MULTIVARIATE SIMULATION OF CHANNEL IRON ORE DEPOSITS AT BUNGAROO AND YANDICOOGINA, WESTERN AUSTRALIA

A THESIS SUBMITTED IN THE DEPARTMENT OF EARTH SCIENCES OF THE UNIVERSITY OF QUEENSLAND AND IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF PHILOSOPY 2007

BY CAMERON MCLAREN WILSON BOYLE B.SC (HONOURS). – GEOLOGY, JAMES COOK UNIVERSITY OF NORTH QUEENSLAND, CERTIFICATE IN THE SCIENCES UNIVERSITY OF NEW ENGLAND, POST-GRADUATE CERTIFICATE IN GEOSTATISTICS EDITH COWAN UNIVERSITY

WH BRYAN MINING GEOLOGY RESEARCH CENTRE THE UNIVERSITY OF QUEENSLAND

Statement of Originality

The work presented in this thesis, to the best of my knowledge and belief, is original, except as acknowledged in the text, and the material has not been submitted, either in whole or part, for a degree at this or any other university.

Acknowledgements

Assistance from staff members and other students of the WH Bryant Research Centre is gratefully acknowledged. Special thanks apply to the three supervisors: Professor Chris Alford for managing the research project, reading thesis drafts, making available study facilities at UQ and handling university administration; Doctor Shuxing Li for joint supervision and technical input particularly in the fields of conditional simulation, MAF and guidance on running DBMAFSIM; and Professor Roussos Dimitrakopoulos for setting up the research project, as well as direction and advice on course work study and earlier research.

Rio Tinto is thanked for their generous support of this thesis financially, for computing facilities, providing study leave, making available Bungaroo and Yandicoogina data sets and permission to release results.

Abstract

Geostatistical conditional simulation has wide potential applications in the iron ore industry and is the favoured tool to assess variability and risk. Multivariate relationships are important in such simulation, for example between Fe and impurities such as Al_2O_3 , SiO_2 and P.

Turning bands has been the main conditional simulation algorithm used in the Western Australian iron ore industry. In this thesis a more recent approach using minimum/maximum autocorrelation factors (MAF) and sequential Gaussian simulation (SGS) are used together and performance comparisons are made with turning bands at Yandicoogina, a channel iron ore deposit (CID) in Western Australia.

MAF-SGS and turning bands algorithms both performed well in simulating Fe, SiO_2 , Al_2O_3 and P at Yandicoogina. Extensive checking of simulations showed both approaches could reasonably reproduce multivariate statistics and spatial continuity of composites including means, variances, histograms, quantile-quantile plots, scatter plots and variography in normal scores and data space, as well as in MAF space for the MAF-SGS approach. MAF generated from transformed composites were largely uncorrelated and able to be considered independent for variography and simulation. Later back transformation from MAF space to normal scores space then to data space successfully reintroduced joint relationships seen in the conditioning data.

While the MAF-SGS approach needs additional transformations compared with turning bands, a linear model of coregionalisation and hence the modelling of cross semivariograms is not required. If there are a high number of variables then construction of a linear model of coregionalisation becomes more difficult and the MAF approach may be preferred. In this study four variables were considered and a linear model of coregionalisation could be built. Turning bands transformations are from data space to normal scores space only, with no need to calculate or check any decorrelated factors.

The two main methods currently used in the mining industry for determining optimum drillhole spacing with the use of conditional simulation were compared at the Test Pit area of the Bungaroo channel iron ore deposit, also in Western Australia. The "simulation-simulation" method generates precisions for various drillhole spacing using two stages of simulation, whereas the "simulation-estimation" approach calculates expected relative errors for different spacings via a simulation stage followed by an estimation step.

Clear differences exist between the relative errors from the simulation-estimation method and the precisions calculated from the simulation-simulation method. The simulationestimation method appears more insensitive to the grid spacing with only moderate improvements in relative error as the drillhole spacing is tightened. The simulationsimulation method shows more marked improvement in precision with closer spacing and appears more realistic in this study. Al₂O₃ is the main variable to consider at Bungaroo when choosing a suitable drillhole spacing. SiO₂ grades of composites are mainly below the SiO₂ cut off grade for ore whereas the mean Al_2O_3 is grade is quite close to the Al_2O_3 cut off grade for ore. Hence although SiO₂ has higher variability, it is not as critical as Al₂O₃ for determination of drillhole spacing. Fe and P have greater spatial continuity than Al₂O₃ and SiO₂ and do not require such close drillhole spacing. Fifteen percent precision, based on a volume representing a quarter's production and using the simulation-simulation method, may be regarded as acceptable for mine planning purposes. A resource evaluation drilling spacing of 150m along strike and 50m across strike appears appropriate for a precision of less than 15% for a quarterly mining volume in determining Al₂O₃ grade at Bungaroo.

Table of Contents

Chapter 1 General Introduction	1
1.1 Goal and Objectives	5
Chapter 2 Literature Review	6
2.1 Applications of conditional simulation to iron ore deposits	6
2.2 Turning Bands Joint Simulation	14
2.3 Conditioning joint simulations	15
2.4 LU Decomposition	17
2.5 Sequential Gaussian Simulation	19
2.6 Direct sequential joint simulation	21
2.7 Stepwise simulation	22
2.8 Factorisation Methods	23
Chapter 3 Methodology	.29
3.1 Random Function Models	29
3.2 Stationarity	31
3.3 Multivariate Random Function Models	31
3.4 Normal score transformation	33
3.5 Minimum / maximum autocorrelation factors	35
3.6 MAF Simulation	40
3.7 Turning Bands Joint Simulation	43
3.8 Validation of conditional simulations	43
Chapter 4 Simulation at Yandicoogina by MAF and turning bands methods	.44
4.1 Introduction	44
4.2 Geology	44
4.3 Statistics	48
4.4 MAF calculation	51

4.5 Variography at Yandicoogina51
4.5.1 Introduction
4.5.2 Data space experimental semivariograms52
4.5.3 Linear model of coregionalisation in normal scores space
4.5.4 MAF semivariograms57
4.6 Simulation using MAF at Yandicoogina58
4.6.1 Simulation58
4.6.2 Validation
4.7 Simulation using turning bands at Yandicoogina63
4.7.1 Introduction63
4.7.2 Simulation
4.7.3 Validation64
4.8 Comparison of simulation using MAF and turning bands at Yandicoogina 68
Chapter 5 Conditional simulation at Bungaroo and optimum drillhole spacing
5.1 Introduction
5.2 Simulation-simulation method73
5.3 Simulation-estimation method74
5.4 Geology
5.5 Composites
5.6 Simulation grid78
5.7 Normal Scores Transformation79
5.8 Variography 79
5.9 Accuracy calculation using the simulation-estimation method at Bungaroo . 79
5.10 Precision calculation using simulation-simulation method at Bungaroo 82
5.11 Precision or accuracy of drillhole spacings
Chapter 6 Conclusions and recommendations
6.1 Conclusions

6.2 Recommendations	
References	90
Appendix A Yandicoogina supplement	
Appendix B Yandicoogina MAF calculation	
Appendix C Bungaroo supplement	

Table of figures

FIGURE 1-1 IRON ORE PROJECTS IN WESTERN AUSTRALIA	4
FIGURE 3-1 GRAPHICAL TRANSFORMATION FROM DATA SPACE TO NORMAL SCORES S	SPACE
FOR A CUMULATIVE DISTRIBUTION FUNCTION	34
FIGURE 3-2 DBMAFSIM FLOW SHEET	42
FIGURE 3-3 DBMAFSIM CONDITIONING NEIGHBOURHOOD	42
FIGURE 4-1 GEOLOGICAL MAP OF THE HAMERSLEY PROVINCE	46
FIGURE 4-2 GEOLOGICAL SECTION OF YANDICOOGINA JUNCTION DEPOSIT	49
FIGURE 4-3 YANDICOOGINA COMPOSITE PLAN FOR IMA RESOURCE EVALUATION	
DRILLHOLES	49
FIGURE 4-4 YANDICOOGINA HISTOGRAM OF COMPOSITES FOR MAF4 IN MAF SPACE	LEFT)
AND MAF4 IN NORMAL SCORES SPACE (RIGHT)	53
FIGURE 4-5 YANDICOOGINA MEANS AND VARIANCES OF MAF-SGS SIMULATIONS AN	ND
COMPOSITES FOR AL_2O_3 , FE, P and SIO_2 in data space	60
FIGURE 4-6 YANDICOOGINA MEANS AND VARIANCES OF TURNING BANDS SIMULATIC	ONS AND
COMPOSITES FOR AL_2O_3 , FE, P and SIO_2 in data space	66
FIGURE 5-1: BUNGAROO PRECISION / RELATIVE ERRORS FOR AL_2O_3	86
FIGURE 5-2: BUNGAROO PRECISION / RELATIVE ERRORS FOR FE	86
FIGURE 5-3: BUNGAROO PRECISION / RELATIVE ERRORS FOR P	87
FIGURE 5-4: BUNGAROO PRECISION / RELATIVE ERRORS FOR SIO2	87
FIGURE A-1 YANDICOOGINA HISTOGRAMS OF COMPOSITES FOR AL_2O_3 , Fe, P and SI	O_2 IN
DATA SPACE	
FIGURE A-2 YANDICOOGINA SCATTER PLOTS OF COMPOSITES FOR AL_2O_3 , FE, P and	$SIO_2 \ \text{IN}$
DATA SPACE	
FIGURE A-3 YANDICOOGINA DIRECT AND CROSS SEMIVARIOGRAMS OF COMPOSITES	FOR
AL_2O_3 , Fe, P and SIO_2 in data space	100
FIGURE A-4 YANDICOOGINA DIRECT AND CROSS EXPERIMENTAL SEMIVARIOGRAMS	OF
COMPOSITES FOR MAF1 IN MAF SPACE, MAF2 IN MAF SPACE, MAF3 IN MA	F SPACE
AND MAF4 IN NORMAL SCORES SPACE	101
FIGURE A-5 YANDICOOGINA SEMIVARIOGRAM MODEL OF COMPOSITES FOR $MAF1$ in	∖ MAF
SPACE	101
FIGURE A-6 YANDICOOGINA SEMIVARIOGRAM MODEL OF COMPOSITES FOR $MAF2$ in	∖ MAF
SPACE	102
FIGURE A-7 YANDICOOGINA SEMIVARIOGRAM MODEL OF COMPOSITES FOR MAF3 IN	√ MAF
SPACE	102
FIGURE A-8 YANDICOOGINA SEMIVARIOGRAM MODEL OF COMPOSITES FOR MAF4 IN	V
NORMAL SCORES SPACE	102
FIGURE A-9 YANDICOOGINA EXPERIMENTAL SEMIVARIOGRAM OF MAF-SGS SIMUL	ATION
1 FOR SIMULATED MAF1 IN MAF SPACE	103
FIGURE A-10 YANDICOOGINA EXPERIMENTAL SEMIVARIOGRAM OF MAF-SGS SIMU	LATION
1 FOR SIMULATED MAF2 IN MAF SPACE	103
FIGURE A-11 YANDICOOGINA EXPERIMENTAL SEMIVARIOGRAM OF MAF-SGS SIMU	LATION
1 FOR SIMULATED MAF3 IN MAF SPACE	103
FIGURE A-12 YANDICOOGINA EXPERIMENTAL SEMIVARIOGRAM OF MAF-SGS SIMU	LATION
1 FOR SIMULATED MAF4 IN NORMAL SCORES SPACE	104
FIGURE A-13 YANDICOOGINA EXPERIMENTAL SEMIVARIOGRAMS OF MAF-SGS	
SIMULATION 1 FOR AL_2O_3 , FE, P and SIO_2 in normal scores space	104
FIGURE A-14 YANDICOOGINA EXPERIMENTAL SEMIVARIOGRAMS OF MAF-SGS	
SIMULATION 1 FOR AL ₂ O ₃ , FE, P AND SIO ₂ IN DATA SPACE	105

FIGURE A-15 YANDICOOGINA HISTOGRAMS OF MAF-SGS SIMULATION 1 FOR AL ₂ O ₃ , FE, P
FIGURE & 16 VANDICOOCINA QUANTILE QUANTILE DI OT OF COMPOSITES AND MAE SCS
FIGURE A-10 I ANDICOUGINA QUANTILE-QUANTILE PLOT OF COMPOSITES AND MIAF-505
SIMULATION I FOR AL ₂ O ₃ , FE, F AND SIO ₂ IN DATA SPACE
FIGURE A-17 YANDICOOGINA SCATTER PLOT OF MAF-SUS SIMULATION I FOR AL ₂ O ₃ , FE,
$P \text{ AND SIO}_2 \text{ IN DATA SPACE}$ 108
FIGURE A-18 YANDICOOGINA SEMIVARIOGRAM MODEL OF COMPOSITES AND
EXPERIMENTAL SEMIVARIOGRAM OF MAF-SGS SIMULATION NUMBER 1 FOR MAF 1 IN MAF SPACE
FIGURE A-19 YANDICOOGINA SEMIVARIOGRAM MODEL OF COMPOSITES AND
EXPERIMENTAL SEMIVARIOGRAM OF MAF-SGS SIMULATION NUMBER 1 FOR MAF2 IN
MAF SPACE
FIGURE A-20 YANDICOOGINA SEMIVARIOGRAM MODEL OF COMPOSITES AND
EXPERIMENTAL SEMIVARIOGRAM OF MAF-SGS SIMULATION NUMBER 1 FOR MAF3 IN
MAF SPACE
FIGURE A-21 YANDICOOGINA SEMIVARIOGRAM MODEL OF COMPOSITES AND
EXPERIMENTAL SEMIVARIOGRAM OF MAF-SGS SIMULATION NUMBER 1 FOR MAF4 IN
NORMAL SCORES SPACE
FIGURE A-22 YANDICOOGINA DIRECT SEMIVARIOGRAM MODEL OF COMPOSITES FOR AL ₂ O ₃
IN NORMAL SCORES SPACE
FIGURE A-23 YANDICOOGINA CROSS SEMIVARIOGRAM MODEL OF COMPOSITES FOR AL ₂ O ₃ -
FE IN NORMAL SCORES SPACE
FIGURE A-24 YANDICOOGINA CROSS SEMIVARIOGRAM MODEL OF COMPOSITES FOR AL ₂ O ₃ -
P IN NORMAL SCORES SPACE
FIGURE A-25 YANDICOOGINA CROSS SEMIVARIOGRAM MODEL OF COMPOSITES FOR AL ₂ O ₃ -
SIO ₂ IN NORMAL SCORES SPACE
FIGURE A-26 YANDICOOGINA DIRECT SEMIVARIOGRAM MODEL OF COMPOSITES FOR FE IN
NORMAL SCORES SPACE
FIGURE A-27 YANDICOOGINA CROSS SEMIVARIOGRAM MODEL OF COMPOSITES FOR FE-P IN
NORMAL SCORES SPACE
FIGURE A-28 YANDICOOGINA CROSS SEMIVARIOGRAM MODEL OF COMPOSITES FOR FE-SIO2
IN NORMAL SCORES SPACE
FIGURE A-29 YANDICOOGINA DIRECT SEMIVARIOGRAM MODEL OF COMPOSITES FOR P IN
NORMAL SCORES SPACE
FIGURE A-30 YANDICOOGINA CROSS SEMIVARIOGRAM MODEL OF COMPOSITES FOR P-SIO2
IN NORMAL SCORES SPACE
FIGURE A-31 YANDICOOGINA DIRECT SEMIVARIOGRAM MODEL OF COMPOSITES FOR SIO2 IN
NORMAL SCORES SPACE
FIGURE A-32 YANDICOOGINA HISTOGRAM OF TURNING BANDS SIMULATION 1 FOR AL ₂ O ₃ .
FE. P AND SIO ₂ IN DATA SPACE
FIGURE A-33 YANDICOOGINA OUANTILE-OUANTILE PLOT OF COMPOSITES VERSUS TURNING
BANDS SIMULATION 1 FOR AL ₂ O ₃ FE P AND SIO ₂ IN DATA SPACE 117
FIGURE A-34 YANDICOOGINA SCATTER PLOT OF TURNING BANDS SIMULATION 1 FOR
$A_{L_2O_2}$ FE P and SiO ₂ in data space 118
FIGURE A-35 YANDICOOGINA EXPERIMENTAL SEMIVARIOGRAM OF TURNING BANDS
SIMULATION 1 FOR AL $_{2}O_{2}$ FE P AND SIO ₂ IN DATA SPACE 119
FIGURE A-36 YANDICOOGINA MAF-SGS SIMULATIONS ONE TO THREE OF FE AT 475-480
RL 120
FIGURE A-37 YANDICOOGINA TURNING BANDS SIMULATIONS ONE TO THREE OF FE AT 475-
480 RL 121
FIGURE C-1 LOCATION MAP OF ROBE RIVER IRON ORE DEPOSITS

FIGURE C-2 COLLAR PLAN OF BUNGAROO CLOSE SPACED DRILLING STUDY AREA	126
FIGURE C-3 SCHEMATIC CROSS SECTION OF GEOLOGICAL UNITS AT THE BUNGAROO	
DEPOSIT	127
FIGURE C-4 DRILLHOLE COMPOSITE PLAN WITH SIZE RELATED TO WEIGHT	127
FIGURE C-5 ISATIS FORM WITH GAUSSIAN ANAMORPHOSIS MODELLING PARAMETERS	FOR
FE	
FIGURE C-6 SEMIVARIOGRAM CALCULATION PARAMETERS FOR HORIZONTAL DIRECTION	ONS
	128
FIGURE C-7 SEMIVARIOGRAM CALCULATION PARAMETERS FOR THE VERTICAL DIRECT	ION
	. 129
FIGURE C-8 SEMIVARIOGRAM OF COMPOSITES FOR AL2O3 IN NORMAL SCORES SPACE	129
FIGURE C-9 SEMIVARIOGRAM OF COMPOSITES FOR FE IN NORMAL SCORES SPACE	
FIGURE C-10 SEMIVARIOGRAM OF COMPOSITES FOR P IN NORMAL SCORES SPACE	130
FIGURE C-11 SEMIVARIOGRAM OF COMPOSITES FOR SIO ₂ in normal, scores space	131
FIGURE C-12 CROSS SEMIVARIOGRAM OF COMPOSITES FOR AL $_{2}O_{2}$ -FE IN NORMAL SCO	RES
SPACE	131
FIGURE C-13 CROSS SEMIVARIOGRAM OF COMPOSITES FOR AL 202-P IN NORMAL SCOR	ES
SPACE	132
FIGURE C-14 CROSS SEMIVARIOGRAM OF COMPOSITES FOR AL Ω_2 -SI Ω_2 in normal sc	'ORES
SDACE	132
FIGURE C-15 CROSS SEMIVARIOGRAM OF COMPOSITES FOR FE-P IN NORMAL SCORES S	1 <i>32</i> DACE
THORE C-15 CR055 SEMIVARIOGRAM OF COMPOSITES FOR TE-T IN NORMAL SCORES 5	133
FIGURE C-16 CROSS SEMIVARIOGRAM OF COMPOSITES FOR FE_SIO_2 in normal score	155 79
SDACE	133
FIGURE C-17 CROSS SEMIVADIOCRAM OF COMPOSITES FOR $P_{-}SiO_{-}$ in normal scores	155
SDACE	, 13/
51 ACE	135
FIGURE C-10 NEIGHDOURHOOD SEARCH FARAMETERS FOR FOUNT SIMULATION	136
FIGURE C-17 NEIGHBOURHOOD SEARCH FARAMETERS FOR BLOCK SIMULATION	130
FIGURE C -20 SIMULATION FARAMETERS FOR FOINTS	138
FIGURE C-21 KRIGING REIGHBOURHOOD FARAMETERS	130 NI
NORMAL SCORES SDACE	120
NORMAL SCORES SPACE	139
NORMAL SCORES SDACE	120
NORMAL SCORES SPACE	139
FIGURE C-24 SEMIVARIOGRAM OF MODEL AND 5X5X4M SIMULATION ONE FOR F IN	140
NURMAL SCURES SPACE	140
FIGURE C-25 SEMIVARIOGRAM OF MODEL AND 5X5X4M SIMULATION ONE FOR SIO2 IN	140
NURMAL SCURES SPACE	140 ICUT)
FIGURE C-20 SCATTER PLOT OF COMPOSITES (LEFT) AND 5X5X4M SIMULATION ONE (R	1GH1) 141
FOR AL ₂ O ₃ -FE IN DATA SPACE	141
FIGURE C-27 SCATTER PLOT OF COMPOSITES (LEFT) AND 5X5X4M SIMULATION ONE (R	IGH1) 141
FOR AL ₂ U ₃ -P IN DATA SPACE	141
FIGURE C-28 SCATTER PLOT OF COMPOSITES (LEFT) AND 5X5X4M SIMULATION ONE (R	IGHT) 1 4 1
FOR AL ₂ O ₃ -SIO ₂ IN DATA SPACE	141
FIGURE C-29 SCATTER PLOT OF COMPOSITES (LEFT) AND 5X5X4M SIMULATION ONE (R	IGHT)
FOR FE-P IN DATA SPACE	142
FIGURE C-30 SCATTER PLOT OF COMPOSITES (LEFT) AND 5X5X4M SIMULATION ONE (R	IGHT)
FOR FE-SIO ₂ IN DATA SPACE	142
FIGURE C-51 SCATTER PLOT OF COMPOSITES (LEFT) AND 5X5X4M SIMULATION ONE (R	IGHT)
FOR P-SIO ₂ IN DATA SPACE	142
FIGURE $C-32$ PLAN MAP OF SIO ₂ COMPOSITES IN TEST PIT AREA	143

FIGURE C-33 HISTOGRAM OF SIO ₂ in artificial drillholes with 200m by 100m grid)
SPACING	143
FIGURE C-34 HISTOGRAM OF KRIGED SIO ₂ CONDITIONED BY ARTIFICIAL DRILLHOLES WI	TH
200x100m grid spacing	143
FIGURE C-35 BUNGAROO PLANS OF FE GRADES FOR 160-164 RL (LEVEL 60) IN	
SIMULATIONS ONE TO THREE	144
FIGURE C-36 BUNGAROO CROSS SECTIONS OF FE GRADES AT 29300E LOOKING WEST IN	
SIMULATIONS ONE TO THREE	145

List of tables

TABLE 2-1 RANKED COMPARISON OF DECOMPOSITION ALGORITHMS CONSIDERED BY	
Tercan	. 28
TABLE 4-1 YANDICOOGINA PRODUCT SPECIFICATIONS (2005)	. 48
TABLE 4-2 STATISTICS OF THE IMA COMPOSITES	. 50
TABLE 4-3 YANDICOOGINA PEARSON CORRELATION COEFFICIENTS FOR COMPOSITES	. 50
TABLE 4-4 YANDICOOGINA SPEARMAN CORRELATION COEFFICIENTS FOR COMPOSITES	. 50
TABLE 4-5 YANDICOOGINA SEMIVARIOGRAM CALCULATION PARAMETERS FOR DATA	
SPACE, NORMAL SCORES AND MAF	. 52
TABLE 4-6 YANDICOOGINA COMPOSITES NORMAL SCORES SPACE LINEAR MODEL OF	
COREGIONALISATION	. 56
TABLE 4-7 YANDICOOGINA SEMIVARIOGRAM MODEL PARAMETERS FOR MAF1, MAF2,	
MAF3 AND NORMAL SCORES OF MAF4	. 57
TABLE 4-8 YANDICOOGINA PEARSON CORRELATION COEFFICIENTS FOR COMPOSITES (LEF	FT)
AND MAF-SGS SIMULATION 1 (RIGHT) IN DATA SPACE	. 62
TABLE 4-9 YANDICOOGINA SPEARMAN (RANK) CORRELATION COEFFICIENTS FOR	
COMPOSITES (LEFT) AND MAF-SGS SIMULATION 1 (RIGHT) IN DATA SPACE	. 62
TABLE 4-10 YANDICOOGINA PEARSON CORRELATION COEFFICIENTS OF COMPOSITES (LEF	FT)
AND TURNING BANDS SIMULATION 1 (RIGHT) FOR AL_2O_3 , FE, P AND SIO ₂ IN DATA	
SPACE	. 67
TABLE 4-11 YANDICOOGINA SPEARMAN (RANK) CORRELATION COEFFICIENTS OF	
COMPOSITES (LEFT) AND TURNING BANDS SIMULATION 1 (RIGHT) FOR AL_2O_3 , FE, P	
AND SIO_2 IN DATA SPACE	. 67
TABLE 4-12 YANDICOOGINA COMPARISON OF MAF-SGS AND TURNING BANDS METHODS	570
TABLE 5-1: SUMMARY OF DECLUSTERED STATISTICS FOR AL_2O_3 , FE, P and SIO_2 for	
MINERALISED GEOZONES 51 AND 52 IN THE COMPOSITES OF THE TEST PIT AREA	. 78
TABLE 5-2: CORRELATION COEFFICIENT MATRIX FOR AL_2O_3 , FE, P and SIO_2 for	
MINERALISED GEOZONES 51 AND 52 IN THE COMPOSITES OF THE TEST PIT AREA	. 78
TABLE 5-3 STATISTICS OF 5x5x4m SIMULATION 1 FOR VARIABLES IN NORMAL SCORES	
SPACE	. 81
TABLE 5-4 STATISTICS OF 5x5x4m SIMULATION 1 FOR VARIABLES IN DATA SPACE	. 81