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L. INTRODUCTION

The interest in conformal field theories (CFTs) [1,2]
related to superalgebras has grown over the past ten years
because of their applications in physics areas ranging from
string theory [3,4] and logarithmic CFTs [5,6] (for a re-
view, see e.g. [7,8], and references therein) to modern
condensed matter physics [9—14]. In particular, the Wess-
Zumino-Novikov-Witten (WZNW) models associated
with the supergroups GL(n|n) and OSP(2n|2n) stand out
as an important class of CFTs due to the fact that they have
vanishing central charge and primary fields with negative
dimensions [10,11,15-17]. However, unlike their bosonic
versions, the WZNW models on supergroups are far from
being understood [17] (for references therein and some
recent progress, see [18]), largely due to technical reasons
such as indecomposability of the operator product expan-
sion (OPE), appearance of logarithms in correlation func-
tions, and continuous modular transformations of the
irreducible characters [19].

On the other hand, the Wakimoto free-field realizations
of current algebras (or affine algebras [20]) [21] have been
proven to be powerful in the study of the WZNW models
on bosonic groups [22-27]. The free-field realizations of
bosonic current algebras have been extensively investi-
gated [28-36]. However, to our knowledge, explicit free-
field expressions for current algebras associated with
superalgebras have so far been known only for some
isolated cases: those associated with superalgebras
gl(2]1) and gl(2]2) [37-40], gl(m|n) [41], and osp(1]2)
and osp(2]2) [31,38]. In particular, explicit free-field ex-
pressions of the osp(2n|2n) current algebra for generic n
are still lacking due to the fact that it practically would be
very involved (if not impossible) to apply the general
procedure developed in [32,38] to the current algebra
with a large n.

The recent studies of the random bond Ising model have
revealed that an appropriate algebraic framework for
studying multispecies Gaussian disordered systems at criti-
cality is based on the osp(2n|2n) current algebra with the
positive integer n related to the species [10,12,14]. The
explicit free-field expressions of the osp(2n|2n) current
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algebra will enable one to explicitly construct correlation
functions [2,22,25] of the disordered systems at the critical
points.

In this paper, motivated by its great applications to both
string theory and condensed matter physics, we investigate
the osp(2n|2n) current algebra associated with the
OSP(2n|2n) WZNW model at general level k for a generic
positive integer n. Based on a particular order introduced in
Ref. [42] for the roots of (super)algebras, we work out the
explicit expression of the differential realization of
osp(2n|2n). We then apply the differential realization to
construct explicit free-field representation of the current
algebra. This representation provides the Verma modules
of the algebra.

This paper is organized as follows. In Sec. II, we briefly
review the definitions of finite-dimensional superalgebra
0sp(2n|2n) and the associated current algebra, which also
introduces our notation and some basic ingredients. In
Sec. III, after constructing explicitly the differential opera-
tor realization of osp(2n|2n), we construct the explicit
free-field representation of the osp(2n|2n) current algebra
at a generic level k. In Sec. IV, we construct the free-field
realization of the corresponding energy-momentum tensor
by the Sugawara construction. In Sec. V, we construct the
free-field realization of the associated screening currents.
Section VI is for conclusions. In the appendix, we give the
matrix realizations associated with the defining represen-
tation for all generators of osp(2n|2n).

II. NOTATION AND PRELIMINARIES

Let us fix our notation for the underlying nonaffine
superalgebra osp(2n|2n) for a positive integer n.
osp(2n|2n) is a Z,-graded simple superalgebra with a
dimension d = 8n?. Let{E;|i = 1, ..., d = 8n*} be a basis
of osp(2n|2n) with a definite Z, grading and denoting the
corresponding grading by [E;]. The generators {E;} satisfy
(anti)commutation relations

8n?

[E;, Ej] = Z fZ!Em’

m=1

2.1

where f7} are the structure constants of osp(2n|2n). Here
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and throughout, we adopt the convention [a, b] = ab —
(—Dblpa, which extends to inhomogenous elements
through linearity.

One can introduce a nondegenerate and invariant super-
symmetric metric or bilinear form (E;, E;) for osp(2n|2n)
by (A19). Then the osp(2n|2n) current algebra [or affine
algebra osp(2n|2n); [20]] is generated by the currents
E;(z) associated with the generators E; of osp(2n|2n).
The current algebra at a general level k obeys the following
OPEs [2]:

E,E) | X [iEn(W)
&@%Wﬁﬁé_52 éGMW’
Lj=1...4d 2.2)

where f;’]? are the structure constants in (2.1) and d is the
dimension of osp(2n|2n), i.e. d = 8n?. The aim of this
paper is to construct explicit free-field realizations of the
0sp(2n|2n) current algebra with a generic positive integer
n at a generic level k.

Alternatively, one can use the associated root system to
label the generators of osp(2n|2n) as follows [43].
Because of the fact that the rank of osp(2n|2n) is 2n, let
us introduce 2n linear-independent vectors: {8;|i =

1,...,n}and {¢]i = 1, ...n}. These vectors are endowed
a symmetric inter product such that
O 61) = 0,1, O, €) =0,
( m l) 1 ( 6) (23)
(Ei, Ej)=—5ij, i,j,m,l=1,...,n.

The set of roots of osp(2n|2n) [or D(n, n)], denoted by A,

can be expressed in terms of {5, ejli, j=1,...,n}as

A = {iEi + Ej, iﬁm + 81, i25,, i6l + Gi},
i+j, m#l (2.4)

while the set of even roots denoted by Aj and the set of odd
roots denoted by Aj are given, respectively, by

A ={Ze€ =€) £5, = 5, 228},

(2.5)
A; ={*68, = €}, i # j, m# I
The distinguished simple roots are
ay =0, — 0y ..., a, 1 =0,_1 — 0,
a, =6, — €, Ay = € — €, ..., (2.6)

QAop—1 = €p—1 — €y, Aoy = €, + €n-

Then the corresponding positive roots denoted by A, are

5m_5l’ 261, 5m+51’ l=m<Il=n,
2.7
61 €;, 61 + €}, 1= i, = n, (28)
€ — €}, € t €, I=i<j=n 2.9
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Among these positive roots, {6; = €;]i,[ = 1...,n} are
odd and the others are even. Moreover, associated with
each positive root &« € A, there are a raising operator E,,
which altogether spans the subalgebra (osp(2n|2n)),, a
lowering operator F, which altogether spans the subalge-
bra (osp(2n|2n))_, and a Cartan generator H, which
altogether spans the Cartan subalgebra h. Then one has
the Cartan-Weyl decomposition of osp(2n|2n)

osp(2n|2n) = (0sp(2n|2n))_ ® h & (0sp(2n|2n)) ..
Hereafter, we adopt the convention that

E, =E,, F,=F,, i=1,...,2n. (2.10)

We remark that the Z, grading of the generators associated
with the simple roots and the Cartan subalgebra are

[En] = [Fn] = 1; [El] = [F,] = 0, fori # n,
@.11)
[g]=0, V g¢g€h. (2.12)

The matrix realization of the generators associated with all
roots of osp(2n|2n) is given in the appendix, from which
one may derive the structure constants f7; of the algebra in

(2.1) for the particular choice of the basis.

II1. FREE-FIELD REALIZATION OF THE
osp(2n|2n) CURRENTS

A. Differential operator realization of osp(2n|2n)

Let us introduce a bosonic coordinate (x,, ;, X,, ;> X75 Vi j»
or y;; for m <1 and i < j) with a Z,-grading zero: [x] =
[x] =[y] = [¥] = 0 associated with each positive even
root (respectively, 0,, — 8;, 6,, + 0, 28,, €; — €, or €; +
€; form <land i < j), and a fermionic coordinate (6;; or
0,;) with a Z,-grading one: [¢] = [6] = 1 associated with
each positive odd root (respectively, 6, — €; or J; + €;).
These coordinates satisfy the following (anti)commutation
relations:

[x; j» X ] = 0, [ax,-,,’ axm,z] =0,
' 3.1
[ax,-}j’ xm,l] = aimgjlr
[Xl.,j’ xﬂ’l,l] = 0’ [a)_([,j’ a)_cm,l] = 0’
3.2)

[ai[v_/-’ )_Cm,l] = 5im6jlr

[xm’ xl] =0, [axm’ ax,] =0, [axm’ xl] = aml’
(3.3)
[yi,j’ ym,l] =0, [ay,-v,’ aym',] =0,
' (3.4)

[ay,-}j’ ym,l] = 8im8jlr
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[yi,j! ym,l] =0, [a}_’i,j’ a}_'m,l] =0, (3 5)
[ayi’jr ym,l] = 8im6jl’ .
[ai,j’ Hm,l] = 0’ [aﬁi,/" aem,l:l = 0’
3.6)
[691,," em,l] = 6imSjlr
[éi,_f’ e_m,l] = 0’ [aﬁ_ii’ ae_ml] = 0’
' ' 3.7

[65“, ém,l] = 0imOji»

and the other (anti)commutation relations are vanishing.
Let (A| be the highest weight vector of the representation
of osp(2n|2n) with highest weights {A;}, satisfying the

|

G+(X, )_C; Y, y’ 0’ 0_) = (G_2n71,2nG2n71,2n) e (G_n+l,n+2 e G_n+l,2nGn+1,2n ..

Here G; ; and Gi, ; are given by

Gm,l = exm,zEam—s, ,

01iEs,—¢;
s

Gi=e", Glaui=e

— ViE
Gn+i,n+j =e"

Gm,l = ex;n,IEé,,,+6,’

Eiisj’ Gn+i,n+j =e€
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following conditions:

(AIF; =0, 1<=i=2n,

(3.8)

(AlH; = A(Al 1=i=2n

(3.9

Here the generators H; are expressed in terms of some
linear combinations of H, (A14)—(A16). An arbitrary vec-
tor in the corresponding Verma module is parametrized by
(A| and the corresponding bosonic and fermionic coordi-
nates as

One can define a differential operator realization p@ of the generators of osp(2n|2n) by

(Asx, %y, 30,0l =(AIG 4 (x, %3, 7:6,0),  (3.10)

where G, (x, %;y, 7; 0, 0) is given by (cf. [32,38]")

'Gn+l,n+2)

X (Gunit---GponGnGran - Guni1) - (Gra...G12,GGay...G)). (3.11)
l=m<Il=n, (3.12)
Grosi = eMifora, 1=l i=n, (3.13)
Vubarg 1 =i<j=n (3.14)
VY g € osp(2n|2n). (3.15)

P D(gNAsx, %3y, 736, 0] = (A;x, %3, 36, Ol g,

Here p@(g) is a differential operator of the coordinates
{x, %y, 7; 0, 8} associated with the generator g, which can
be obtained from the defining relation (3.15). The defining
relation also assures that the differential operator realiza-
tion is actually a representation of os p(2n|2n). Therefore it
is sufficient to give the differential operators related to the
simple roots, as the others can be constructed through the
simple ones by the (anti)commutation relations. Using the
relation (3.15) and the Baker-Campbell-Hausdorff for-
mula, after some algebraic manipulations, we obtain the
following differential operator representation of the simple
generators:

-1
p(d) (El) = Z (xm,lax,,,v,ﬂ

m=1

l=l=n-1,

- )_Cmvl‘*laffm./) + axl,Hl’

(3.16)

n—1
p(d)(En) = Z(xm,naﬁmvl + em,laimn) + aBnylr (317)

m=1

[
p(d)(En+i) = Z (Hm:iaem.Hl o ém”*laém’i)

m=1

i—1
+ Z (ymviaym,iJrl - ym»i-"la.)_)m,i) + a,"i,Hl’
m=1

l=i=n-—1, (3.18)
p(d)(EZn) = Z (20m,n710m,naxm + Hm,n*laémﬁ
m=1
n—2
- 0m,na§m.,,_1) + Z (y’nvnilaym,n B ymvnaym,n*l)
m=1
+ 5, (3.19)

'Tt practically would be very involved (if not impossible) to
apply the general procedure proposed in Refs. [32,38] for
osp(2n|2n) with a large n; however, our choice of
G.(x, %y, ¥;0,0) (3.11)=(3.14) allows us to obtain the explicit
expressions of the differential operator realization of the algebra
with a generic n [see (3.16)—(3.25) below].
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-1
pD(F) = Z (Xm1410x,,, = Xm0z, ,.,) — X9

X, 141

= 2X;7410

Xpi+1 Xi4+1

m=1

n
+ Z (xlvmxl:maxl.lﬂ - xl,maxwl,m - le,mler],maXH] - xl)maXPr],m)
m=I[+2

n
o z (Hlvmalvmaxl,lﬂ + 01,’”891“’"; + 201»’”0”1,”18)6”1 + al:maém,m)

m=1

_ 2
X 4105, T 2% 041%7410

Xie1 2xl,l+1xlaxl

n

+ xl,l+][ Z (xl+l,max,+]’m + )_Cl+l,ma)?,+]'m - xl,max,,m - xl,mafc,ym)il
m=I[+2

n
+ x1,1+1[ Z (Or+1m9%,.,, T Or+1mg,,,, = O1mds,, — 91,maé,},,,)i| + x4 = Ay, l=l=n-1

m=1

(3.20)

n—1 n
P(d)(Fn) = Z (Bm,l ax,,,yn - xm,naémvl) - xnaéml + Z (Hn,may],,,, - en,mgn,ma()nvl + Hn,may],,,,)
m=1

m=2

n
- Hn,l Z (Hn,maﬁnm + 0n,maf7 + yl,may]’m + y],maylym) - 20n,]xnax" - 20;1,1011,18(;”'1 + an,l(/\n + AnJrl);
m=2

(3.21)
i—1

n
p(d)(FIH—i) = Z (em,i+lal9,,,v, - em,iaémﬁl) + z (ym,H—lame - ym,iaymviﬂ)
m=1 m=1

n
+ Z (yivm}_}ivma)_’i,[ﬂ o yivmayHl,m o }_}i»ma)_’fﬂ,m)

m=i+2

n
- _ . 2 _
T Vit Z OittmOyisr T Vit tm05,,0, ~ YimOyi ~ Vim95,,) = Viie19y,0 T Viit1Ansi = Aysinr),

m=i+2

l=i=n-1, (3.22)

no _ _ _ n—2
p(d)(FZn) = Z (em,naﬁm}n,] + 20m,n*l€m,naxm - gm,n*laa,,v,,) + Z ()_;m,naym,,z,l - ym,n*laym',l) - yi—l,nayn,]'n

m=1 m=1

+ Vn-1n(Aapor + Azy), (3.23)

-1 n n _
p\Y(H) = Z (X105, — Xm105,,) — Z (Xm0, + Xy m0s,,) — Z (0199, T 01mdg,,) = 2,0, + Ay,

m=1 m=Il+1 m=1

l=i=n, (3.24)

n i—1 n
p(d)(Hn+l) = Z (em’iaem’i - emviaém,i) + Z (ym’iaym,i - y'nviaym,i) - Z (yivmayi,m + yi’mayi,m) + )ln+i’ 1 = i = n.
m=1

m=1 m=i+1

(3.25)

|
A direct computation shows that these differential  differential representation of nonsimple generators can be
operators (3.16)—(3.25) satisfy the osp(2n|2n) (anti)com- consistently constructed from the simple ones. Hence, we

mutation relations corresponding to the simple roots  have obtained an explicit differential realization of
and the associated Serre relations. This implies that the osp(2n|2n).
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B. Free-field realization of osp(2n|2n);

With the help of the differential realization given by
(3.16)—(3.25), we can construct the explicit free-field rep-
resentation of the osp(2n|2n) current algebra at arbitrary
level k in terms of n X (2n — 1) bosonic B-y pairs
{(Bij vij), (Bl,%,) (Bi» v (Bl Vi) (Bfﬁ‘/i,) 1=i<

j= n} 2n*  fermionic b —c pairs {(¥] » Wi

(\If”, W, ), 1 =1, j = n}, and 2n free scalar fields ¢,, i =
I, ..., 2n. These free fields obey the following OPEs:
zm(s il
i (Z) m (W) m, (Z) i (W) J 5
Bii @)Y ~YmilBij z—w)'  (3.26)
1=i<j=n, l=m<I=n,
B Tmi(0) = — 7m0 B () = 20
ij m,l m,l ij ( W), (327)
I1=i<j=n, l=m<Il=n,
Bon(2)y,(w) (2)By(w) = 2
m Z w) = — m Z w) = s
i YmIB (z—w) (3.28)
1=ml=n,
LY ) =~ QB (w) = 2O
' : (z—w)"  (3.29)
1=i<j=n, l=m<Il=n,
BLTL 00) = — 7, () BL(w) = Dm0
R M@= w) (3.30)
1=i<j=n, l=m<Il=n,
W (W, (w) = W (W () = o0
e i c=w)" (331
mLi,j=1,...,n,
_ - _ _ 8,8
V()W (w) =V, () (w) =
A AN z—-w) (332

m i, j=1,...,n,

b2 (w) = —6 l=ml=n,

(3.33)
|

m I0(z — w),

-1
El(z) = Z(’)’m,z(Z)Bm,lﬂ(Z) -
m=1

E,(z) =

m=1

Ymi+1(@)Bmi(2) + Bris1(2),

Z (7m n(z)\Pm I(Z) + \Pm I(Z)Bm,n(z)) + \I,n,l(z)r

PHYSICAL REVIEW D 78, 106004 (2008)
¢n+i(1)¢n+j(w) =0 In(z — w),

l=ij=n,

(3.34)

and the other OPEs are trivial.

The free-field realization of the osp(2n|2n) current
algebra is obtained by the substitution in the differential
realization (3.16)—(3.25) of osp(2n|2n):

X1 = 7;n,l(z)’ xml Bml(z) l=m<l=n,
(3.35)
X1 — 7m,l(Z); xm, lgml(z) l=m<l=n,
(3.36)
x; = 71(2), 3y, = Bil2), I=l=n 337
yi,j - 7?,]‘(2)» ay” - ﬁ;’](Z), l=i< J =n,
(3.38)
Vij = ¥ 05, =B 1=i<j=n
(3.39)
01,1' - \PZrl(Z), 801,,‘ - q’l,i(Z)’ Ll=1, » L
(3.40)

V.2, il=1....n
(3.41)

0, — V5@, 95—

Moreover, in order that the resulting free-field realization
satisfy the desirable OPEs for osp(2n|2n) currents, one
needs to add certain extra (anomalous) terms which are
linear in 9y(z), 07(2), 9v'(z), 97'(z), 9¥*(z), and 9¥* (z)
in the expressions of the currents associated with negative
roots [e.g. the last term in the expressions of F;(z); see
(3.47), (3.48), (3.49), and (3.50) below]. Here we present
the results for the currents associated with the simple roots:

1=j=2n

(3.42)

1=l=n-1,

(3.43)

(3.44)
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n i—1
En+i(Z) = Z (‘I’;,i(z)\ym,ﬁl(z) - q’;,ﬁl(z)q’m,i(z)) + Z (Y;n,i(z)lgin,iﬂ(z) - ')_’Ln,iﬂ(z),é;n,i(z)) + ,82141(2),
m=1 m=1

1=i=n-—1, (3.45)

Ey,(z Z Q) @Y, (DB + V) (DY, () — L @Y,,,—(2)

+ Z YVinn1@Bun(@) = Yiun(@ By, 1 (2)) + By, (2), (3.46)
m=1

-1
Fi(z) = Z Yon141@) Bt (@) = V(@) Bini+1(2) = ¥1(2)Bris1 (@) — 291141(2) Br+1(2)
m=1

n

+ i Yim@DVim @B+ 1) = Vim@DBieim(@) = D, C¥m(@Vie1m@DBi1+1(2) + F1m(2) Brs1,m(2))

m=I[+2 m=I[+2

- Z (¥/,(2) \le(z)ﬂl 141(2) + ¥ (DY 1,,(2) Z (Zq’fm(Z)‘I’fﬂ,m(Z)ﬂlﬂ(Z) + ‘i’fm(z)‘pHLm(Z))

m=1

P DB — 1@ Y GinDBun() + T Bun()

m=I[+2

+ ¥141(2) Z Vie1.m@Bram@) + Vis1.m(2) Briim(2))

m=I[+2

= Y1+1(2) Z (P, W, + VL ()W, ) + 7i41() Z (V@10 + VL@ Wr(2))

m=1 m=1
+ 291141@Y141@ Bi+1(2) = 2,111 v1(2) Bi(2) + Vk — 2, 1:1(2) (0 (2) — d¢pj41(2))
+(—k+20— D))y (),  1=i=n-—1, (3.47)

n—1
= Z (‘P;,I(Z)Brﬂ,n(z) - 5’m,n(z)q,m,1(z)) - '}/n(z)\pn,l(z)
m=1

3 V@B @) — Vi @F LD, (@) + T @)

m=2
n

Z q’r-:—m(z)\yn m(z) + \Pn m(Z)q'rn,m(Z)) - 2\P+ (Z)\I’Jrl(z)q,n I(Z)

_\If+

nl

-V i (V@B @) + 71, (2B, (2) = 29,11 (2) Y, (D) Bu(2) + vk — 2W ) (2)(3¢h,,(2) + 0b,41(2))

m=2
+(—k+2(n—1)ov,(2), (3.48)
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n
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i—1
Foii(2) = D (W) 1 (@DV,,(0) = ¥ (W, 101() + Y (V101 (DB1(2) = ¥ i(2) By i41(2)
m=1

m=1

+ Z (YZ,m(Z)i’f,m(Z)Bf,iﬂ(Z) — Yim @B () — 7§,nz(Z)B§+l,m(Z))

m=i+2

+Yi01@ Y Vi@ Bl @ + Vi @Bl @) = ¥ @ Y (@B + ¥,(BL ()

m=i+2

m=i+2

— V1@ Vi1 (@B (@) + Ve =2y, (D04 (2) — 0y 141()) + (k+2( — n — 1)y}, 1,(2),

l=i=n-—-1,

n

m=1

-1
HI(Z) = Z (’)/m,l(Z)Bm,l(Z) - ’ym,l(z):ém,l(z)) -
m=1

= 3 (W @) + T 0T, () + B0, 1=l=n,
m=1

(3.49)
Fy(2) = D (¥ ,(V,,,—1(2) + 2%, (V) (2)B,(2) — ¥y 1 (DV,,,(2))
n—2
+ Z (?;ﬂy”(z)ﬁlln,n*l(z) - 7lln,i171(z)ﬁﬁn,n(z)) - 7;71,n(z)’7;*],n(Z)B;*],n(Z)
m=1
+Vk =29, (20 b2-1(2) + 91,(2)) + (k = 4)aYy,_, ,(2), (3.50)
D> Yin@DBiw(@) + ¥ Brn(2) = 27:(2)Bi(2)
m=I[+1
(3.51)
n _ ~ i—1 )
H,.i(2) = Y (V) (V) = ¥ (V) + > (7),:(2)Bl, () = ¥, i(2) Bl (2)
m=1 m=1
im(@) T Vk—=23¢,(2), l=i=n. (3.52)

= S @B + T

m=i+1

Here and throughout, normal ordering of free fields is
implied whenever necessary. The free-field realization of
the currents associated with the nonsimple roots can be
obtained from the OPEs of the simple ones. We can
straightforwardly check that the above free-field realiza-
tion of the currents satisfies the OPEs of the osp(2n|2n)
current algebra: Direct calculation shows that there are at
most second-order singularities [e.g. '] in the OPEs of
the currents. Comparing with the definition of the current
algebra (2.2), terms with first-order singularity [e.g. the
coefficients of Z_;W] are fulfilled due to the very substitu-
tion (3.35)—(3.42) and the fact that the differential operator
realizations (3.16)—(3.25) are a representation of the cor-
responding finite-dimensional superalgebra osp(2n|2n);
terms with second-order singularity # also match those
in the definition (2.2) after the suitable choice we made for
the anomalous terms in the expressions of the currents
associated with negative roots.

The free-field realization of the osp(2n|2n) current
algebra (3.43)—(3.52) gives rise to the Fock representations
of the current algebra in terms of the free fields (3.26)—
(3.34). These representations are, in general, not irreduc-
ible for the current algebra. In order to obtain irreducible
ones, one needs certain screening charges, which are the
integrals of screening currents [see (5.6), (5.7), (5.8), and
(5.9) below] and performs the cohomology procedure as in
[23,28,29,31]. We shall construct the associated screening
currents in Sec. V.

IV. ENERGY-MOMENTUM TENSOR

In this section we construct the free-field realization of
the Sugawara energy-momentum tensor 7(z) of the
osp(2n|2n) current algebra. After a tedious calculation,
we find
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1
0= 505 2){

m<l

- Z[2<E25, (2)F25,(2) + Fa5,(2)Ens,(2) + Hi(2)H ()] + Z Z(Es, (D)F5-¢(2) —

=1

2

E5 +e€; Z)F51+E (Z)

HM:

- Z (Es,—5,(2)Fs,-5,(2) + Fs5,5/(2Es, —5,(2) =

PHYSICAL REVIEW D 78, 106004 (2008)

Z (Es,+5,(2)Fs,15,(2) + Fs

m<l

+5,(DEs, +5,(2))

m m

Fﬁ,*fi(Z)Eélfe,»(Z))
I=1i=1

F8,+ei(Z)E51+e;(Z)) + Z(Ee,v—e/-(z)Fe,-—s/-(Z) + Fei—e/(Z)Ee[—ei(Z))

i<j

S Eapre QF 1@+ Fare DEare (@) + Y Hye i)

i<j i=

n

- Z( D6NIBE) ~ P (2)) +

vk =2

i=1

1

3 (30600, =

—i

vk =2

32¢n+;(z))

+ 3 (Bni(20Ymi(2) + B i(2)3F,,(2)) + Z Bi(2)ay,(2) + D (B} 23y (2) + B, (207} (2)

m<lI

n

- z S VDY) + POV

=1

It is straightforward to check that T(z) satisfy the OPE of
the Virasoro algebra

c/2 2T (w) aT(w)
=wt (@-w? (—w)

with a central charge ¢ = 0. The vanishing central charge
of the energy-momentum tensor 7(z) (4.1) is a simple
consequence of the fact that the superdimension of
osp(2n|2n) is zero. Moreover, we find that, with regard
to the energy-momentum tensor 7(z) defined by (4.1), the
osp(2n|2n) currents associated with the simple roots
(3.43)—(3.52) are indeed primary fields with conformal
dimension one, namely,

T()T(w) = (4.2)

_ Ei(w) IE;(w) .
TEEW = Ao+ L =isom
_ Fiw) | 0F;i(w) .
T()Fi(w) = P e— 1=<i=2n
T H (w) = LWy SHW) g,
(z—=w? (z—w)

It is expected that the osp(2n|2n) currents associated with
nonsimple roots, which can be constructed through the
simple ones, are also primary fields with conformal dimen-
sion one. Therefore, T(z) is the very energy-momentum
tensor of the osp(2n|2n) current algebra.

n
m=I[+2

n
+ Z(—¢9z+1,m¢91+1,maxu+1 + 0111.m9,,

m=1

1l=l=n-1,

= 2011010y, + 014 m9,,) T X110z

i<j

4.1)

V. SCREENING CURRENTS

Important objects in the application of free-field realiza-
tions to the computation of correlation functions of the
CFTs are screening currents. A screening current is a
primary field with conformal dimension one and has the
property that the singular part of its OPE with the affine
currents is a total derivative. These properties ensure that
the integrated screening currents (screening charges) may
be inserted into correlators while the conformal or affine
Ward identities remain intact [22,25].

Free-field realizations of the screening currents may be
constructed from certain differential operators [29,38]
which can be defined by the relation

P D (s Asx, %9, 5: 0, 0l = (A|E,G (x, %3, 3, 6, 0),

fora € A,. (5.1

The operators p@(s,) (@ € A,) give a differential opera-
tor realization of the subalgebra (osp(2n|2n)) . Again it is
sufficient to construct s; = p(")(sai) related to the simple
roots. Using (5.1) and the Baker-Campbell-Hausdorff for-
mula, after some algebraic manipulations, we obtain the
following explicit expressions for s;:

Z (_Xl-kl,mxl-kl,mafc,y,ﬂ + xl+l,ma)ﬂym + 2")Cl-Fl,m)El,max, + xl+l,max,}m)

+ Z)EUHGXI + 0

XL i+1 Xp1+17

(5.2)
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n
Sp = Z (yl,maén’m - yl,myl,maéuvl + yl,maa,,vm - 2yl,men,m‘axn) - 20}1,18)6” + aﬁn,l’ (53)
m=2
Sp+i = Z @it 1m0, = VirrmYit 1m0, T Vit 1m9y,,) T Iy, l=si=n—1 (5.4)
m=i+2
Son = 95, - (-5)

One may obtain the differential operators s, associated with the nonsimple generators from the above simple ones.
Following the procedure similar to Refs. [29,38], we find that the free-field realization of the screening currents S;(z)
corresponding to the differential operators s; is given by

Si(z) = { Z (Y141 @YV 1m @D Brie1(@) + Fiv1m(2) Brm(2) + Z CYi+1m @DV 1m(DB1(@) + Vi 1.m(2) Brm(2))
m=Il+2 m=I[+2

n

+ v11@)Bri41@) + 29,141(2)Bi(2) — Z (‘i’;l1,m(Z)‘I’1++1,,,,(Z)B_1,1+1(Z) - ‘i’ﬁhm(z)qﬁ,m(z))

m=1

= > @}, Q@Y,@B/(() — Vi, @) + Bl,,+1<z>}e<af$<z>>/m, 1=l=n-1, (5.6)

m=1
Su(z) = {,Z @V, (2) = 1,V (DV,1(2) = 29, (D)W, (2) B,(2))
m=2
3 A0 = 2H (DB + Wy (et BN, (5.7

m=2

Sp+ilz) = { Z (7§+1,m(Z)B§’m(Z) - 7§+1,m(Z)7§+1,m(Z)B§,,‘+1(Z)) + Z 7§+1,m(2)ﬁ§,m(2) + ,Bi;iﬂ(Z)}e(“"“"/B(Z))/m,

m=i+2 m=i+2

l=i=n—1, (5.8)

S20(2) = By (el FONE, (5.9)

Here <Z(z) is

— 2)elairdw)/ V=2
Fi(2)S;(w) = (—1)[[i]]+[F,»]5ijaW{(k 2)e }
(z—w)

b(2) = D (6:i(2)8; + d,ri(D)e,). (5.10) ij=1,...2n (5.14)
i=1

Here [[i]] is given by
The OPEs of the screening currents with the energy- 1 i=1_ . n
momentum tensor and the osp(2n|2n) currents (3.43)— [[i]] = {O’ i = n’ n 1’ ' n
(3.52) are ’ T

The screening currents obtained this way are called screen-

S (w) aS8;(w) S;(w) ing currents of the first kind [30]. Moreover, the screening
T(2)S;(w) = C—w?2 (z—w) = W{(Z — w)}’ current S,(z) is fermionic and the others are bosonic.
i=1..,2n, (S.11) VI. DISCUSSIONS
We have constructed the explicit expressions of the free-
E2)S,(w) = 0, Li=1..2n, (5.12) field representation for the os p(2n|2n) current algebra at
an arbitrary level k and the corresponding energy-
momentum tensor. We have also found the free-field rep-
o resentation of the 2n associated screening currents of the
H;(2)S;(w) =0, Lj=1...,2n, (5.13)  first kind.
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The free-field realization (3.43)-(3.52) of the
osp(2n|2n) current algebra gives rise to the Fock repre-
sentation of the corresponding current algebra in terms of
the free fields (3.26)—(3.34). It provides explicit realiza-
tions of the vertex operator construction [44,45] of repre-
sentations for affine superalgebra osp(2n|2n),. Moreover,
these representations are, in general, not irreducible for the
current algebra. To obtain irreducible representations, one
needs the associated screening charges, which are the
integrals of the corresponding screening currents (5.6),
(5.7), (5.8), and (5.9) and performs the cohomology analy-
sis as in [23,28,29,31].

To fully take the advantage of the CFT method, one
needs to construct its primary fields. It is well known that
there exist two types of representations for the underlying
finite-dimensional superalgebra osp(2n|2n): typical and
atypical representations. Atypical representations have no
counterpart in the bosonic algebra setting, and the under-
standing of such representations is still very much incom-
plete. Although the construction of the primary fields
associated with typical representations is similar to the
bosonic algebra cases, it is a highly nontrivial task to
construct the primary fields associated with atypical rep-
resentations [46].
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APPENDIX: DEFINING REPRESENTATION OF
osp(2n|2n)

Let V be a Z,-grading 4n-dimensional vector space with
an orthonormal basis {|i), i = 1, ..., 4n}. The Z, grading is
chosen as [1]=---=[2n]=0, [2n+1]=---=
[4n] = 1. Let e, i, j=1,...,n,be an n X n matrix with
entry 1 at the ith row and the jth column and zero else-
where. The 4n-dimensional defining representation of
osp(2n|2n), denoted by py, is given by the following 4n X

4n matrices:
“C€m )

)7
“Cmi

po(Es —5,) = ( el
(A1)

m <l

po(Fs —5) = ( €

Po(Ezs,)=( 0 61/),
0 O

(A2)

PHYSICAL REVIEW D 78, 106004 (2008)

pO(EémezS,) = ( 0 €mi + elm>r

0 0
(A3)
pO(Fé,,,+51) = ( 0 0), m << l,
e tewm O
0 O
0 €]
pO(E(s[*E,-) = ell O ’
0 0 (Ad)
( €;] 0
0
pO(FSI*Ei) = 0 0 ’
\0 e
0 €]
0
Po(Es +e,) = 0 e ,
\0 0 (AS)
0 0
— €i 0
pO(FSIJre,») - 0 0 ’
\_eli 0
el'j
pO(EE[—E_/-) = _eji ’
(A06)
po(Fe—¢) = ( —ejj >, 1<}
0 el’j - ej,-
pO(Ee,-Jrej) =10 0 ’
(A7)

0 0
poFere) =| —eijte; O

), i<

po(Hs —5) = ( Cpm — €l ) m <1,
€l — Cmm

(A8)

po(Fas,) = ( 0 0), po(Hs, +s,) = ( enm T €y ) m <1,
ey 0 “Caum T €1

(A9)
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po(Hys,) = ( ey ) (A10)
—ey
(eii
po(Hs, ) = " e ,
—e
11) (A11)
(—e,»,- \
€ii
po(Hs,+e,) = . ,
1
\ _611)
€ — €j; . ‘
polHe—c) = ejj —ei | 1<
(A12)
eii + 6” ) .
poHere) = —ei—e; | 1<
(A13)

We introduce 2n linear-independent generators H; (i =
1,...2n):

Hl = H25[, l=l= n, (A14)

Hn+i = %(HE,-—E/ + HE[+€'/)’ (A15)

i=1...,n—1 and i<},

PHYSICAL REVIEW D 78, 106004 (2008)

H2n = %(He[-%—e” - He,-—e,,)’ i=n—1 (A16)

Actually, the above generators {H,} span the Cartan sub-
algebra of 0sp(2n|2n). In the defining representation, these
generators can be realized by

po(H)) = ( e ), I=1...,n
e
€ii
pO(Hr1+i) = € s 1= 1, e, N

The corresponding nondegenerate invariant bilinear
supersymmetric form of osp(2n|2n) is given by

(A17)

(A18)

Y x,y € osp(2n|2n).
(A19)

(x, y) = 35tr(po(x)po(y)),

Here the supertrace, for any 4n X 4n matrix A, is defined
by

4n
> A (A20)

4n 2n
str(4) = > (= DA; =3 A -
=1 =1 [=2n+1
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