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Abstract. Habitat loss and fragmentation has created metapopulations where there were
once continuous populations. Ecologists and conservation biologists have become interested
in the optimal way to manage and conserve such metapopulations. Several authors have
considered the effect of patch disturbance and recovery on metapopulation persistence, but
almost all such studies assume that every patch is equally susceptible to disturbance. We
investigated the influence of protecting patches from disturbance on metapopulation
persistence, and used a stochastic metapopulation model to answer the question: How can
we optimally trade off returns from protection of patches vs. creation of patches? We
considered the problem of finding, under budgetary constraints, the optimal combination of
increasing the number of patches in the metapopulation network vs. increasing the number of
protected patches in the network. We discovered that the optimal trade-off is dependent upon
all of the properties of the system: the species dynamics, the dynamics of the landscape, and
the relative costs of each action. A stochastic model and accompanying methodology are
provided allowing a manager to determine the optimal policy for small metapopulations. We
also provide two approximations, including a rule of thumb, for determining the optimal
policy for larger metapopulations. The method is illustrated with an example inspired by
information for the greater bilby, Macrotis lagotis, inhabiting southwestern Queensland,
Australia. We found that given realistic costs for each action, protection of patches should be
prioritized over patch creation for improving the persistence of the greater bilby during the
next 20 years.

Key words: dynamic landscape; economic costs; greater bilby; Macrotis lagotis; metapopulation;
optimal management; stochasticity.

INTRODUCTION

A metapopulation is a collection of interacting

subpopulations of the same species, each of which

occupies a separate patch of habitat (Levins 1969, Gilpin

and Hanski 1991, Hanski 1999, Dobson 2003). Habitat

loss and fragmentation has created metapopulations

where there were once continuous populations. In

addition, numerous species naturally occupy landscapes

of this type, such as wood roaches in fallen logs

(Kambhampati et al. 2002), fish on coral reefs (James

et al. 2002), and parasites on hosts (Thrall and Burdon

1997). Hence, metapopulation models have become a

common paradigm for incorporating some spatial

structure into population models (Ellner and Fussmann

2003). A common type of metapopulation model is a

presence/absence model, which tracks only whether or

not each patch within the metapopulation is occupied.

Traditional metapopulation models assume that the

landscape is static: habitat quality does not change over

time. However, landscapes are invariably dynamic.

There has been growing interest in empirical studies of

metapopulations where patch quality fluctuates, for

example, the Sharp-tailed Grouse (Tympanuchus phasia-

nellus) in central and northern North America (Akca-

kaya et al. 2004), the marsh fritillary butterfly

(Euphydyas aurinia) in Finland (Wahlberg et al. 2002),

the butterfly Lopinga achine in Sweden (Bergman and

Kindvall 2004), the greater bilby Macrotis lagotis in

southwestern Queensland, Australia (Southgate and

Possingham 1995), and several species, including four

endangered polyporous fungi (Amylocystis lapponica,

Fomitopsis rosea, Phlebia centrifuga, and Cystotereum

murraii), in eastern Finland (Gu et al. 2002).

There have also been a number of theoretical studies

considering the role of habitat disturbance and recovery

on metapopulation persistence. These have included

metapopulations where patches are affected by different

disturbance regimes: independent disturbance events

(Hess 1996, Johnson 2000, Keymer et al. 2000,

Amarasekare and Possingham 2001, Ellner and Fuss-

mann 2003, Ross 2006a, b), catastrophes where several

patches are disturbed simultaneously (Wilcox et al.

2006), age-dependent disturbance (Brachet et al. 1999,

Hastings 2003), and spatially correlated disturbance
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(McCarthy and Lindenmayer 2000, Guichard et al.

2004, Kallimanis et al. 2005). It has been shown that the

influence of disturbance on metapopulation persistence

is significant. A simplifying feature of many of these

models is that they assume every patch of habitat is

equally susceptible to disturbance.

The assumption of equal susceptibility of patches to

disturbance is unrealistic in situations where manage-

ment may make a patch less susceptible, or even

immune, to disturbance. What if there is a choice

between creating a new patch of habitat and reducing

the disturbance rate in an existing patch through better

stewardship? Existing models do not deal with this issue.

We created a new model that accounts for this

possibility and explored ways of determining whether

it is better to introduce new patches of habitat into the

system or protect patches from disturbance in terms of

improving population viability.

We used a continuous-time Markov chain (Norris

1997, Keeling and Ross 2008) to model a metapopula-

tion in which a number of patches are immune to

disturbance, with the remaining patches susceptible to

independent disturbance events. We assumed that when

a patch is disturbed it becomes temporarily unsuitable

for occupancy. If a patch is occupied when disturbed,

the population occupying that patch becomes locally

extinct. Unsuitable patches recover independently of

other patches at a constant rate. Each occupied patch

may provide propagules that colonize suitable unoccu-

pied patches, and may also become unoccupied in the

absence of a disturbance and independently of other

patches through a local extinction event, which results in

the patch itself remaining suitable for occupancy. This

model encompasses both the stochastic version of the

classical metapopulation model of Levins (1969) (corre-

sponding to all patches being immune to disturbance)

and the stochastic version of the model of Hess (1996),

first analyzed by Ross (2006a) where all patches are

susceptible to disturbance.

We investigated the influence of both the number of

patches and the number of patches protected from

disturbance on population persistence in a dynamic

landscape. In particular, we considered the influence of

protected patches on the greater bilby population of

southwestern Queensland, Australia. The bilby is a type

of bandicoot that was once distributed over 70% of the

arid and semiarid regions of Australia, but is now

largely restricted to the Tanami Desert in the Northern

Territory, the Gibson and Great Sandy Deserts of

Western Australia, and one isolated population between

Boulia and Birdsville in southwestern Queensland. This

decline has resulted in the bilby being classified as

vulnerable to extinction (Australasian Marsupial and

Monotreme Specialist Group 1996). The reduction in

the bilby’s range is a result of habitat modification by

cattle and rabbits, as well as from predation by cats,

dingoes, and foxes (Southgate and Possingham 1995,

Australasian Marsupial and Monotreme Specialist

Group 1996, Pavey 2005). The particular bilby popula-

tion we considered consists of approximately 600–700
individuals distributed predominantly as four distinct,

interacting subpopulations. Each of these populations is
subject to habitat modification by cattle and rabbits, and

the patches can also become unsuitable for occupancy
due to predation. In addition to these processes, each
patch may also be subject to flooding, drought, and fire.

Management strategies for increasing the persistence of
the species are currently being considered and some of

these have recently been implemented (Southgate and
Possingham 1995, Pavey 2005). Our results are illustrat-

ed with respect to the greater bilby, however our
methodology is applicable to any metapopulation.

The optimal management of metapopulations has
received considerable attention to date. In particular,

consideration has been given to whether to make a new
patch of habitat or reintroduce a species to a suitable but

empty patch (Possingham 1996), whether it is better to
expand existing patches, link existing patches via

corridors, or create a new patch (Westphal et al. 2003),
and also to optimizing reserve expansion by determining

which areas of habitat should be reserved (Haight et al.
2002, 2004). These latter studies also incorporated the

monetary costs of the various actions into the decision
theory framework. As far as we know no one has
considered the optimal decision of whether to make a

new patch of habitat or protect an existing patch from
disturbance within an economic framework.

We assumed that, given a fixed budget, the manager
had two options: creating new patches or protecting

patches. Specifically we addressed the question: How
many patches of habitat should be created and/or

protected to maximize the probability of population
persistence during the next 20 years. We also considered

two approximations which may be useful for addressing
the protection vs. creation question for systems with

larger numbers of patches. Finally, we considered the
question of what reduction in the disturbance rate (over

all the patches in the metapopulation) would have the
same impact on viability as protecting a given number of

patches.

MODELS

Stochastic model for small metapopulations

We used a continuous-time Markov chain model to
describe the dynamics of a presence–absence metapop-

ulation in a dynamic landscape. A continuous-time
Markov chain is defined by the rates of transition

between the possible states of the system. Let m(t) be the
number of suitable, unprotected patches, n(t) the

number of occupied, unprotected patches, and p(t) the
number of occupied, protected patches at time t. Then

f(m(t), n(t), p(t)), t � 0g is assumed to be a Markov
chain taking values in the set of all possible values SM¼
f(m, n, p) 2 Z3: 0 � n � m � Mu, 0 � p � Mpg, where
Mu is the number of unprotected patches and Mp is the

number of protected patches (M :¼ Mu þ Mp). The
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number of unsuitable patches at time t is Mu�m(t). The

possible changes in the state of the system that our

model allows and the corresponding positive transition

rates between states are listed in Table 1.

To be emphatic, we assumed that protected patches

are immune to disturbances; our decision, which is

presented later in the paper, is whether to create/acquire

new patches of habitat (increase Mu) which are

susceptible to disturbance events, or to protect patches

from disturbance events (increase Mp and decrease Mu),

given budgetary constraints.

Deterministic model for large metapopulations

Obviously the question of interest—protect or cre-

ate?—will also be of interest for populations inhabiting

larger metapopulation networks. In these situations the

number of patches may be so large that numerical

calculations required for analysing the full stochastic

model are infeasible. For this reason, we also considered

a deterministic model that approximates the optimal

decision by maximizing the expected number of occu-

pied patches.

The deterministic approximation of our model,

derived from the theory of density-dependent Markov

population processes (see Kurtz 1970, Pollett 1990, Ross

2006a, b), consists of a system of three differential

equations. The first equation,

dx

dt
¼ rðqu � xÞ � sx

describes the dynamics of the fraction x(¼m/M) of

suitable patches; the first term on the right-hand side

r(qu � x) corresponds to recovery of unsuitable,

unprotected patches where r is the rate of patch recovery

and qu is the proportion of unprotected patches, and the

second term on the right-hand side sx corresponds to

disturbance of suitable (unprotected) patches where s is

the rate of habitat disturbance. The second equation,

dy

dt
¼ cðyþ zÞðx � yÞ � ðeþ sÞy

describes the dynamics of the fraction y(¼n/M) of

occupied, unprotected patches; the first term on the

right-hand side c(y þ z)(x � y) corresponds to

colonization of suitable, unprotected patches where

z(¼p/M) is the fraction of occupied, protected patches

and c is the patch colonization rate, and the second term

on the right-hand side (e þ s)y corresponds to local

extinction and disturbance where e is the local patch

extinction rate and s is the rate of habitat disturbance.

The final equation,

dz

dt
¼ cðyþ zÞðqp � zÞ � ez

describes the dynamics of the fraction z(¼p/M) of

occupied, protected patches; the first term on the right-

hand side c(yþ z)(qp� z) corresponds to colonization of

protected patches where c is the patch colonization rate

and qp is the proportion of protected patches, and the

second term on the right-hand side ez corresponds to

local extinction where e is the local patch extinction rate.

From this system of differential equations, we can

show that the equilibrium density of suitable habitat x*

is given by

x� ¼ rqu

r þ s
:

This is identical to the equilibrium density of suitable

habitat for the classical metapopulation in dynamic

landscape model considered by Ross (2006a), multiplied

by the proportion of patches that are susceptible to

disturbance events qu. The equilibrium density of

occupied, unprotected patches y*, and the equilibrium

density of occupied, protected patches z*, may also be

evaluated, but the expressions are rather cumbersome

and are presented in the Appendix. For future reference

note that y*þ z* is the equilibrium density of occupied

patches.

METHODS

Stochastic

We determined the dynamic behavior of our model,

along with the extinction probability, the expected time

to extinction, and the quasi-stationary distribution (the

distribution of the process conditioned on the popula-

tion being extant) (Day and Possingham 1995, Pollett

1996, Wilcox et al. 2006, Keeling and Ross 2008) of the

metapopulation for certain parameter values and

TABLE 1. Possible changes in the state of the system and the corresponding positive transition rates between states.

Event Transition Rate

Recovery of unsuitable, unprotected patch (m, n, p) ! (m þ 1, n, p) r(Mu � m)
Disturbance of unoccupied, unprotected patch (m, n, p) ! (m � 1, n, p) s(m � n)
Disturbance of occupied, unprotected patch (m, n, p) ! (m � 1, n � 1, p) sn
Colonization of unprotected, unoccupied patch (m, n, p) ! (m, n þ 1, p) c½ðnþ pÞ=M�ðm� nÞ
Local extinction at unprotected, occupied patch (m, n, p) ! (m, n � 1, p) en
Colonization of protected, unoccupied patch (m, n, p) ! (m, n, p þ 1) c[(n þ p)/M](Mp � p)
Local extinction at protected, occupied patch (m, n, p) ! (m, n, p � 1) ep

Note: Parameters are e, the rate at which a local population becomes extinct; c, the rate at which an empty patch is colonized by
an occupied patch; s, the rate at which a patch becomes unsuitable for occupancy; r, the rate at which a patch recovers to become
once again suitable for occupancy; M, the total number of patches in the system; Mu, the number of unprotected patches in the
system; and Mp, the number of protected patches in the system.
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strategies. The quantities were evaluated by constructing

a matrix Q¼ (q(i, j), i, j 2 SM), where q(i, j) is the rate of

transition from state i to state j, for j 6¼ i, and q(i, i) ¼
�q(i), where q(i) :¼Rj6¼i q(i, j) is the total rate at which we

move out of state i. Then, the probability distribution of

the process at time t, p(t), is given by p(t)¼ p(0) exp(Qt),

where p(0) is the initial distribution of the process, and

exp is the matrix exponential (see, for example, Norris

1997, Keeling and Ross 2008). We evaluated the matrix

exponential using the mexpv function from EXPOKIT

(Sidje 1998), a numerical package for efficiently com-

puting the matrix exponential. The probability of

extinction by time t is then the sum of the elements of

the vector p(t) corresponding to states of extinction. The

expected time to extinction was evaluated by solving a

system of linear equations: QCs¼�1, where 1 is a vector

of 1s andQC is the matrixQ restricted to the non-extinct

states C (all rows and columns of Q corresponding to

the states of extinction are removed); the expected time

to extinction starting from state i is then the ith element

of the vector s (see, for example, Norris 1997, Keeling

and Ross 2008). The quasi-stationary distribution is

given by the unique solution p¼ (pi, i 2 C) to pQC¼�tp
and Ri2C pi ¼ 1, where �t is the eigenvalue of QC with

smallest magnitude (see, for example, Ross 2006a,

Keeling and Ross 2008). This was evaluated numerically

using the eigs function in Matlab (MathWorks, Natick,

Massachusetts, USA). To employ these methods of

numerical evaluation, we needed to transform the state

space SM to a (one-dimensional) set of the form S¼ f1,
2, . . . , Ng. The transformation we adopted is presented

in the Appendix.

Deterministic

We formulated the problem as a constrained maxi-

mization problem, assuming that the number of

occupied patches, and number of new patches and

protected patches, are all real valued, and used the

deterministic approximation to determine the strategy

which resulted in the maximum expected number of

occupied patches. It is possible, if the habitat dynamics

are particularly unfavorable, that adding a new (unpro-

tected) patch to the system decreases population

viability. In such a situation the optimal strategy is

obvious: protect patches, and create/acquire new patch-

es only if there is sufficient funds to also protect them.

Here we considered the more likely case where both

protecting patches and creating/acquiring new patches

increases population viability (which simplifies calcula-

tions as shown in the next paragraph); a sufficient

condition for this to occur is r/(rþ s) . (eþ s)/c, which is

the condition for the existence of a positive equilibrium

patch occupancy density for a metapopulation system

consisting of only unprotected patches (Hess 1996, Ross

2006a).

Our goal is to maximize (y*þ z*)[MpþMuþNuþ (Np

� Mu)
þ] by creating a number Nu of new, unprotected

patches and a number Np of (possibly new) protected

patches, where (d)þ is d if d . 0 and 0 otherwise. Note

that y� and z� are also functions of both Nu and Np

through qu, qp, and M. This optimization will be subject

to the budgetary constraint B � buNuþ bpNpþ bu(Np�
Mu)

þ, where B is the overall budget, bu is the cost of

creating/acquiring a new, unprotected patch, and bp is

the cost of protecting an existing (or newly created)

patch from disturbance (note that budget and costs are

for the whole time horizon of interest, which is 20 years

here). Since we assume that all variables are real valued

and that additional expenditure always increases the

population’s viability, we will always expend the entire

budget, so the inequality in the budget constraint

becomes an equality. Thus, we may express Nu as a

function of Np:

Nu ¼
B� bpNp

bu

� ðNp �MuÞþ

allowing us to express our objective function as a

function of Np only. The optimization problem is

maximizeðy� þ z�Þ½Mp þMu þ Nu þ ðNp �MuÞþ�

where y*, z*, and Nu are functions of Np, subject to 0 �
Np � Nmax

p . Nu may then be determined from the

budgetary constraint equation. An expression for the

value of Np that maximizes our objective function may

be easily evaluated numerically using Matlab or Maple

(Maplesoft, Waterloo, Ontario, Canada).

Rule of thumb

We developed a simple rule of thumb for determining

whether to protect patches from disturbance or create

new patches of habitat. The rule of thumb was derived

by ignoring the effect of protected patches on the

unprotected patches’ equilibrium occupancy, and vice

versa, thus simplifying the expression for the expected

number of occupied patches. The equilibrium patch

occupancy density for protected patches (in isolation) is

(1� e/c) (Levins 1969, Ross 2006a), and the equilibrium

patch occupancy density for unprotected patches (in

isolation) is [r/(r þ s) � (e þ s)/c] (Hess 1996, Ross

2006a). With our independence assumption, the result-

ing equilibrium patch occupancy owing to creating Nu

new patches and protecting Np patches from disturbance

is given by

r

r þ s
� eþ s

c

� �
½Nu þ ðMu � NpÞþ� þ 1� e

c

� �
ðMp þ NpÞ

which we wish to maximize. Once again Nu can be

expressed as a function of Np since we will expend our

entire budget B. By differentiating with respect to Np we

arrive at a simple rule of thumb: we should protect

patches if

1� e

c

� �
� r

r þ s
� eþ s

c

� �� �
1

bp

.
r

r þ s
� eþ s

c

� �
1

bu

:

Otherwise we should create new patches. That is, if the
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ratio of marginal benefit to marginal cost due to

protecting a patch (left-hand side of this inequality) is

greater than the ratio of marginal benefit to marginal

cost due to creating a patch (right-hand side of this

inequality) then we should protect patches, otherwise we

should create more habitat. This may also be rearranged

to evaluate the critical cost ratio bu/bp so that the

influence of changing costs on the optimal management

policy may be investigated.

From the above rule of thumb, we can determine an

explicit approximation for the threshold disturbance

rate s� for which the optimal policy changes from patch

creation to patch protection (assuming all other rates are

unchanged):

s� ¼ aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4bprðc� eÞðbp þ buÞ

p
2ðbp þ buÞ

where a¼�(bprþ burþ bpeþ buc). For disturbance rates

s less than s� we should prioritize patch creation, and for

disturbance rates s greater than s� we should prioritize

patch protection.

RESULTS

Investigation of the system for particular values

showed that it settled down to something like a

deterministic equilibrium (Figs. 1 and 2). However it is

not a true equilibrium as the only true equilibrium is

extinction of the species. The behavior exhibited is

known as quasi-stationarity (Pollett 1996, Wilcox et al.

2006).

Case study: the greater bilby

We then considered the greater bilby metapopulation

described in the introduction. We assumed realistic

values for the recovery rate r, the disturbance rate s, the

colonization parameter c, and the local extinction rate e,

and where possible those that have been used previously

(see Southgate and Possingham 1995): r¼ 2, s¼ 0.67, c¼
3, and e ¼ 0.10 per year.

Increasing the number of patches protected had a

significant positive effect on the persistence of the bilby

(Fig. 3). Protecting only one of the four patches resulted

in a substantial decrease in the extinction probability,

from close to 1 to 0.506. Additionally, protecting all four

patches from disturbance resulted in the probability of

extinction in 20 years reduced from almost certain

extinction to a small likelihood of extinction: 0.0024.

This dramatic decrease highlights the potential impor-

tance of protecting patches from disturbance as a means

of increasing population persistence and thus biodiver-

sity, in particular for species that are heavily influenced

by the dynamics of the landscape they inhabit. As a

comparison, if we were to add an additional three

patches of habitat and translocate species to these

patches, the probability of extinction would be reduced

to only 0.84.

Another common measure of population persistence

is the expected time to extinction (Figs. 4 and 5). Similar

results to that for the probability of extinction can be

found; the protection of patches dramatically increased

the persistence time of the bilby, in this case by a factor

of approximately four (cf. Figs. 4 and 5). Once again,

when landscape dynamics are important, the protection

of patches has a significant influence on increasing the

expected time to extinction of species.

The above methods provide valuable information

concerning the effectiveness of various management

options. However, they ignore the different costs of each

action, and hence are not useful for real-world

management decision making.

FIG. 1. The evolution of the number of suitable patches, denoted by m (of those unprotected), the number of these suitable
patches that are occupied, denoted by n, and the number of protected patches occupied, denoted by p, through time, from an initial
number of (5, 5, 5) in each class, respectively. Parameter values are colonization rate c¼ 0.6, local extinction rate e¼ 0.1, rate of
patch recovery r¼0.6, rate of habitat disturbance s¼0.1, total number of patchesM¼10, and number of protected patchesMp¼5.
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Our next consideration is that of finding an optimal

strategy for maximizing the greater bilby’s persistence

over the next 20 years with the constraint of a fixed

budget.

Our possible management actions consist of increas-

ing the number of patches in the network or increasing

the number of protected patches in the network. We

determined the best combination of these actions, given

realistic relative costs for each (Queensland Government

Natural Resources and Mines, unpublished data). We

assumed a fixed budget for the 20-year period of AU$12

million, a cost of AU$4 million for constructing a new

patch suitable for bilby occupancy, and a cost of

AU$100 000 per patch per year (i.e., AU$2 million over

20 years) for protection of an existing patch from

habitat degradation and predation. Here, we have

assumed protection ensures no modification to habitat.

In reality, there will still be some modification, and there

is likely to be a relationship between the cost and the

rate of such disturbance. Further research will investi-

gate such issues. With these plausible parameter values

we found that the optimal strategy for increasing

viability is to construct one new patch of habitat and

to protect four of the five patches, at a total cost of

AU$12 million. The implementation of this strategy

resulted in the probability of extinction at the end of the

20-year period decreasing from close to 1 to 0.002.

The optimal strategy found here is typical for similar

budgets and action costs for the bilby, and other

metapopulations that are highly influenced by their

landscape dynamics. The first priority is the protection

of patches from disturbance, and then, if additional

funding remains, we should construct new habitat and

protect these new patches simultaneously.

If landscape dynamics are relatively unimportant (or

slow) compared to metapopulation dynamics, the main

priority is to construct additional patches. For the

greater bilby population, there is a threshold around the

FIG. 2. Plots of the quasi-stationary distribution (the number in each class conditional upon non-extinction) of the stochastic
model for a metapopulation in a dynamic landscape, with parameter values corresponding to those used in Fig. 1. Each cell
represents the probability of observing a particular (m, n, p) combination, given that the species in question has not become extinct;
m and n vary along the horizontal and vertical axes, respectively, of each plot, and p (the number of protected patches occupied)
varies from plot to plot.
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disturbance rate s ¼ 0.08 (assuming all other rates are
unchanged). For patch disturbance rates less than this

threshold the priority is to create new patches, and for
patch disturbance rates above the threshold protection

of patches should be prioritized.
Finally, as a comparison, the two other plausible

management strategies over the 20-year period, with the
given budget and costs, are to either add an extra three

subpopulations to the metapopulation or to add two
additional patches and protect two of the resulting six

patches. These result in the probability of extinction
decreasing to 0.844 and 0.071, respectively, both
considerably higher than that of the optimal strategy.

For purposes of demonstrating the usefulness and
accuracy of the approximations, we considered a

metapopulation with a larger number of patches M ¼
20 and with colonization rate c¼ 1, local extinction rate

e¼0.50, rate of habitat recovery r¼1, and with the same
cost of patch protection bp¼ 2, cost of patch creation bu
¼4, and budget B¼12. For a metapopulation with these
rates and costs, there exists a threshold at habitat

disturbance rate s ’ 0.057; for rates of disturbance s .

0.057 we should protect patches, otherwise we should
create more habitat.

Deterministic approximation

The optimal decision for the bilby population derived
from using our deterministic approximation is in

agreement with that found using the full stochastic
model; create one new patch and protect four of the five

patches.

We emphasize that care should be taken when using

this approximation for small metapopulations, as it only

uses the expected number of occupied patches and in no

way accounts for stochasticity in the process. This is

important as it has been identified that habitat

disturbance always increases the variability in patch

occupancy dynamics (Ross 2006a). This is exemplified

by consideration of the optimal decision for the greater

bilby population with different rates of disturbance s;

while the expected number of occupied patches is

maximized by creating new patches when the rate of

disturbance s is less than approximately 0.46, the

probability of extinction is only minimized by creating

new patches when the rate of disturbance s is less than

;0.08. However, we know from theory (Kurtz 1970,

Pollett 1990, Ross 2006a, b) that, as the population size

increases, the deterministic approximation will become

more accurate and consequently the deterministic

approximation presented should provide accurate re-

sults for population management in situations where the

exact computational approach is infeasible.

For our example of a metapopulation with a larger

number of patches (M ¼ 20), the deterministic approx-

imation predicts a threshold rate of disturbance of s ’

0.083, which is much closer to the exact threshold at rate

of disturbance s ’ 0.057, demonstrating that the

approximation improves with increasing patch numbers.

We recommend that the exact computational approach

be used when it is feasible to do so, which depends upon

the hardware available, time frame used, and manage-

ment options available. However, this deterministic

approximation, and the rule of thumb to follow, should

provide accurate results for metapopulations with more

than 50 patches, that is, M . 50.

FIG. 3. The probability of extinction over a 20-year period
for the greater bilby with different numbers of protected
patches. Each set of points corresponds to a different number of
protected patches, with a fixed total number of patches (four), a
fixed initial number of suitable patches (four), and a fixed initial
number of occupied patches (four), with all protected patches
being occupied initially. Parameter values are colonization rate
c¼ 3, local extinction rate e¼ 0.1, rate of patch recovery r¼ 2,
rate of habitat disturbance s¼ 0.67, total number of patches M
¼ 4, and number of protected patches Mp ¼ 0, 1, 2, 3, 4,
respectively.

FIG. 4. The expected time to extinction for the greater bilby
with no protected patches. Parameter values are colonization
rate c¼3, local extinction rate e¼0.1, rate of patch recovery r¼
2, rate of habitat disturbance s¼2/3, total number of patchesM
¼ 4, and no protected patches (Mp ¼ 0).
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Rule of thumb

The rule of thumb appeared to be very robust and

provided estimates in very good agreement with the

deterministic approximation; for the bilby population it

predicted that when the disturbance rate s increases over

approximately 0.43, patch creation is optimal and, for

our larger metapopulation example, it predicted that

when the disturbance rate s increases over approximate-

ly 0.087, patch creation is optimal (the respective

disturbance rate thresholds s� using the deterministic

approximation are s� ’ 0.46 for the bilby population

and s� ’ 0.083 for our larger metapopulation example).

It suffers from the same failings as the full deterministic

approximation, in that it does not account for stochas-

ticity in the process and assumes continuous numbers of

individuals, and thus it should be used with care for

metapopulations with a small numbers of patches.

Partial protection

Finally we considered the question: What reduction in

the disturbance rate s (over all the patches in the

metapopulation) would have the same impact on the

viability of the bilby population (in terms of 20-year

survival probability) as protecting a given number of

patches? Such a reduction corresponds to the partial

protection of all patches within the metapopulation

network. To match the same probability of extinction in

20 years from protecting one patch we would need to

reduce the rate of disturbance s from 0.66 to approx-

imately 0.28. For two protected patches, it would need

to be reduced to approximately 0.13, and for three

protected patches it would need to be reduced to

approximately 0.05. Thus, it appears that it is more

effective (in this situation) to focus protection on a

smaller number of patches, consequently protecting

them completely, than averaging this protection

amongst all patches (assuming equal cost).

CONCLUSION

Our analysis has identified the importance of protect-

ed patches on metapopulation viability in a dynamic

landscape. In particular, it has identified the significance

of this strategy for metapopulations that are strongly

influenced by the dynamics of the landscape they

inhabit, such as the greater bilby. The optimal strategy

for maximizing metapopulation viability, given a fixed

budget and costs for each of two management actions

(constructing new patches or protecting patches), was

found to depend upon all of the parameter values and

costs associated with the species under consideration. In

simple cases, the optimal strategy was found to be the

obvious one: protect patches when landscape dynamics

dominate metapopulation persistence and create patches

otherwise. For interesting cases with metapopulation

and landscape dynamics occurring on similar time

scales, the optimal strategy is not easily deduced without

a full exploration of the model. However, we have

provided two approximations, including a simple rule of

thumb, that are useful for metapopulations consisting of

a large number of patches. We have presented, in detail,

the optimal strategy for improving the viability of the

greater bilby Macrotis lagotis; and this methodology can

be applied to any metapopulation.
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