
P. Abrahamsson et al. (Eds.): XP 2008, LNBIP 9, pp. 137–146, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Just Enough Structure at the Edge of Chaos:
Agile Information System Development in Practice

Karlheinz Kautz1 and Sabine Zumpe2

1 Copenhagen Business School, Department of Informatics, Howitzvej 60, DK-2000
Frederiksberg, Denmark & University of New South Wales, School of Information Systems,

Technology & Management, Sydney NSW 2052, Australia
Karl.Kautz@cbs.dk

2 The University of Queensland, UQ Business School, Business Information Systems,
Brisbane QLD 4072, Australia

S.Zumpe@business.uq.edu.au

Abstract. Agile information systems development is not well understood and
suffers from a lack of sustainable theories, which are based on empirical research of
practice. We use a framework that focuses on the ‘edge of chaos’ as the area, where
agile information systems development takes place to fill in this gap. Our study
identifies for a concrete project under investigation, where the beneficial balance
between stability and instability lies. It discusses the circumstances, which influence
this balance and the relationships of the elements, which constitute it.

Keywords: Edge of chaos, complex adaptive systems theory.

1 Introduction

The field of information systems development (ISD) is still not well understood and
suffers from a lack of sustainable theories which are firmly based on empirical research of
ISD practice [1]. This is also true for agile information systems development or, to use the
more established term, agile software development (ASD1). The concept ASD serves as
an umbrella for a number of pragmatic approaches which have emerged out of a critique
of traditional, document driven development approaches [3]. ASD is guided by 4 values,
which are contrasted with 4 other, competing values, namely (1) individuals and
interactions over processes and tools (2) working software over comprehensive documen-
tation (3) customer collaboration over contract negotiation and (4) responding to change
over following a plan.

What this however means more concrete in practice and how it relates to a
theoretical understanding of ASD as well as to ISD in general has only to a limited
extent been systematically investigated and reported beyond text book descriptions
and stories often provided by the authors of the methods themselves. The research

1 The abbreviation ASD as used in this article should not be confounded with the same

abbreviation, which Highsmith [2] uses for his agile development method called Adapative
Software Development.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/15056661?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 138

presented in this paper contributes to further filling in this gap by providing an
independent study based on scientifically collected and analysed empirical data.

For this purpose, understanding ISD as a complex adaptive system (CAS), it
utilises a framework first introduced by Wang & Vidgen [3] that focuses on the
investigation of the ‘edge of chaos’ in such a system as the area where ASD takes
place.

The paper is structured as follows: The next section contains the theoretical
framework, which is applied in our research. Section 3 includes both a brief
description of our research approach and the case setting which built the background
for our study. Section 4 analyses the collected data by applying the theoretical lens
and presents our findings. The last section concludes and summarises the paper.

2 Theoretical Background and Framework

Some authors of ASD methods ([4], [5]) put forward that ASD has a theoretical
grounding, namely in complex adaptive systems (CAS) theory. However, research
([6], [7], [8], [9]) has shown that this claim is largely a post-rationalization: the theory
is, if at all, used in a very relaxed way to justify what is done in practice.
Consequently the large amount of literature available on ASD is of anecdotal and
descriptive character. While these are useful reports, they do not provide any deeper
analysis or theoretical underpinning for a thorough understanding of ASD.

Fig. 1. The edge of chaos (Wang & Vidgen [2])

 139

CAS theory, however, can be an insightful grounding for understanding complex
systems such as ISD endeavours in general and ASD projects in particular. The key
concept in CAS is the poise at ‘the edge of chaos’. Wang & Vidgen [3] use this
concept and provide a conceptual framework to study ASD as structured chaos. In
their framework the edge of chaos is characterised by both being at the same time
stable and unstable [10], it is the part of a system, which never quite locks into place,
yet never quite dissolves into turbulence [11], it is the place, which provides
organisations with both the stimulation and freedom to experiment and to adapt and
with the sufficient frameworks and structures to avoid disorderly disintegration [12].
This gives them a competitive advantage: systems that are driven to the edge of chaos
out-compete those which are not ([13], [14]). Thus, it is the place where the really
interesting behaviour occurs [3]. Two critical boundaries demarcate the edge as the
area of having ‘just enough structure’. For the eight values, which direct ASD, this
means: too much structure leads to bureaucracy with too rigid process and rules, too
much documentation, too much emphasis on contracts and their negotiation, and too
much focus on following the project plans; on the other hand, too little structure leads
to chaos with too loose, if at all defined processes and rules, too much emphasis on
working software, too much focus on collaboration, and too much response to change
requests. Agility and agile processes lie some where in between, they are neither static
nor chaotic. Figure 1 presents the framework and visualises these relations.

In the following we will use the framework to analyse a large ASD project. In
doing so, we want to show in an independent study that the framework is useful. At
the same time we want to contribute to the small, but growing existing body of
scholarly research on ASD in practice. Before doing so, we introduce our research
approach and the case setting.

3 The Research Approach and Case Setting

The research presented in this paper is qualitative. It is based on an empirical case
study of an ASD project in a large German public sector organization, called
WaterWorks, performed by a German software company, called AgDev, which has
specialised on ASD. The empirical data for the case study was collected in semi-
structured, open-ended interviews, which were conducted by a team of two
researchers in a three days period. The research team performed 12 interviews with
11 individuals - the AgDev project manager was interviewed twice. This included
nearly a third of the development team and a representative sample of key players and
future users in the customer organisation. The interviews were tape-recorded and
subsequently transcribed. For the qualitative data analysis a software tool (NVIVO7)
was used. The interview data was supplemented with company and project documents
such as method, requirements and release descriptions, as well as project plans.

The data collection, the coding of the data and the data analysis have been guided
by the eight values underlying ASD and a theoretical framework developed and
applied earlier by [15] to provide a better understanding of ISD in practice. This
framework distinguishes between a structuralist, an individualist and an interactive
process perspective, which together provide a holistic understanding of ISD projects.
For the purpose of this paper we have used the structuralist perspective consisting of

 140

the information system under development, the formalised method to be used (if any),
the structural characteristics of the involved development team and its members, as
well as the project’s structural context, to identify the structural profile of the
investigated project. This perspective helps us to structure the description of the case
setting, which is summarized in table 1:

The project under investigation was concerned with the development of an
operations management system (OMS) for the WaterWorks of a large German city.
Founded 150 years ago the organization is now partially privatised with the city
council holding 50.1% of the ownership. The system was developed with a web-based
graphical user interface and a backend to interface the technical infrastructure as
defined by an underlying ERP system.

The project was organized in 4 subprojects to provide IT support ranging from
customer management to the maintenance of the sewer system. After several attempts
of traditional ISD based on a standard ERP system, which had not led to the desired
results, the organization opened a tendering process. It was won by a small software
company, AgDev.

Table 1. The structural Profile of the OMS Project

Information
System

Operations management system (OMS)
with web –based GUI user interface and ERP back end

Formalized
Method

xP:
short releases and iterations of 3-6 months/3-6 weeks
planning games, user stories, story cards, onsite users
pair programming, collective ownership, stand-up meetings
continuous integration, testing, re-factoring

Involved
Development
Team and
Developers

2 overall project managers (1 AgDev, 1 WaterWorks)
AgDev:
up to 12 staff with multiple roles:
project manager, analyst, customer contact, and developer
highly motivated and educated, limited xP experience
4 subproject development leaders also as
customer contacts, analysts, developers with xP experience
WaterWorks:
4 customer subproject leaders also as user representatives
at least 1 additional user representative for each subproject;
not the whole time onsite

Structural
Context

ASD method had been clearly communicated to customer
AgDev: No experience with large ASD projects
WaterWorks: 1. ASD project
project team onsite in a WaterWorks building
general requirements document as basis for contract
failed ERP implementation

AgDev consisted of about 25 employees, 20 of them being developers, and based

its development approach on the agile method xP [16]. The formalized method
includes planning techniques for releases and iterations called planning games, user
stories and story cards to specify user requirements, onsite customers to support
customer-developer communication, daily meetings (stand-up meetings) of the whole
project team to support team communication, pair programming, re-factoring,

 141

collective ownership, continuous integration and testing to develop the software
proper and tuning workshops to improve the development processes regularly. They
have extended the method with some project management processes to cater for larger
projects such an elaborate overall project plan, formal reporting mechanisms and a
formal contract based on a requirements specification produced by the customer. In
the tender process AgDev had convinced the management of WaterWorks that their
approach was viable and would deliver the OMS as requested.

The project was organised in 2 phases. In a first 12 months exploration phase
prototypes catching requirements and possible solutions were developed. This led to
the development of a comprehensive requirements document by the customer
organisation and their decision to contract AgDev also for the development of the
OMS proper.

In this main development phase a team of about 12 development staff with
multiple roles such as project manager, analyst, customer contact, and developer
worked onsite in a building owned by WaterWorks. The project team also consisted
of a varying number of users with at least one representing one of the subprojects.
These users were by and large, however not the whole time onsite as well. A
sophisticated management structure with one subproject manager also acting as
contact person from AgDev and one subproject manager also acting as onsite-
customer from WaterWorks for each individual subproject was, in addition to two
overall project managers, established.

The developer team consists largely of highly educated and motivated, young staff
and only the project managers have experience with ISD using an agile method, but
none of them had ever participated in such a large project.

When this study was performed phase one had been successfully closed and after a
break of over a year due to internal politics at WaterWorks phase two had been going
on for 4 months. Responding to an inquiry call during our analysis the AgDev project
manager stated that the project ended 10 months later on time and budget with all
parts of OMS being operational. Despite some challenges (see section 4) from
beginning to end the project was considered a success by all stakeholder groups
involved.

The ASD method to be used had been clearly communicated to WaterWorks,
which had been the main reason why AgDev won the tender. The project champion,
an influential member of staff, who did not directly participate in the project team, but
who was involved in most of the important decisions remembered: “They presented a
method, they explain it, and could convince us to get soon user feedback and a
working solution.” Thus it became WaterWorks’ first ASD project and the largest
ASD project for AgDev at that point in time. With this structural profile in mind, we
will now analyse the project in more detail.

4 Analysis and Discussion

The eight values are not just related to each others in pairs, but are highly interrelated.
Processes and tools f. ex. beyond individuals and interactions, are also related to
working software, customer collaboration, and responding to change; and individuals
and interactions are also related to comprehensive documentation, contract

 142

negotiations and following a plan. Due to the space limitations we will in the
following stick to the pairing of values as put forward by the promoters of the agile
manifesto to structure the presentation of our analysis and discussion and we will only
use selected aspects of each value to demonstrate the usefulness of the ‘edge of chaos’
framework.

4.1 Individuals and Interaction over Processes and Tools

xP provides quite a number of processes and tools such as short releases and
iterations, planning games, user stories, story cards, onsite users, pair programming,
collective ownership, and stand-up meetings to structure ASD. In the OMS project
pair programming is a prominent process to support the interaction of the individuals
of the development teams by working in shifting pairs of developers in front of a
screen while implementing the requirements written down as user stories on story
cards as executable code. Two sub-processes or mechanisms here are important: 1) to
regularly shift a partner and 2) to regularly shift possession of the keyboard within a
team.

In the project the developers find it difficult to find the appropriate synchronization
points at which to change a partner in the teams of 4 developers. No common
practice exists. However they do not follow an overly bureaucratic rule such as
shifting partner every morning regardless of the status of a story card. To avoid both
too much red tape and too much chaos some developers prefer to stay with a partner
until a card is closed. “… changing a partner was always a problem, it still is as
changing in the middle of a card seems foolish to me and I don’t really like doing it
…” says one developer.

This of course can lead to limited interaction, spread of knowledge and dead ends.
Thus, although some uncertainty regarding the mandate exists, a subproject leader
might intervene if a pair has worked together for too long, say 3 days. In doing so, a
balance, ‘just enough structure’ is created between shifting too often and not shifting
at all.

The developers started out with a practice which did not really support the
objectives of interaction, namely that one developer exclusively held the keyboard
and programmed, while the other watched and sometimes commented. To avoid such
situations a process was introduced where using a stopwatch after 20 minutes the
keyboard had to switch. This was however abandoned as too bureaucratic and not
fruitful in a creative work environment. The teams found their own rhythm. “We
don’t do that anymore. It didn’t function. Well, now it also functions without any
explicit rule.” was how one developer commented the emerged practice.

This has also been the case with stand-up meetings. They are performed by all
teams together everyday before lunch with the purpose to keep everyone up to date
with the current status of the project and to exchange useful information. These
sessions originally were quite detailed and long, but they have been refined and were
then acknowledged as very helpful. One AgDev subproject manager describes: “In
the beginning we did this all together, but we found out that it can become too much,
as some are doing something that is not of interest for other teams. But it is good to
know what others do. It does not have to be in detail. And that is what the teams do
now, all teams, but we keep it short.”

 143

Other intensive interaction takes place in the beginning of each iteration, where all
story cards are jointly discussed. Despite the fact that these mechanisms can not
totally provide the intended collective ownership as the project leader regrets and
explains with the size of the teams, they apparently provide enough structure for the
project to be successful: they keep the project teams informed and decrease the need
for documentation, a topic which will be discussed in the next subsection.

4.2 Working Software over Comprehensive Documentation

In the OMS project working software is the measure of progress. Each iteration
produces operational software, but also minor advancements are demonstrated to the
customers. The WaterWorks project manager stated: “… I have never experienced a
project that could generate output so fast.” and continues “The major benefit is that
we do not work so abstract, but rather focus on the real thing.” One of his subproject
managers adds to this “ … this way we have seen that we are on the right way, as we
can use 95% of what has been developed this way, and just the last 5% we have to do
something with again … ”. This is confirmed by one developer by saying “Yes that
functioned well, we made all 3 weeks a short presentation of the running software.”
and another one extended this: “ …we got very quick feedback when we showed what
we had done.” Thus, the short feedback cycles provide the necessary structure for the
development of the working software. On the other hand, structure is also provided
through documents.

Quite a number of different documents exist, but they are all comparably short and
concise. From a customer perspective these are related as follows: “Well, we have the
overall realization concept as the basis for the contract and as a refinement hereof
the requirements lists. These lists govern what should be the outcome of an iteration.
For me this is the basis for my acceptance test: has been achieved what is on the list?
And on the level below there are the story cards, these, so to speak, represent the
detailed specifications and plans for the developers’ process.” The developers share
this perception and confirm that the documents, both in length and in number, are
adequate. One of them says: “Absolutely sufficient” and is acceded by a colleague: “I
flipped through the realization document in the beginning and never touched it
afterwards … the requirements change anyway every 2. week.”

The developers, however, also admit that they need and produce further internal
documents, fragments of functional and technical specifications, in the form of an
open Wikipedia and that there is a necessity to interact with the customers as part of
their collaboration to clarify the contents of story cards. Together with these measures
the utilized documents afford the balance between too little and too much structure.

4.3 Customer Collaboration over Contract Negotiation

Customer collaboration in the OMS project comes in different ways. It takes the form
of onsite customers and users, as well as telephone contact and email correspondence,
especially to clarify requirements as specified on story cards. The planning games, the
presentations of working software and the acceptance tests are as well crucial
elements, which structure the collaboration.

 144

The planning games are partly based on the overall realization concept, a document
which was produced by the customer as a basis for the contract. Another foundation
of the planning game are the requirements lists. These are largely produced by
AgDev, both their project leader and some of the subproject leaders, who also work as
contact persons for their counterparts at WaterWorks and as developers. They develop
these documents with input from the onsite customers. The story cards are solemnly
produced by the developers in team work sessions, where they also estimate them.
The developers and the customers then together prioritise these cards.

This can be considered a quite limited form of customer collaboration, however, as
one subproject leader expressed it, there can be a number of reasons for this: “Here
we have users, who have to take their working gloves off before they go to the
keyboard … in contrast to projects I’ve been involved in before, where the customers
were wearing ties, here the subproject leaders are partly folks, who have done
something quite different before, they have a different education and that becomes
apparent with regard to their abstraction capabilities and their abilities to write down
some texts.” However, this form of customer collaboration apparently provides some
of the necessary structure to cope with the complexities of a comparatively large ASD
project, which was performed by quite a number of inexperienced staff, while leaving
room for less structured collaboration as well.

That is to say, when implementing the story cards, it became obvious that some
additional collaboration was needed. One subproject manager estimates that user
contact is necessary for nearly every story card. He puts forward that maybe 60% of a
card’s contents is clear. When no user is onsite available the communication process
is as follows: “Certain users want to be contacted by phone to be reached straight
away, while others prefer to get their requests via email, but answer timely.”

The overall collaborative spirit of the project showing that the limited customer
collaboration was not replaced by formal contracts and negotiations is also expressed
by the project champion, who after having been involved in the original contract
negotiations states: “ … we decided not to be tough on change requests and back-up
formalities, but rather to work constructively with them to make progress. And my
good feelings have been confirmed.” The AgDev project leader confirms this and
describes the context of requirement changes: “The customer is quite relaxed. In
such situations they look where they can cut expenses planned for other requirements
or we discuss if we can make the implementation simpler to meet the budget
planned.”

The balance between stability and instability is brought about by different kinds of
customer collaboration and by acknowledging, but not privileging the important role
of contract negotiations, which also extends to the handling of change requests, which
brings us to the last 2 values.

4.4 Responding to Change over Following a Plan

As described above, in the OMS project change, especially change of requirements
is an accepted fact of life. Many change requests are detected through the scheduled
acceptance test sessions for an iteration with a customer representative onsite and are
then dealt with in the next iteration. The customer representatives also regularly

 145

perform ‘road shows’ in the user departments to collect feedback and ideas and
proposals for improvements.

But change requests are also brought forward by the users on a shorter time scale.
There are weekly and bi-weekly feedback loops built into an iteration. The AgDev
project manager explains: “And then after a week the customer rep is back and wants
to see what happened during the week and he gets the first feedback and this then
continues … .” They have the following consequence: “ … often we show the
customer rep something once a week and then he’s going ‘well, I thought this would
be different’ … thus there are always small changes … “ as one developer puts it.

These frequent feedback loops also have the effect that minor misunderstandings
are caught and dealt with as changes early before they can grow into something
larger, as the same developer explains “Until now it has not happened that everything
was totally wrong; there are of course some refinements or a bug is found or
something similar. There is always something.” The feedback is taken seriously and
immediately responded to with action: “Through the feedback we got, we could react
directly … .“ as it is described by one developer.

The different feedback mechanisms provide some structure to handle the changes,
but plans and planning although not impeding more spontaneous actions are playing
an important role as well. Even the weekly sessions are to some extent planned, as are
of course the acceptance tests. As one WaterWorks subproject leader relating to the
size and complexity of the project says “Planning is essential in such kind of
projects.”

Therefore, the project also has an overall long term plan covering an 14 months
period anticipating 3-6 releases depending on the subprojects. A more fine-grained
plan is developed for the individual iterations, which make up a release detailed to
single weeks. The planning game and the story cards then offer the devices to perform
planning on the most detailed level for very short periods of time. The frequent
planning sessions embedded in a ‘larger’ and coarser plan together with the different
means to handle change provide just enough structure for the project to move
forwards.

5 Conclusions

We have applied Wang & Vidgen’s [3] framework to give a detailed description and
analysis of how the edge of chaos provides just enough structure to perform a
successful ASD project in practice. The framework takes both the preferred, and the
less preferred values of the founders of the agile development movement into account.
It shows that they are not opposites, but fundamental and interconnected elements,
which, when balanced appropriately, present the ground for successful ISD
endeavors. This balance will be different for different projects and more such studies
are needed to identify common patterns, if there are any, beyond what has been found
in this research.

Our study also shows how the 4 pairs of values are interrelated and how an
analysis of these relationships provides a richer picture of practice as a prerequisite
for understanding it and for building a sustainable theory of ASD and ISD.

 146

6 References

1. Kautz, K.: The Enactment of Methodology – The Case of Developing a MultiMedia
Information System. In.: Proceedings of ICIS 2004, Washington D.C., USA, December 12 –
15 (2004)

2. Highsmith J.:Adaptive Software Development – A Collaborative Approach to Managing
Complex Systems. Dorset House Publishing, New York (1999)

3. Wang, X., Vidgen, R.: Order and Chaos in Software Development: A Comparison of two
Software Development Teams in a major Company. In: Proceedings of the 15th ECIS, St.
Gallen, Switzerland, June 7-9 (2007)

4. Highsmith, J.: Agile Software Development Ecosystems. Addison-Wesley, Boston (2002)
5. Highsmith, J., Cockburn, A.: Agile Software Development: the Business of Innovation. In:

Computer, 34(9), 120--122 (2001)
6. Kalermo, J., Rissanen, J.: Agile Software Development in Theory and Practice, M.Sc.

Thesis in Information Systems Science. University of Jyväskylä, Finland (2002)
7. Turk, D., R. France, R., Rumpe, B.: Limitations of Agile Software Processes. Third

International Conference on eXtreme Programming and Agile Processes in Software
Engineering. Alghero, Sardinia, Italy (2002)

8. Conboy, K., Fitzgerald, B: Toward a Conceptual Framework of Agile Methods. Extreme
Programming and Agile Methods - XP/ Agile Universe 2004, Proceedings, Berlin, Springer-
Verlag, Berlin, Germany (2004)

9. Vidgen, R., Wang, X.: Organizing for Agility: a Complex Adaptive Systems Perspective on
Agile Software Development Process. In: Proceedings of the 14th ECIS, Göteborg, Sweden,
June 12-14 (2006)

10. Stacey, R. D.: Strategic Management and Organisational Dynamics: The Challenge of
Complexity. 4th Edition, Prentice-Hall, London (2003)

11. Waldrop, M. M.: Complexity: The Emerging Science at the Edge of Chaos. Penguin Books,
London, UK (1994)

12. McMillan, E.: Complexity, Organizations and Change. London, Routledge, Taylor &
Francis Group (2004)

13. Anderson, P.: Complexity Theory and Organization Science. Organization Science: A
Journal of the Institute of Management Sciences, 10(3), 216--232 (1999)

14. Kauffman, S.: At Home in the Universe: The Search for Laws of Self-Organization and
Complexity. Oxford University Press, New York (1995)

15. Madsen, S., Kautz, K., Vidgen, R.: A framework for understanding how a unique and local
IS development method emerges in practice. In: European Journal of Information Systems
15 (2), 225--238 (2006)

16. Beck, K., Andreas, C.: Extreme Programming Explained: Embrace Change. 2nd Edition,
Addison Wesley Professional, Boston, Mass. (2004)

