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abstract: The genetic analysis of female preferences has been seen
as a particularly challenging empirical endeavor because of difficulties
in generating suitable preference metrics in experiments large enough
to adequately characterize variation. In this article, we take an al-
ternative approach, treating female preference as a function-valued
trait and exploiting random-coefficient models to characterize the
genetic basis of female preference without measuring preference
functions in each individual. Applying this approach to Drosophila
bunnanda, in which females assess males through a multivariate con-
tact pheromone system, we gain three valuable insights into the
genetic basis of female preference functions. First, most genetic var-
iation was attributable to one eigenfunction, suggesting shared ge-
netic control of preferences for nine male pheromones. Second, ge-
netic variance in female preference functions was not associated with
genetic variance in the pheromones, implying that genetic variation
in female preference did not maintain genetic variation in male traits.
Finally, breeding values for female preference functions were skewed
away from the direction of selection on the male traits, suggesting
directional selection on female preferences. The genetic analysis of
female preference functions as function-valued traits offers a robust
statistical framework for investigations of female preference, in ad-
dition to alleviating some experimental difficulties associated with
estimating variation in preference functions.

Keywords: mate choice, random regression, Drosophila bunnanda,
random-coefficient models, genetic covariance function, sexual
selection.

Female preferences for male display traits are responsible
for some of the most spectacular phenotypic diversity
found in the natural world. Although the phenotypic con-
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sequences of female preference are well described (Jen-
nions and Petrie 1997), much less is known about the
genetic basis of female preferences and, subsequently, how
female preferences evolve. A number of studies have dem-
onstrated that female preference is heritable (Bakker and
Pomiankowski 1995; Jennions and Petrie 1997; Chenoweth
and Blows 2006), but the inherent difficulties in quanti-
fying mating preferences (Wagner 1998; Chenoweth and
Blows 2006) have limited the application and scope of
quantitative genetic experiments on such traits.

Female preferences can be measured at two levels (Wag-
ner 1998). First, by determining which males in a popu-
lation do and which do not gain mates, a population-level
preference can be determined. This type of measure of
female preferences is particularly useful in estimating the
strength of sexual selection operating on male display traits
(Kingsolver et al. 2001a; Chenoweth and Blows 2006).
However, such measures are not informative about vari-
ation among females in their preferences for male traits
(Wagner 1998) and are therefore not amenable to genetic
analyses.

Second, measuring individual female preference func-
tions, which describe a quantitative relationship between
levels of a male trait and a female’s preference for it, allows
the direct assessment of variation among females in their
mate preferences (Ritchie 1996). Measuring female pref-
erence functions is empirically very challenging, and the
estimation of among-female variation in preference func-
tions has been considered impossible in the many species
in which individual females cannot be experimentally pre-
sented with a number of alternative male trait levels in a
suitably controlled way (Wagner 1998). For example, this
situation arises in species in which female preference can
be inferred only by allowing pairs to copulate, thereby
changing the motivation of females in subsequent choice
tests. As a consequence of these experimental difficulties,
genetic analyses of female preference functions are rare
(Chenoweth and Blows 2006) and have tended to rely on
approximate analyses to demonstrate genetic variance in
preference functions, such as family mean approaches (Rit-
chie et al. 2005), segregation among wide crosses (Ritchie
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Genetic Variance in Female Preference Functions 195

2000), or the genetic analysis of regression slopes (Brooks
and Endler 2001b).

Female preference functions are an example of a class
of traits known as function-valued characters, which are
best described as a continuous function rather than as
scalar values (Kirkpatrick and Heckman 1989; de Jong
1990; Gomulkiewicz and Kirkpatrick 1992; Kingsolver et
al. 2001b; Meyer and Kirkpatrick 2005). Although phe-
notypic characterization of female preferences has utilized
a number of ways to represent preferences as functions
(Ritchie 1996; Ritchie et al. 2005), genetic analysis of fe-
male preference functions has yet to take advantage of the
methods applicable to function-valued traits, particularly
those based on random-coefficient (sometimes called ran-
dom-regression) mixed models (Meyer and Kirkpatrick
2005). Random-coefficient models allow the direct fitting
of continuous functions at the appropriate (genetic) level
of the experimental design within a single analysis. Con-
sequently, the full power of hypothesis testing within the
restricted maximum likelihood framework of the mixed
model can be applied to determining the genetic basis of
the female preference functions. A convenient attribute of
such models is the ability to consider multiple male traits
simultaneously when testing the distribution of genetic
variance in female preferences for those traits. This may
be particularly useful, given that males typically employ
multiple sexual signals (Candolin 2003; Chenoweth and
Blows 2006)

In this article, we detail how the random-coefficient
approach to the analysis of functional-valued traits can be
applied to the genetic analysis of female preference func-
tions in an experimental design that does not require the
estimation of the preference functions of individual fe-
males. We present a genetic experiment based on simple
two-stimulus choice tests (Wagner 1998; a female makes
a choice between two males), which are typically used only
to estimate population-level measures of the strength of
preference and sexual selection (Chenoweth and Blows
2006). Our approach provides two advances in the genetic
analysis of female preference: the application of random-
regression techniques, required for the genetic analysis of
such function-valued traits (Meyer and Kirkpatrick 2005),
and a way of estimating the genetic basis of female pref-
erence functions in species in which it is not possible to
sequentially present females with a number of males (Wag-
ner 1998; Chenoweth and Blows 2006).

The basic premise of our approach centers on modeling
the variation in a female preference function that is not
estimated for each individual female but is estimated for
groups of related females. Only a single observation of any
one female’s mating preference is made (a choice between
two males), but many such observations are made on
groups of related females. Random-coefficient models can

then be applied to estimate the variation in the preference
function among the related groups of females, resulting
in an estimate of the genetic variance for that preference
function. The implementation of a genetic analysis of a
function-valued trait is in many ways analogous to stan-
dard quantitative genetic practice. Once the appropriate
form of the function has been decided on (e.g., linear,
polynomial, or a more complex curve), the additive genetic
covariance function is estimated at the appropriate level
in the experimental design (e.g., the sire level in a paternal
half-sib experiment). For more than one trait, a multi-
variate genetic covariance function that describes the ge-
netic covariance among the functions for the different
traits can be estimated.

Utilizing a half-sib breeding design, we estimate the
genetic variance in female preference functions for nine
male traits of Drosophila bunnanda, a species native to the
northeastern rainforests of Australia (Schiffer and McEvey
2006). Female D. bunnanda exert sexual selection on nine
male cuticular hydrocarbons (CHCs), which act as a con-
tact pheromone system (Van Homrigh et al. 2007). We
first estimate the genetic (co)variance of the female pref-
erence functions for these nine CHCs, assuming a linear
preference function for each of the nine male traits. Si-
multaneous estimation of the genetic variance in the nine
preference functions allowed factor analytic modeling of
the genetic covariance among the preference functions to
determine the presence of multivariate additive genetic
variance in female preferences in this population. Second,
we compare the distribution of genetic variance in female
preference functions with the distribution of genetic var-
iance for the male signal traits to infer that variation in
female preference does not play a major role in the main-
tenance of genetic variation in the male signaling traits.
Finally, we estimate the level of skew in the breeding values
of the female preference functions to investigate a possible
association between the strength of selection on male phe-
notypes and the strength of selection on female preference
itself.

Methods

This experiment was first reported by Van Homrigh et al.
(2007), where we were interested in the genetic basis of
the male CHCs and the population-level female preference
for them. Here, we take advantage of the fact that the
females in the mate choice tests also came from the half-
sib breeding design (fig. 1; as they were not subject to any
analyses, females were described as coming from the stock
population in Van Homrigh et al. 2007). Briefly, a standard
half-sib breeding design was employed, with 125 sires each
mated to four dams. The mating preferences of two virgin
females from each half-sib family were determined in a
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Figure 1: Schematic of the experimental design. Half-sib families were generated by mating each of 125 sires with four dams. Inseminated females
from the same mass-bred population were also placed individually to lay. Female preference was determined in two-stimulus choice trials where
one male came from the mass-bred stock (unknown parents; S) and the other male came from the genetic breeding design (G) but was unrelated
to the choosing female, who also came from the genetic breeding design.

binomial mate choice trial in which one male came from
the breeding design (but was unrelated to the female) and
one male came from the same mass-bred population and
was raised under the same conditions as the genetic ani-
mals but was of unknown parentage. All flies were the
same age during the trials (6–8 days). To allow identifi-
cation, males from the breeding design had a small piece
clipped from their left wing, and males from the stock
were clipped on the right. After intromission was achieved
by one of the males, the male from the half-sib family was
recorded as being successful or unsuccessful in gaining a
mating, immediately removed, and prepared for gas chro-
matography (see Van Homrigh et al. 2007 for methods).
The right wing was then collected from each female and
male from the genetic design, and wing size was estimated
as centroid size following Van Homrigh et al. (2007). The
male from the stock population was not considered fur-
ther. As a consequence of incomplete records for some
females, the data set analyzed here consists of 638 females
from 111 sires. All analyses were conducted using the
Mixed procedure in SAS (ver. 9.1). Given the large sample
and the equal numbers of chosen and rejected males in
this sample (321 vs. 317), we assume a normal distribution
for hypothesis testing throughout (Van Homrigh et al.
2007).

Our application of the random-coefficient approach to
modeling the variation in female preference differs in two
important respects from how random regression has been
previously applied in evolutionary studies. First, evolu-

tionary studies have usually been concerned with modeling
a number of phenotypic (response) traits that vary with
a single independent variable, such as age (Wilson et al.
2005), or an environmental variable, such as temperature
(Kingsolver et al. 2004). In contrast, our female preference
functions are characterized by a single response variable
(the choice that a female made resulting in male mating
success) and multiple independent variables (the nine male
traits under sexual selection). The modeling of multiple
independent variables in random-coefficient models could
potentially present difficulties (Meyer and Kirkpatrick
2005), particularly if the independent variables have dif-
ferent scales or qualitatively different relationships with
the response variable. However, these issues do not affect
our analyses because all our traits are measured on the
same scale and have similar (linear; see below) relation-
ships with female preference (the response variable).

Second, random-coefficient models offer the opportu-
nity to fit more complex functions to the data than simple
linear relationships can, a feature that is often exploited
in genetic studies (e.g., Kingsolver et al. 2004; Wilson et
al. 2005). In such analyses, a limit on the complexity of
the genetic covariance function that can be applied is de-
termined by the number of character states of the inde-
pendent variable (e.g., number of age classes or number
of temperatures). The genetic (co)variance for the param-
eters that describe the function (first-, second-, or higher-
order polynomials) is then determined and is called the
“genetic covariance function.” In our case, it is the genetic
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Table 1: Parameters estimated on the female preference
functions for nine male cuticular hydrocarbons (CHCs)

Trait b b gmax Skew

2-Me-C24 .135 .227 �.253 .472*
C25:1 (A) �.876 �.995 �.226 .436
C25:1 (B) �.163 �.308 �.101 .278
C25H48 (B) .265 .337 .184 �.174
7,11-C27:2 .827 .925 .136 �.294
C27:1 .156 .310 .222 �.172
C27H50 (A) �.478 �.514 �.001 .058
2-Me-C28 .294 .228 .658 �.161
2-Me-C30 �.115 �.119 �.583 .293

Note: The vector of directional selection gradients, , was estimatedb

from the population regression (Van Homrigh et al. 2007). The random

regression model (1) was run to estimate the fixed effect ( ), whichb

describes the population regression slopes for the nine CHCs, and the

first eigenfunction of the additive genetic covariance function (gmax).

Model (1) was also used to estimate the sire breeding values for the

female preference functions (as best linear unbiased predictors), and

their distribution was examined to determine the skew in the breeding

values for each CHC (standard error of skew for each trait was 0.229).

* .P ! .05

covariance among the coefficients for the same function
type (e.g., first-order polynomial) for different indepen-
dent (male) traits that is of interest. We retain the usage
of the term “genetic covariance function” to describe the
genetic covariance among linear preferences for multiple
male traits.

Detailed analyses of population-level preference in the
closely related species Drosophila serrata have indicated
that female preferences for male CHCs are linear and open
ended (Chenoweth and Blows 2005). We found similar
patterns of population-level preference in the current data
set for Drosophila bunnanda, using cubic splines (data not
presented). Although these population-level preferences
are linear, it is still possible that variation among individ-
uals existed in preferences that were nonlinear. Preliminary
genetic analyses returned zero genetic variance compo-
nents for second-order (quadratic) coefficients for all in-
dividual traits. We therefore chose to model only linear
preference functions in this study.

We applied a multivariate random-coefficient model to
the male phenotype (CHC) data, using

(d) (d) (s) (s)y p a � X b � Z d � Z d � � , (1)jk jk jk jk jk k jk

where for each female from the jth dam within the kth
sire the response variable is the binomial male mating
success score (yijk), represented as the vector of observa-
tions yjk, so that , where n is the numbery p {y } � 1jk ijk i n, jh

of offspring of the jth dam (Longford 1993).
Model (1) contains two fixed effects: the intercept (a)

and the population-wide regression slopes (b) for the set
of continuous variables (the nine male CHC trait values
and female wing size) that are represented in the design
matrix (X). Female wing size (a surrogate measure of body
size; Partridge et al. 1987) was included as a covariate in
the models because female size and condition can affect
mating behavior (Hunt et al. 2005). Specifically, female
size influences male mating behavior in a closely related
species, D. serrata (Chenoweth et al. 2007). The vector of
slopes b is equivalent to the vector of directional selection
gradients ( ) commonly used to measure the strength ofb

selection (Lande and Arnold 1983). The estimates of the
fixed effects for each CHC were very close, but not iden-
tical, to the elements of the vector of sexual selection gra-
dients ( ) reported by Van Homrigh et al. (2007; table 1).b

The small deviations between the elements of and theb

fixed effect slopes b reported here are attributable to the
reduced sample used here because only records for which
female genetics and male CHC data were available (976
vs. 638) were considered and because of the inclusion of
female size as a covariate.

The genetic basis of female preference was estimated
through the random-effects part of model (1), represented

by the linear combinations and , which give(d) (d) (s) (s)Z d Z djk jk jk k

the departure of the regression slope for the jth dam within
each kth sire and of each kth sire from the population
regression Xjkb, respectively. Here, and are the(d) (s)Z Zjk jk

design matrices at the dam and sire levels, respectively,
and the variances and are assumed to have distri-(d) (s)d djk k

butions ∼ and ∼ , respectively. At the re-N(0, S ) N(0, S )d s

sidual (error) level, it was not possible to estimate the
residual (co)variance among female preference functions
because we took only a single measure for each female.
We therefore reduced the vector of parameters to be es-
timated at this level (Meyer 1991), an approach that is
required whenever traits are measured on different indi-
viduals, such as when estimating intersex genetic corre-
lations (Chenoweth et al. 2008). We estimated a separate
error for groups of sires that had different numbers of
daughters included in the experiment to account for the
heterogeneity expected as a consequence of family sample
size.

Initial analyses that attempted to fit a nine-dimensional
unconstrained covariance structure for and failed toS Sd s

converge. This problem with fitting a full model to the
data is expected when the higher nested levels (sires and
dams) have small numbers of observations for each subject
(i.e., maxima of four dams within each sire and two in-
dividuals within each dam; Longford 1993, p. 168). We
determined that a factor analytic covariance structure
(Kirkpatrick and Meyer 2004; Meyer and Kirkpatrick 2005;
Hine and Blows 2006) with ranks of 3 at the sire level and
1 at the dam level was the model with the most complex
covariance structure that would converge. The reduced-
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Table 2: Genetic variance-covariance ( ) function of linear female preferences for the nine male cuticular hydrocarbons,G
estimated from the sire covariance matrix in a three-dimensional factor analytic model

2-Me-C24 C25:1 (A) C25:1 (B) C25H48 (B) 7,11-C27:2 C27:1 C27H50 (A) 2-Me-C28 2-Me-C30

2-Me-C24 .464 1.082 �.229 �.348 �.751 �.479 �.698 �.644 .938
C25:1 (A) .511 .593 �.335 �.074 �.447 �.293 �.637 �.304 .562
C25:1 (B) �.065 �.149 .216 �.689 �.084 �.312 .697 �.531 .266
C25H48 (B) �.097 �.032 �.182 .207 .426 .487 �.467 .831 �.667
7,11-C27:2 �.179 �.166 �.019 .086 .152 �.061 .062 .374 �.430
C27:1 �.229 �.219 �.142 .198 �.035 .611 .022 .447 �.429
C27H50 (A) �.418 �.595 .397 �.237 .044 .020 .957 �.257 �.096
2-Me-C28 �.562 �.413 �.441 .615 .386 .590 �.378 2.029 �.797
2-Me-C30 .707 .660 .190 �.426 �.383 �.489 �.133 �1.620 1.512

Note: Genetic variances are along the diagonal, covariances are below the diagonal, and genetic correlations are above the diagonal and in

boldface.

rank (three-dimensional) estimate of is then the additiveSs

genetic variance-covariance function among the slopes at
the sire level, which we refer to hereafter as .G

Results

Genetic Variance in Female Preference Functions

The genetic variance-covariance ( ) function of femaleG
preference for the nine male CHCs is displayed in table
2. Genetic variance in female preference functions appears
to exist for each of the nine male traits, but the genetic
basis of preference is complex, with both positive and
negative genetic covariation among CHCs. We used factor
analytic modeling of the covariance at the sire level to
identify statistically robust trait covariation within the G
function. Only one dimension of the sire covariance matrix
was statistically supported (log-likelihood ratio test for the
first factor of : , , ). This first2G x p 17.6 df p 9 P p .0401
eigenfunction (gmax) accounted for 64.4% of the estimated
genetic variance in female preference functions, indicating
that much of the genetic variance resided in a single ei-
genfunction. The trait loadings for gmax (table 1) showed
that opposing contributions from two methylalkanes (2-
Me-C28 and 2-Me-C30) made the strongest contributions
to this vector.

The genetic variance in the preferred combination of
male traits represented by was estimated in a univariateb

fashion by first constructing as a univariate male traitb

(by applying the vector [table 1; Van Homrigh et al.b

2007] to each male’s CHC measures). This variable was
then placed into the same random-regression model used
for the nine CHCs. The genetic variance in the female
preference function for was 0.625, and it accounted forb

9.3% of the genetic variance in female preference func-
tions, as estimated by dividing the genetic variance in b

by the trace of the female preference function (G Sl pi

). In males, this univariate attractiveness trait was as-6.74

sociated with a very small amount of genetic variation
(0.021), accounting for less than 1% of the genetic variance
in the suite of nine CHC traits (Van Homrigh et al. 2007).

We looked for an association between the genetic var-
iance in female preference and the genetic variance in the
male CHC traits by comparing the orientation of the three-
dimensional subspace of female preference (table 2) with
the three-dimensional subspace of the male CHC matrixG
(reported in Van Homrigh et al. 2007). These three ei-
genvectors accounted for 89% of the genetic variance in
the nine male CHCs and are statistically supported (Van
Homrigh et al. 2007). We used the subspace comparison
methodology detailed by Blows et al. (2004). Briefly, the
two three-dimensional subspaces were represented by two
matrices A and B, and a bounded measure of the similarity
of the two subspaces was given by the sum of the eigen-
values of S ( ). The two subspaces were vir-T TS p A BB A
tually unrelated, with a value of the sum of the eigenvalues
of S of 0.102, where 0 indicates orthogonal subspaces and
3 indicates completely shared subspace. This result sug-
gests the level of genetic variance in female preference is
unrelated to the level of genetic variance in the male traits.

Genetic Skew in Female Preference Functions

Best linear unbiased predictors of the breeding values for
the female preference functions for the nine male traits
were estimated from the random-regression model and
are presented as histograms in figure 2. Female preference
breeding values were opposite in sign to the linear selection
gradients in (with the exception of that for 2-Me-C24;b

table 1), suggesting fewer than expected breeding values
for female preference functions in the direction of sexual
selection on the male traits. An analysis of the female
preference function for the univariate combination of
traits preferred by females ( ) reinforced this interpreta-b

tion. Breeding values of the preference function for wereb

substantially skewed (fig. 3; , ,skew p �1.353 t p 5.908
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Figure 2: Best linear unbiased predictor estimates of the breeding values for female preference functions for nine male cuticular hydrocarbons.

, ) and were at least three times moredf p 111 P ! .001
skewed than preference for any individual male CHC. The
presence of skew in the breeding values of was robustb

to the normality assumptions used to estimate the breeding
values, as it was also present ( , ,t p 2.865 df p 111 P p

) when the breeding values were estimated using a.005
binomial error structure and logit link function applied
in the Glimmix procedure in SAS. The genetic skew in the
preference function for indicated reduced genetic vari-b

ance for an increase in the slope of the female preference
function in the direction that would further strengthen
female preference for this trait combination.

Discussion

The genetic analysis of female preference functions has
been perceived as a particularly difficult empirical en-

deavor (Chenoweth and Blows 2006). Here we have shown
that the problem may be addressed using the function-
valued approach that has been advocated for use with any
trait that is best described as a continuous function rather
than a scalar measure (Kirkpatrick and Heckman 1989;
de Jong 1990; Gomulkiewicz and Kirkpatrick 1992; King-
solver et al. 2001b; Meyer and Kirkpatrick 2005). The ap-
plication of this approach to the estimation of genetic
variance in female preference functions does not require
the estimation of preference functions for individuals,
opening the way for empirical investigations of the genetics
of preference in the many species for which individual
preference functions are unmeasurable.

The function-valued approach provided three valuable
insights into the genetic basis of female preference func-
tions in Drosophila bunnanda. First, females of many spe-
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Figure 3: Best linear unbiased predictor estimates of the breeding values
for the female preference function for the population regression repre-
sented by the vector of linear selection gradients ( ).b

cies often have preferences for multiple male traits (Brooks
and Endler 2001a; Coleman et al. 2004). Here, a single
trait (gmax) explained 64% of the genetic variance in female
preference functions for nine male traits. This suggests that
female preference for multiple male traits may not nec-
essarily be based on genetically independent preferences
for each male trait. This result contrasts with the finding
in guppies, in which preference for orange and black col-
oration responded to selection as independent traits
(Brooks and Couldridge 1999). Further studies on visual,
acoustic, and other chemical signaling systems will be re-
quired to determine whether the genetic basis of preference
for multiple male traits is typically highly correlated (as
in this study) or independent (Brooks and Couldridge
1999) and whether the extent of preference function co-
variation is related to the sensory system involved.

Second, variation in female preference functions within
populations may be one mechanism that maintains genetic
variance in the male traits under sexual selection (Kokko
1997; Brooks and Endler 2001b). Our results did not pro-
vide support for this hypothesis because the inherited var-
iation among females in their preferences functions was
not associated with genetic variation among males for
CHC trait expression. Consequently, genetic variance in
female preference functions does not appear to be a mech-
anism for maintaining genetic variance in male traits in
D. bunnanda.

Finally, the breeding values for female preference func-
tions tended to be skewed away from the direction in
which preference operated on the male trait. That is, there
are fewer breeding values, and consequently less genetic
variance, for increasing the slope of the preference function
in the direction that preference is already selecting on the
male trait. Many applications of quantitative genetics de-
pend on the assumption that breeding values of contin-
uous traits are normally distributed (Bulmer 1971; Lande
1980). However, with a finite number of loci and alleles,
the distribution of allelic effects may not be Gaussian (Tu-
relli 1984; Barton and Turelli 1987). When a finite number
of alleles underlie the response to selection, the additive
genetic variance itself is predicted to respond to directional
selection, particularly if some alleles have greater pheno-
typic effects than others (Barton and Turelli 1987). For
example, if favorable alleles are rare before selection, allelic
skew is generated at those loci responding to selection
because alleles increase in frequency toward fixation (Bar-
ton and Turelli 1987; Reeve 2000). Therefore, in the pres-
ence of directional selection, the distribution of breeding
values is predicted to become skewed.

The observed skew in female preference function breed-
ing values, particularly for the combination of traits ( )b

preferred by females in this population, suggests that fe-
male preference functions themselves are under strong di-
rectional selection. There are two potential major sources
of selection on female preference (Kirkpatrick 1996; Kokko
et al. 2006). Direct selection on female preferences can
arise when females receive a material benefit from choos-
ing a particular male (e.g., nuptial gifts, access to re-
sources). Indirect (genetic) benefits may be gained by fe-
males through the performance of their offspring as a
consequence of choosing males with “good genes.” There
are no known direct benefits to mate choice in D. bun-
nanda. However, male CHCs of D. bunnanda are genet-
ically correlated with condition (Van Homrigh et al. 2007),
consistent with the hypothesis of indirect selection on fe-
male preference. There is also evidence consistent with
good-genes mate choice in a closely related species, Dro-
sophila serrata (Hine et al. 2002). Consequently, indirect
selection may be responsible for the genetic skew in these
female preference functions. It follows that female pref-
erence may be maintained in this population as a con-
sequence of indirect selection.

While adopting the random-coefficient modeling ap-
proach advocated here may open the way for empirically
dissecting the genetics of preference in many taxa, it is not
without limitations. The sample size required to detect
significant levels of genetic variance in female preference
functions appears to be greater than that required for scalar
traits, perhaps as a consequence of different traits (or parts
thereof) being measured on different individuals (Meyer
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1991). With measurements on 638 females from 111 sires,
we were still able to gain statistical support for only 64%
of the estimated additive genetic variance in preference
functions. In addition, our approach requires the use of
more individuals than does measuring focal females mul-
tiple times, and this may be a limiting factor for some
species (Kingsolver et al. 2004).

In conclusion, the genetic analysis of female preference
has represented an empirical challenge due principally to
difficulties in generating suitable metrics of preference in
experiments large enough to allow the appropriate char-
acterization of variation among females (Wagner 1998;
Chenoweth and Blows 2006). The genetic analysis of fe-
male preference functions as function-valued traits offers
a robust statistical framework in which to place investi-
gations of female preference and at the same time alleviates
some of the experimental difficulty in estimating variation
in preference functions. Our analysis of female preference
functions in D. bunnanda suggests that preferences for
multiple traits are genetically correlated and that prefer-
ences themselves may be under strong selection.
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Left, Mating Drosophila bunnanda female has accepted a male (photograph by A. Van Homrigh). Right, rainforest habitat of D. bunnanda (photograph
by K. McGuigan).
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