensities

1 D∗ −→ D +M +R k1

2 M −→M + P k2M
3 M −→ ∅ k3M
4 P −→ ∅ k4P
5 D +R −→ D∗ k5R
6 D +R←− D∗ k6

7 D + P −→ T k7P
8 D + P ←− T k8

9 T + P −→ Q k9P
10 T + P ←− Q k10

Dimeric pathway
reactions props
D∗ −→ D +M +R k1

M −→M + P k2M
M −→ ∅ k3M
P −→ ∅ k4P
D +R −→ D∗ k5R
D +R←− D∗ k6

2P −→ P2 k7

(
P
2

)
2P ←− P2 k8P2

D + P2 −→ Q k9P2

D + P2 ←− Q k10
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Figure 6: cme solutions at tf = 250 s, from an initial condition with popu-
lations of all species set to zero, computed via an fsp to within a tolerance
of 10−5, and visualized as the conditional distributions for the number of
monomers. Top: Solutions to Bundschuh et al. [3] models of simple gene
regulatory networks, one with dimerization and one without. Bottom: Solu-
tion to the dimeric model, augmented with tetramers.
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significantly larger fluctuations. We also investigated, in a third model, how
dimer and tetramer mechanisms compare (the former allowing dimerization
in solution and the latter allowing both dimerization and tetramerization in
solution) in terms of fluctuations. The dimeric pathway described in Table 2
was augmented to allow the formation of tetramers, increasing the number
of chemical species by one and the number of reactions by two. In this new
model the operator is bound by the tetramers, instead of the dimers. With
the propensity functions for the formation and dissociation of tetramers being
analogous to that for dimerization (and with the same constants) the cme
solution at tf = 250 s was computed via an fsp algorithm. The Fano factor
was about 4.01, which is slightly smaller than that of the dimeric model.
So, at least for this choice of parameter values, the effect of introducing
tetramers is to further reduce the fluctuations. This comparison highlights
another reason why cells may introduce tetramers and, more generally, higher
order multimers as a mechanism for controlling fluctuations in simple gene
regulatory networks.

5 Conclusions

As well as making some observations about the situations for which the fsp
algorithm is appropriate—and in particular identifying the criteria under
which the algorithm is guaranteed to terminate—the fsp has been success-
fully demonstrated on three new applications. Although these new applica-
tions involve models of only a modest size, it shows that the cme approach is
feasible for these and others, where previously this was felt not to be the case.
In relation to dimerization, the results largely confirm the original findings of
Bundschuh et al. [3], via a different approach. Also, transient solutions were
considered, where previously the focus had been on equilibrium solutions.
Furthermore, the dimeric pathway model has been extended here to explore
the effects of introducing tetramers. This raises an interesting question about
whether cells use the introduction of higher order multimers as a mechanism
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for combating noise.
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