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Abstract

Short-distance digital communication links, between shap a circuit board, or between dif-
ferent circuit boards for example, have traditionally bbeitt by using electrical interconnects
— metallic tracks and wires. Recent technological advanaes resulted in improvements in
the speed of information processing, but have left elagtiiterconnects intact, thus creat-
ing a serious communication problem. Free-space optitadannects, made up of arrays of
vertical-cavity surface-emitting lasers, microlenses] photodetectors, could be used to solve
this problem.

If free-space optical interconnects are to successfufiiace electrical interconnects, they
have to be able to support large rates of information trangifis high channel densities. The
biggest obstacle in the way of reaching these requiremertser beam diffraction. There
are three approaches commonly used to model the effectsef lbeeam diffraction in opti-
cal interconnects: one could pursue the path of solving ifiaction integral directly, one
could apply stronger approximations with some loss of aouof the results, or one could
cleverly reinterpret the diffraction problem altogethidone of the representatives of the three
categories of existing solutions qualified for our purposes

The main contribution of this dissertation consist of, fifstmulating the mode expansion
method, and, second, showing that it outperforms all othethods previously used for mod-
elling diffraction in optical interconnects. The mode enpi@n method allows us to obtain the
optical field produced by the diffraction of arbitrary lagerams at empty apertures, phase-
shifting optical elements, or any combinations thereajardless of the size, shape, position,
or any other parameters either of the incident optical fielthe observation plane. The mode
expansion method enables us to perform all this without afgrence or use of the traditional
Huygens-Kirchhoff-Fresnel diffraction integrals.

When using the mode expansion method, one replaces the mb@gécal field and the
diffracting optical element by an effective beam, possitiytaining higher-order transverse
modes, so that the ultimate effects of diffraction are eajently expressed through the complex-

valued modal weights. By using the mode expansion methodsepmesents both the incident



and the resultant optical fields in terms of an orthogonab$édtinctions, and finds the un-
known parameters from the condition that the two fields haveet matched at each surface
on their propagation paths. Even though essentially a noaigarocess, the mode expansion
method can produce very accurate effective represensatibthe diffraction fields quickly
and efficiently, usually by using no more than about a doz@aeding modes.

The second tier of contributions contained in this dissiemas on the subject of the anal-
ysis and design of microchannel free-space optical intereots. In addition to the proper
characterisation of the design model, we have formulatedrakoptical interconnect perfor-
mance parameters, most notably the signal-to-noise rapitical carrier-to-noise ratio, and
the space-bandwidth product, in a thorough and insightly that has not been published
previously. The proper calculation of those performanceupaters, made possible by the
mode expansion method, was then performed by using expaiathemeasured fields of the
incident vertical-cavity surface-emitting laser beamséteAillustrating the importance of the
proper way of modelling diffraction in optical interconngcwe have shown how to improve
the optical interconnect performance by changing eitherrtterconnect optical design, or by
careful selection of the design parameter values. We haeesaiggested a change from the
usual ‘square’ to a novel ‘hexagonal’ packing of the optio&rconnect channels, in order to
alleviate the negative diffraction effects.

Finally, the optical interconnect tolerance to lateralahgnment, in the presence of mul-
timodal incident laser beams was studied for the first time,iawas shown to be acceptable
only as long as most of the incident optical power is emittedhie fundamental Gaussian

mode.
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Chapter 1

Introduction

Light, practically synonymous with life, has been used fmamenunication throughout human
history: from the fire beacons and relay stations used byrhbgat civilisations, via the op-
tical telegraph of Claude Chappe, to our current golden agasefripowered systems. We
have witnessed upheavals, as mere prospects of a ‘fibrauterdlstarted making and break-
ing millionaires, driving economies, and transforming tiues. Whether we like it or not,
our business wants have swayed to the point where, in madigcaippns, optical technology
can no longer be viewed just as an entrepreneurial dreanastilie very means of progress.
One patrticular area of application are the high-speedi-shstance communication intercon-
nections between information-processing centres, suetheatronic chips on a motherboard,
traditionally built by using metallic wires.

In Sec. 1.1 of this chapter we identify what in particular iong with the current approach
to building communication links, and what benefits and difties we can expect from optical
solutions. As the transportation of any research idea ides#gn routine is only as good as the
tracks of tested theories, we turn our attention in Sec.d.tBd research that has been carried
out into the ways of modelling these novel devices. In paldic we examine the issues of
modelling laser beam propagation and diffraction, and katecthat there is scope for a novel
approach and invigoration. In Sec. 1.3 we present the pno@fathis dissertation, and state

exactly what we intend to contribute to the body of knowledge
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1.1 Electrical versus optical interconnects

The continuous improvements in the size, speed, and sagattish of digital information-
processing devices, very well characterised by Moore’s [4whave not been closely fol-
lowed by corresponding improvements in the performancefofmation-processing systems.
As the strength of a chain is determined by its weakest ling,drimary cause for this im-
balance lies in poor communication links within the systefike communication links, or
interconnects, have traditionally been built by using hietstrips (wires), through which the
information is transferred by electromagnetic waves wallectrical frequencies.” The numer-
ous problems associated with the traditional electridaroonnects, mainly due to unforgiving
losses at high frequencies, have resulted in that nowadlagteaommunication links are built
by using optical interconnects. Optical interconnectsrapginciple the same as the traditional
electrical interconnects; the main difference betweernlweconcepts is that the frequency of
electromagnetic radiation used to transfer informatioooissiderably higher in optical inter-
connects. Nonetheless, this seemingly small differenserésulted in numerous physical,
technical, and technological advantages of optical owertetal interconnects. While ubig-
uitous in telecommunications and becoming wide-spread ediom-distance applications,
optical solutions to the communication bottleneck probtamased by electrical interconnects
are relatively slowly gaining entry at the short-distanoe ef the scale. Our understanding
of ‘the short-distance end of the scale’ is the set of appioa where the communication
distances range from several millimetres to several temgafimetres; these communication
links would typically be used for building on-chip, chip-thip and PCB-to-PCB (printed cir-
cuit board) communication links. As we shall see later, #resons for the delayed diffusion
of optical interconnects into the small-scale arena areynsme of which will successfully
be addressed in this study.

The study of optical interconnects started with a paper bgdamanet al. [5], and was
continued by examination of potential benefits and limatagi that would result from using
optics for interconnection [6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17], analysing the relative
benefits of optics over electronics [6, 18, 19, 20, 21, 22,7224, 25, 26, 27], and comparing
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the different kinds of approaches against one another [283@, 31]. The findings of an
excellent and very thorough paper by D. A. B. Miller [32], ore ttationale and challenges
for optical interconnects to electronic chips, are useé lsrthe backbone of the introductory
argument. Following the fashion of Ref. [32], the benefitaubfife optical interconnects, given
the present status of electrical interconnects, can begpginto several categories, each of

which can sometimes be further subdivided:

Scaling benefits. The scaling benefits of optical over electrical intercotsetem from the
aspect ratio limitation of electrical interconnects. Givan electrical interconnect, as
shown in Fig. 1.1 (whose actual shape, assumed to be squé&ig.id.1 is not very
important in general considerations), it has been showthi]the rate of information
transfer that the interconnect can support is intimatdbted to its length/, and cross-
sectional areaA. For capacitive-resistive (RC) lines, the limit to the totahmber of
bits per second that can be communicatB8d,depends on the ratio of the length of
the interconnect to the square of the total cross-sectianrea, the ratio known as the
‘aspect ratio’. As a rough approximatios ~ B, A/¢?, where B, is a constant of
proportionality roughly equal tb0'° bit/s for unequalised lines. For inductive-capacitive
(LC) lines formula is the same, the only difference being tBatis slightly smaller

(about10™ bit/s) due to further skin-effect limits.

Clock distribution and synchronisation benefits. There are fewer problems with clocking
and synchronisation in optical interconnects, than thesdraelectrical interconnects,
for two main reasons. First, the predictability of timingaptical interconnects is much

better than in electrical interconnects, due to the notexisemperature dependence of
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signal and clock paths in optical interconnects (as opptseadrery strong dependence
in electrical interconnects). Second, the power and ared fes clock distribution in

optical interconnects is much smaller that those used atr&dal interconnects. Because
of this predictability of timing of optical signals, it calieven be physically possible to

altogether eliminate the synchronising circuits [32].

Design simplification benefits.As clock speed and communication requirements increase,
the process of designing electrical interconnects becanme complex. One of the
more implied benefits of optics is that the process of desgiptical interconnects
could end up being much simpler than the process of desigi@adrical interconnects.

There are two main reasons for this:

1. Absence of ‘electrical’ electromagnetic phenomeMast of the difficulties associ-
ated with impedance matching and wave reflections in etattinterconnects can
be avoided in optical interconnects (by using antireflectoatings for example);
the problems are further alleviated due to the phenomenquoaritum impedance
conversion, which is intrinsic to all optoelectronic deasc Quantum impedance
conversion allows optoelectronic devices to match thepadance for wave ab-
sorption, while still being matched to the impedance of teteic devices [21].
Finally, optical interconnects are immune to radio-fragyesignals and interfer-

ence, in stark contrast to electrical interconnects.

2. Frequency independence of optical interconnegis the carrier frequency in op-
tical interconnects is so high, there is essentially no aldgfion or change in the
propagation of signals, since the modulation frequencylg a small fraction of
the carrier frequency. This allows for using the same opiitarconnect design,

regardless of the modulation frequency.

Other performance benefits. Other performance benefits of optical interconnects can-be d

vided into six groups, as follows:

1. Architectural advantagesThe physical properties of optical interconnects allow
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for altering the traditional communication architecturiésve define a ‘synchronous
zone’' [32] as an area in a system in which the clock time dalgyadictable, then it
follows that larger synchronous zones may be achieved isytsiem where optical
interconnects are used. It has also been shown [33] thatpdhe parallel optical
interface, an improvement of two to three orders of magmitindthe throughput
performance is possible by using optical interconnectsipared to all-electronic
solutions. Other examples of how optical interconnectshmnsed in the imple-
mentation of advanced computing concepts are given in Réfs3[3 36, 37]. The
relevance of introducing optical interconnects in monepssors and multiproces-

sors has been thoroughly studied from an architecturak péwvew in Ref. [38].

2. Reduction of power dissipatioBecause of the effect of quantum impedance con-
version, and as confirmed by various studies of power digsipan optical inter-
connects [19, 24, 31], power dissipation in optical intewoects is reduced. The
role of re-synchronisation circuits is optical intercootse as discussed previously,
is not as important as in electrical interconnects, henseltiag in further power
savings. Numerous analyses of the ‘break-even’ interattiorelengths at which
optical interconnects are favourable over electricalrodenects have been per-
formed [39], and, depending on the assumptions made, tla&{eneen lengths vary

from tens of micrometres to tens of centimetres.

3. Voltage isolation.The dielectric nature of interconnect channels, opticarses
and detectors results in the fact that optical intercormiattinsically provide volt-

age isolation between the different parts of the system.

4. Larger interconnection densityn an experimental study [40], with 4000 commu-
nication channels in an area of 49 /it was confirmed that optics can offer very
large overall interconnection densities. Electrical iotgnects, while still able to
provide denser links on ultra-short distances, are ulétgdimited by the number
of multiple pins in each interconnect. In optical intercents, however, the ulti-

mate limit on the channel density is very likely to be the podissipation in the
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receiver and transmitter circuitry [23].

5. Testing benefitsTesting of optically-interconnected chips is easier tHangame
sort of testing performed on electrically-interconneatkipbs, as optical implemen-

tations can be tested in a non-contact optical test set.

6. Benefits of short optical pulseslsing optical interconnects for building chip-to-
chip and other short-distance communication links operte@possibility of using
short optical pulses to power optical interconnects. Ushngyt pulses also offers a
radically new method for making wavelength-division-npléxed communication

links [41, 42, 43].

One could attempt to solve the problems intrinsically asged with electrical intercon-
nects by using methods other than changing the physical sn&fanterconnection. For ex-
ample, architectures could be changed to minimise interection length, design approaches
could pay special attention to the interconnection layousignalling on wires could be im-
proved by using techniques such as equalisation [44, 45F6ijthermore, the resistance in
information-processing chips and circuits could be desgddy using cryogenic cooling, for
example, the number of metal levels could be increased;hoff-wiring layers could be used
in addition to the on-chip wiring, or the information-pr@seng centres could be stacked ver-
tically. Even with considerable technological and praatthallenges, such as the bulkiness
of cooling equipment, additional power consumption inigate coding schemes, and cooling
difficulties in exotic architectures, each of these quiekafpproaches do not address compre-
hensively all of the electrical interconnect deficiencieshie way an optical approach does.
Even with issues that still have to be solved, such as low paligsipation, small latency
and physical size, and integrability with mainstream siticlevices, an optical solution to the
growing communication bottleneck problem seems imminent.

In addition to the technological and cost-derived issugsdabove, Miller also notes two
other very important challenges that face optical intenemts [32]. First, the systems that
could make the most advantage of optics currently havetaathres very different to the ar-

chitectures that need to be built around the strengths a¢adphterconnects; this is mostly
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due to the fact that designers of current systems may nossaily be on top of most recent
developments in optical technologies. Second, the adgastand disadvantages of optics are
frequently misinterpreted by those who are not involvedhmmost recent research work, as
is often the case for a new technology. Both of these bad hatstpartly to blame on two
trends: a rapid generation of an enormous amount of writtatenal in any ‘hot’ research
field, and an insistence on using familiar concepts and tedigch may not necessarily be the
most suitable ones, to acquaint oneself with the behavibnew devices and systems. Each
of these two trends can be redirected by constructing siygtlaccurate, suitable models of
optical interconnects. In addition to the information gneted here, numerous other exam-
inations of the idea of using optics for communication hagerbperformed, both formally
and informally [46, 47, 48, 49, 50, 51, 52, 53]. However, thbas not been a single study
which seriously warned against optical interconnectshliggted an important limitation or
problem with optical-interconnection technology, or usgdindamentally different argument
in favour of using optics for interconnecting electroniovides. In addition to the theory
and experience-based arguments, many experimental igagshs into the performance of
optical interconnects, in various configurations and fatiows purposes were successfully
performed [54, 55, 56, 57, 58, 59, 60, 61, 62].

We shall start our consideration of optical interconneisifa conceptual block diagram,
as shown in Fig. 1.2, rather than from a specific optical adenect considered theoretically or
experimentally before. The labels in Fig. 1.2 were purpalsebvritten in plural, to allow for
the fact that an optical interconnect will almost exclugiveonsists of many densely-packed
communication channels. An optical interconnect, in its@est form, consists of three ele-
ments: optical source, medium, and destination. The fanaif the source is to generate an
optical field which contains, in some predetermined way,itifi@mation that is to be trans-
mitted by the interconnect. The functions of the propagatedium is to guide the optical
field, with as little interaction as possible, all the wayt®intended destination. At the desti-
nation, the optical field is detected and the encoded dagdrisved, and passed on for further

processing. An optical interconnect could be one-directior two-directional. In most cases
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Figure 1.2: Conceptual block diagram of an optical interemin

a two-way communication link will be required between thiormation-processing centres,
and either two one-directional interconnects, or one tweetional interconnect with different
channels transmitting in different directions could bedusé/e shall assume that the numer-
ous optical sources and detectors are arranged in two-dioraal arrays, and that there is a
predetermined way in which data is directed to the appropchannel by the driving elec-
tronic circuitry. The purpose of the driving circuitry, Wwibne driver most probably attached
to each optical source it to translate the electrical sgypaésented to it into the language
that can change the operational characteristics of thealgource. Similarly, the purpose of
the receiving circuitry is to interpret the results of theofidetection process as meaningful
information.

The most likely candidate for the role of the optical sourcan optical interconnect is the
vertical-cavity surface-emitting laser (VCSEL), whose reftgeristics have improved signifi-
cantly over the past few years, with sub-mA threshold cusrf§8], and arrays of devices [64]
readily achievable. Rather than dwelling on the good charestics of VCSELSs for too long,
we shall mention several of its characteristics that may twt to be sources of problems in
future optical interconnects. Dense arrays of VCSELs witihidurrent densities may have
thermal problems. Furthermore, it is likely necessary tuae threshold currents of tens of

micro amperes in order to avoid the turn-on delay problen3$. [©n the other hand, low-
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threshold VCSELs will produce very small beams, thus makirggalignment and optome-

chanical design more difficult. As it will be elaborated upater, the presence of higher-order
transverse lasing modes in VCSELSs is undesirable in optitatéonnects, as it contributes
to the generation of noise. Similarly, the ability to coht*CSELS’ polarisation properties,

an area that still remains a subject of research [65, 66i$#hportant as it may also further

contribute to the generation of noise. Finally, separads bupplies may be required for VC-
SELs, as there are likely to be problems in achieving low pasugply voltages required in

a complementary metal-oxide (CMOS) environment. In spitthefmentioned possible dif-

ficulties VCSELSs are still the preferred source in opticakinbnnects, partially due to their
rich heritage in telecommunication applications.

The choice of a suitable photodetector in optical interemt is not so straightforward.
Analyses on the basis of several different assumptions3@Bhave shown that the receiver
power dissipation may well turn out to be the largest in the@hnterconnect. Hence, in-
tegration of photodetectors with receivers is very imparfar the receiver performance, if
the problem of power dissipation is to be contained. In paldir, it is highly desirable to ob-
tain receivers with low capacitances, which would ensuaeltbth the receiver circuits and the
power dissipation remain small. While photodetectors maddicon qualify for the detection
task in optical interconnects, an alternative solutioroisse GaAs detectors, as this material
is a good absorber at 850 nm. With GaAs it is also possible tailvery fast responses,
with the internal quantum efficiency being close to unity.tdesemiconductor-metal (MSM)
photodetectors would also lead to fast, efficient, and lapacitance photodetectors.

Study of the interaction of the optical field with the mediuon,optical system, used to
guide and support the propagation of the optical field in aticapinterconnect, defined as
being everything between the logical poimisand B in Fig. 1.2, is the main subject of this
thesis. The main function of the optical system betwdeand B is to ensure that most of the
signal power emitted by each VCSEL in the optical source agagtected by its associated
photodetector in the optical detector array. In doing se,dptical system generally has to be

such that:
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¢ the distance between the two ends of the interconnect @hertritting and the receiving

end) is long enough to satisfy the application requirements
¢ the density of channels in the optical interconnect is lamgeugh

e it does not interfere with the optical field in any way that lcbcompromise the correct

decoding of the messages communicated

e it does not further complicate neither the alignment, nerdaptomechanical design of

the interconnect.

In a chip-to-chip communication application, the intenceat would have to satisfy the fol-
lowing typical ‘physical layer’ requirements [68]: intemenection distances of at least about
4 cm, communication channel counts of about 16 to 512 chanoehnection densities of up
to 1250 channels/ctnand data rates of up to 1 Gbit/s/channel. The actual way iahwthe
optical system is built primarily depends on the nature dedrequirements of the intended
application. However, elements such as microlens and emsihrrays, fibre image guides,
optomechanical holders, beam splitters, prisms, as wethaso and compound lenses are
likely to be found. We note here that our perception of the adlthe optical interconnect in
a system is purely constrained to a communication role, pesgr to some views where data
manipulation is also allowed in the optical layer.

Two main categories of optical systems used in optical aotienects can readily be iden-
tified: the free-space category and the guided-wave catetyjoa free-space optical intercon-
nect, the optical field travels through a physically uncaediifas far as the spatial character-
istics of the field are concerned) region between the opsicaice and detector planes in the
interconnect. The region may be filled with air or some digleanaterial, and it may also
feature free-space optical elements such as lenses; tloegtanpfact is that the way in which
the optical field propagates through the interconnect isrdghed by the propagation charac-
teristics of the free space. On the other hand, in guidedewgnical interconnects, such as in
an optical fibre array or optical fibre image guide, the prepan characteristics of the optical

field are determined by the physical characteristics of taeeguiding medium. The ultimate
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Figure 1.3: Macrochannel free-space optical interconnect

purpose of both categories of optical systems, howevengisame: it is to periodically relay,
refocus, and direct the beam so that most of the power entittékde optical sources reaches
the appropriate photodetectors.

Among the numerous schemes that can be used to implemerditite@-point free-space
optical interconnects [69, 46], three distinct approaciresevident: macro-optical, micro-
optical, and clustered, or mini-optical approach. In theraptical approach [70, 71], il-
lustrated in Fig. 1.3, there is only one aperture stop in tit@esoptical system. The plane
of the optical sources is simply inverted and imaged, witt mragnification, onto the optical
detector plane. Although simple to design and build witimdtad components, the macro-
optical approach has several disadvantages, such as khef lscalability [69, 72], aberration
problems, frequent need to use compound lens elements lleesvizeilkiness of the resulting
system, especially if larger interconnection distancesraquired. The problems associated
with the macro-optical approach can to some extent be atlestiby using gradient refractive
index lenses [73, 74], however, they too may become exadgdong for larger source and
detector arrays. In the micro-optical approach [75, 76]llastrated in Fig. 1.4, one pair of
microlenses is used in each channel. The main advantagésddpproach is that each lens

operates with the field of view of a single source, rather tharentire array. Also, the number
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Figure 1.4: Microchannel free-space optical interconnect

of optical interconnect channels can be increased eastlyput the need to revise the overall
optical design. The main disadvantage of the micro-lenscgmh is the issue of increased
diffraction of incident laser beams by the microlens painjala may lead to limits in the in-
terconnection distances attainable, as well as to coomf the information carried by the
laser beams. The second disadvantage of the microcharstehsys its poor tolerance to
misalignment.

A good balance between macro-optical and micro-opticat@ggh can be achieved by
using the hybrid mini-optical approach [77, 78, 69, 79]. Asstrated in Fig. 1.5, in the opti-
cal systems of this type, optical sources and detectorsreaeged in clusters, each of which
is imaged by a single lens (minilens). This type of systenksé¢e combine the relatively
long optical throw and misalignment tolerance of the mamptieal approach with the scala-
bility and moderate field-of-view requirements of the matrannel systems. The most notable
disadvantage of this approach is a more complicated desapesgs in which the additional
parameters, due to a larger number of degrees of freedorh ésuihe size of each individual
minilens, their focal lengthgtc), need to be balanced carefully.

The common characteristic of the free-space optical interect category is that they al-

ways require a mechanical structure that cross-referaheesnaging arrays. This charac-
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Figure 1.5: Minichannel free-space optical interconnect.

teristic hence makes them unsuitable in applications wtierg@hysical location of the opti-
cal sources and detectors spans several different meehaoiosystems, within the common
information-processing infrastructure. Typical exanspleould include the situations where
different frames, shelves, or boxes would need to be interected. In these situation an em-
bodiment of the guided-wave optical interconnect cate¢®dy 71, 81, 82, 83, 84, 85] may
be more suitable. However, the two main problems associaithdthe guided-wave optical
interconnect category — the problems that make them ureitar our purpose — are their
inherent bulkiness, and the inability to scale to a large Imemof channel densities that would
be required of an optical interconnect.

Soon after the commencement of research into optical ioterects, and in parallel with
the studies of benefits and performance characteristiar@ius optical interconnection schemes,
there has been a very important line of inquiry into apprterimethods and techniques for
analysis, design, and optimisation of optical interconn¢g86, 87, 88, 89]. One of the first
attempts at a formalised analysis and design methodologypnesented in Ref. [86]. The
author considers a point-to-point interconnection schemd investigates the effects of free-
space beam expansion and optical alignment on the optitaakonnect system parameters

such as the optical crosstalk, channel density, opticalepoand bit error rate; the final out-
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come of this particular work is one instance of the designehéat a board-to-board optical
interconnect. This relatively simple treatment was furtbepanded in Ref. [90], where the
basic framework was further enriched, most notably by agidindels of optical elements that
could be used in an optical interconnect, but that were nosidered previously. The analysis
and design of a more complicated (hologram-based, but whtbravise the same characteris-
tics as considered before) optical interconnect architecivas performed in [91], while the
original analysis performed by Kostuk was extended in Red] {8 include the space-time
optimisation of the interconnect, as well as the considanadf the possibility of using clever
coding techniques to improve the interconnect performa@fehe more recent vintage, we
deem Ref. [93, 94, 95, 96] as appropriate to illustrate the wayhich the process of optical
interconnect design was approached. Among all the earlksvon the optical interconnect
modelling process, the most notable one is the work of McCakmet al. [75, 76]; therein the
issue of laser beam diffraction in the context of opticatinbnnects, both due to the free-space
propagation, and due to the interaction with optical eleisiemas formally addressed for the
firsttime. Since then the issue of laser beam diffractionfweker explored in Refs [97, 3], as
well as in a substantial part of the literature nominallylohepwith the problems of alignment
in optical interconnects [98, 99, 100]. The problem of laseam diffraction, particularly in
free-space optical interconnects using microlenses ¢@oi@annel free-space optical intercon-
nects) where it has an important effect on the performandbefievice, has also been in-
cluded, with varying degrees of depth, in the overall preadslesign and analysis [101, 102].
In some cases, the problem of laser beam diffraction wastiotgally completely ignored,
most likely due to the non-existence of tools appropriatthexcase where designers do not
have time to refresh their knowledge of the diffraction tlyebut still need to know its effect
on their devices.

Given that the problem of laser beam diffraction in micrauha free-space optical in-
terconnects was identified, fairly early on, as an imporfacitor affecting the overall perfor-
mance of the device, the apparent lack of an appropriatekidd@x’ model is striking. By

studying all of the above cases where diffraction is takeéo account in the process of de-
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signing a microchannel free-space optical interconneai,dlear approaches are evident. In
the first case the designers are happy to quote some of thé&kmelin diffraction equations
based on the Huygens principle, but without furnishing grneany details on the specifics of
their calculations. In the second case the calculationpar®rmed by using one (and the
same) approximate method whose ease of application wasedtay trading off some of

the theoretical rigour and numerical accuracy. As an ekleanathematical prelude is neces

sary before the characteristics of these two methods bectaag their detailed examination
is deferred until Ch. 2, where the problem of laser beam difioa in optical interconnects
is formally defined. Despite the importance of proper modglbf laser beam diffraction in
optical interconnects, there has been, to the best of tHeesitknowledge, no attempt so
far to examine and evaluate the (very numerous) existingswadynodelling diffraction, and
come up with a method most appropriate in the context of mlwionel free-space optical

interconnects.

1.2 Diffraction in optical interconnects

As we have seen, the design of a particular embodiment of ¢herge optical interconnect
shown in the (repeated) Fig. 1.6 is a task flavoured eledlirjcatically, as well as mechani-
cally. First, the designer must be aware of the electricatatteristics of the optical sources
and the associated circuitry; in particular, his respadligikis to know how the VCSELS’
electrical characteristics will affect the production anddulation of the high-frequency laser
beam. Second, once the laser beam is produced and emitethéndptical system (poirt

in Fig. 1.6), the designer has to switch into the ‘optical miaghd ensure that the optical field
inside the system does not get corrupted. Third, once tlee lEsam exits the optical system
(point B in Fig. 1.6), the designer has to switch back into the ‘eleatrmode’ of thinking,
in order to be able to properly deal with the process of ektrgelectrical signals from the
optical laser beam carrier. The two processes of electaicdloptical modelling, inherently

present in designing any interconnect, are very differeathfeach other in both their signifi-
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Figure 1.6: Schematic diagram of a generic optical intemech

cance and methodology. However, it is possible to perfoemtseparately and then integrate
the findings into an overall performance equation, with aivay level of detail. Finally, an
optoelectrically well conceived optical interconnect cauty be made if its mechanical proper-
ties are sound; it will work successfully only if no violatie of the mechanical common sense
are made.

In most general terms, the process of optical modelling titapinterconnects consists of
knowing the quality of the optical field produced by the laseany part of the optical system
between the logic pointgl and B in Fig. 1.6. Given the characteristics of the laser beam
produced by each VCSEL in the interconnect, as well as then@gion and characteristics
of all of the optical elements, the designer has to be ableddigt the evolution of the field
as it carries information through the interconnect. In thestndeal case possible, the laser
beam will be such that it does not change whatsoever oncet# #e VCSEL resonator.
The particular laser beam profile recorded at the plane o¥/@®@8EL output window would
remain the same at any arbitrary plane perpendicular toeaels direction of propagation,
regardless of the distance from the VCSEL. By using this veealiW CSEL beam we would
be able to transmit information as far away as we wish, jushéwying the optical energy
travel through free space, without the need for any comgaiptical elements. In other words,

the electromagnetic field detected by the photodetectdhisideal case, would always be
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Figure 1.7: Schematic diagram of the lensless free-spatabmterconnect [1].

a perfect image of the information-enhanced electromagfietd produced by the VCSEL.
If this was the case, if we had these laser beams whose enkvgysaremained focussed
around the axis of propagation, we would not need to look fgr @her elements or clever
schemes for optical interconnect implementation. Thisidka lensless free-space optical
interconnect, whose quality of operation primarily depeod the good behaviour of laser
beams is illustrated in Fig. 1.7 [93]. The performance dof tiptical interconnect configuration
has been studied previously [93] and, not surprisingly,asviound that it falls short of the
envisaged ideal interconnect. The performance of thedaterect was not only found to
deteriorate as the interconnection length was increased &fter several millimetres, but it
was also found to deteriorate due to any undesirable changke quality of the VCSEL
beams.

The principle behind this discrepancy between the desieztbpnance and the practical
reality is found everywhere in the Nature: nothing will stagussed and orderly if no constant
care and energy is dedication to it. Left unattended, lasants will tend to disperse, seem-
ingly aimlessly, into the surrounding space, thus resglimthe photodetector seeing only a
cropped version of the original laser beams. We will refethie general process of dilution
of the beam power, illustrated in Fig. 1.8, as laser beamadifion. The process illustrated

in Fig. 1.8, which ultimately limits the performance of trentless free-space optical inter-
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Figure 1.8: Illustration of laser beam diffraction [1].

connect, is, more precisely, laser beam diffraction dupgngpagation. Laser beams diffract
not only during propagation, but also while interactinghntbstacles in their way, such as
microlenses, mirrors, or prisms. However, while the siturain which it appears may be dif-
ferent, the process of laser beam diffraction is phenonogiedlly and effectively always the
same. In the context of optical interconnects, the phenomer diffraction, regardless of
how it is caused, always acts in such a way as to remove th&gadaaptical interconnect far
from its ideal archetype.

In the hope of alleviating the negative effect of diffraction the performance of the lens-
less free-space optical interconnect, we can use micregangefocus the incident laser beams
before they spread too far and disappear into ‘thin air’ hesvé in Fig. 1.9. By using the mi-
crochannel configuration of Fig. 1.9 we can defer the dilutsb laser beam power for some
time and hence increase the total interconnection distdth@eever, this luxury of a decreased
laser beam diffraction during propagation is paid by theunesment to dedicate special at-
tention to the size, shape, position, and other charatitarigf the microlenses; solving the
problem of laser beam diffraction by introducing anotheleptial source of diffraction makes
no sense. If the microlenses are too small, positioned tamsay from the laser beam source,
misaligned, or improperly placed with respect to each ottier incident laser beam suffers
greater diffractive distortions than those the microlsrese meant to prevent. After acknowl-

edging that the main imaging function of a microlens is aldaoyproduct of the diffractive
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Figure 1.9: Schematic diagram of a microchannel free-spptieal interconnect.

interaction of the incident laser beam with the element the optical part of designing opti-
cal interconnects primarily consists of determining hoevhocess of diffraction, in its various
forms, will affect the performance of the optical intercenh If we wish to constructively use
microlenses to fix the problem of propagative diffractiore may need to consider putting
the interconnect channels further apart, or placing spestuirements on the quality of the
beams produced by the VCSELSs. This, in turn, will change tregal/performance character-
istics of the optical interconnect, as well as the operafibenefits it is meant to bring into an
information-processing system.

The problem of diffraction, and of laser beam diffractiomsifically, has been considered
previously at great lengths. Despite the existence of #ingel volume of literature, very few of
the findings where used for the purpose of modelling lasembai&éraction in microchannel
free-space optical interconnects. From the original aersition of the effect of laser beam
diffraction [75, 76], the subsequent publications haveaegitsimply propagated the method
used before them, or hinted at some numerical scheme, witledving deeply into the prac-
tical implementation details. The issue is not the one afetm®t existing a way to somehow
calculate how diffraction would change the performancerobgatical interconnect; the issue
lies in how to formulate a method that is most suitable givenrequirements of modelling
diffraction in optical interconnects. This discrepancyraymeans negates or diminishes the

guality of the work published so far, but it rather highliglatn important characteristic of the
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problem of diffraction in optical interconnects. The prexol is highly complex and there are
many different formalisms and mind sets which can be usegpooach and rationalise it.
This leads to difficult research situations where the workied out in one particular manner
cannot easily be related to the work started from anothespeetive. The level of theoretical
and mathematical complexity of the general diffractionlgeon rarely allows, and especially
in the case of optical interconnects, for a derivation oftaosimple ‘rules’ that could easily,
if not completely accurately, help us achieve the cost and-ttonstrained aims of the modern

industrial world.

1.3 Dissertation outline

The explicit aim of this dissertation is twofold, it is to

1. present the concept and the construction of a new methaabdeélling diffraction in

optical interconnects; and to

2. illustrate the application of the method in the evaluatd the overall performance of

an optical interconnect.

By the general term ‘optical interconnect’ here we mean theoshannel free-space optical
interconnect, as the effect of diffraction is most significand most easily understood, in the
context of that particular optical interconnect configimat Our findings, however, can easily
be extended to any other optical interconnect configuratiofurther text, we will also use the
term ‘channel modelling’ in optical interconnects to hinttee broader meaning an importance
of diffraction, as indicated before, in order to allow foebking away from the usual negative
overtones associated with diffraction.

The introduction to the problem of diffraction in opticaténconnects presented in Sec. 1.2
is extended in Ch. 2 in which the problem of laser beam diffoaicis placed on a firm math-
ematical basis, and the existing approaches are examimadra detail. The problem that is

solved in this dissertation is essentially a mathematicatblem rooted deeply in the theory of
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diffraction; as such, a complete chapter is necessaryd@résentation, as well as for the pre-
sentation of the way it affects us today. The solution of trabfem of laser beam diffraction
in optical interconnects, in the form of the mode expansiethmd, is presented in Ch. 3. The
application of the mode expansion method with the aims duetiag the performance of an
optical interconnect, and establishing the foundation$uture designs, is presented in Ch. 4.

Chapter 5 concludes this work.



Chapter 2

The problem of diffraction in optical

Interconnects

In a stark contrast to the understanding of the basic priesipf electromagnetism, their prac-
tical application, especially in most ‘real-life’ situatis, can be quite complicated. Thus the
image, appeal, and usefulness of the theory are reducedheCrtiter hand, even though simu-
lations of electromagnetic problems in sophisticated o usually lead to correct solutions,
they provide little insight into the behavioural intricasiof the considered configuration. The
most suitable approach in the application of the theory icway between the two extremes.
It consists of, first, applying the basic principles in tha-tdshioned way until the problem be-
comes very specific, and, second, of using novel, and pygssibhputer-aided ways of solving
it.

In this chapter we apply the first principles of the electrgmetic theory to the problem
of channel modelling in optical interconnects, and end ugh &ivery accurate description of
the problem that we have to solve. Starting from the presientaf the mathematical basis in
Sec. 2.1, we proceed to, in Sec. 2.2, formulate our problar8et. 2.3 we review the most rel-
evant existing solutions of our problem, and in particuter three categories of solutions that
we identified; a representative from each category is censdlin Sec. 2.3.1, 2.3.2, and 2.3.3,

respectively. Section 2.4 concludes the chapter.

22
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2.1 Mathematical basis

The problem of channel modelling in optical interconnecissists of being able to determine
the electromagnetic field at any point in the device, givepdérticular initial distribution. The

two fundamental principles governing the behaviour of thldfare given as [103]

0B
E=—-J,— — 2.1
VxE=—Jy,— 5" (21)
and
D
V><H=J+aa—t, (2.2)

whereF is the electric field vectoB is the magnetic field vectol is the electric displace-
ment vector, andd is the auxiliary magnetic field vectod and.J,, represent the (electric)
and magnetic current densities respectively. A basic sumwfaconsequences of Eqs (2.1)
and (2.2) is given in Sec. A.1 and A.2 of App. A. The principtéshe electromagnetic theory
presented here are based primarily on the material presemief. [103], which, in turn, was
based on the work previously done by J. A. Stratton [104].

In an isotropic, linear, and homogeneous medium, with aletvariations assumed to be

harmonic, Eqgs (2.1) and (2.2) simplify to

V x E+ jupH = —Jp,, (2.3)

and

V x H — jweE = J, (2.4)

wherew is the angular frequency of the electromagnetic fieid,the electric permittivity, and
1 is the magnetic permeability. After a lengthy sequence afimadations, it can be shown

that Egs (2.3) and (2.4) can be transformed into a pair obdleavector Helmholtz equations,
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given by
V xVxE—FKE=—jwud —V x Jy, (2.5)
and
VxVxH-EFH=—joudy+V xJ, (2.6)
where the propagation constanis given by
27

k= == 2.7
wy/le =~ (2.7)

The last equality in Eq. (2.7) holds only in lossless mediajclv we consider our optical
interconnects are composed of. In a source-free mediumydb®wr Helmholtz equations

become

V?’E + k*E =0, (2.8)
and

V’H + k*H = 0. (2.9)

As written above, Eqgs (2.8) and (2.9) imply that each reatéargcomponent of the field vec-

tors,U, satisfies the scalar Helmholtz equation:
V2U + k*U = 0. (2.10)

Solutions of the scalar Helmholtz equation tell us what séran optical field could be
present in a ‘continuous’ region of space, filled with anrspic, linear, homogeneous, and

source-free medium. They do not, however, contain any mé&ion relating to the ultimate
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sources of that field. Le$ be a surface that encloses all the sources of the electratiagn
field relevant to a particular situation. The two componefthe field at any poinf’, due to

the field insideS are given by

Ep — i/ —jwp(n x H)p + (n x E) x Vi + (n - E)V]dS
dr Jg

_ L OE _ pov
- . <¢ = Ean) ds, (2.11)
and
Hy = % ljwe(n x EYo + (n x H) x Vi + (n - H)VY]dS
S
! OH 0
- = (@D% —Ha—n) s, (2.12)

wheren is a positive unit vector normal t§, integration is performed ovef, and is an
auxiliary function used in the application of the Greensdlem, as shown in Sec. A.2:
e_jk:p

b = . (2.13)
p

p in Eq. (2.13) represents the distance between a poitst, @enoted by(zo, yo, 20), and the

observation poinf = (z,y, z), as shown in Fig. 2.1:

p=(z—20)2+ (y— %0)2 + (= — %) (2.14)

As in the case of the scalar Helmholtz equation, each of tttamgular components of vectors

FE andH, denoted by/, must obey the scalar relation

1 oU o
Ur==1- |, <¢% - Ua—n> ds. (2.15)

Equations (2.11) and (2.12) can be interpreted as the matieaiformulation of the Huygens-

Kirchhoff diffraction principle for electromagnetic waseEquation (2.15) can be interpreted
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S

* P(x, ) 2)

(X0 Yo Z0)

Figure 2.1: In order to find the characteristics of the et@otignetic field at the observa-
tion point P, the contributions from all the sources withthmust be integrated, by applying
Egs (2.11) and (2.12).

as the mathematical formulation of the same principle fatasowaves. We shall concentrate
on Eq. (2.15) for two reasons. First, the added mathematastlof a full vectorial treatment

does not necessarily justify the information benefits in ¢batext of interconnect channel
modelling. Second, an insight into the vectorial behavisugained more easily once we
ascertain the behaviour of the field in the scalar domain.

Equation (2.15) states that the field amplitudePatan be expressed as a sum of con-
tributions from all elementdS of surfaceS. The first part of the integral in Eq. (2.15) is
a summation of amplitudes of isotropic spherical waveleisray from sources of strength
proportional to(0U/on) dS. For the second part of the integral we note that:

oy d [e I 4 1\ e Jkr
_ = jk+ = 2.16
o~ dp ( ; ) cos(n, e,) (] + ,0) ; cos(n, e,), ( )

wheree, is a unit vector in the direction gf. Hence, the second part of the integral in
Eq. (2.15) can be interpreted as a summation of anisotropielets arising from sources
of strength proportional ta dS. The remaining factotos(n,e,) = n - e, represents the

directivity of the sources for both parts of the integral tM&q. (2.16) substituted in Eq. (2.15),

our formulation of the diffraction principle for scalar wesbecomes:

1 —kp 1 ou
Up——— [ € [U (jkz + —) n-e,+ —] ds. (2.17)
A Jg p P on

Given a field distribution at surfacg,, Eq. (2.17) allows us to calculate the optical field
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Figure 2.2: Given a field distribution at surfaSg, Eq. (2.17) allows us to calculate the optical
field distribution at any subsequent surfagg ;.

distribution at any subsequent surfat,g 1, as shown in Fig. 2.2. Given a field distribution at
Sn+1 We can calculate the field &t, o, and so on. As illustrated in Fig. 2.3, an interconnect
channel can be perceived as a set of surfages; . . ., S, with different material properties.
The problem of channel modelling then consists of findingueate and effective ways of
evaluating Eq. (2.17) for eac$y,.

Let us be more specific with what we mean by ‘the given fieldrittistion’ U and ‘the

enclosing surfaceS. U will generally be of the form
U = M exp(—jkog), (2.18)

whereM represents the field magnitude= const. represent equiphase surfades—= 27/ \g
is the free-space propagation constant, and the free-space wavelength of the scalar field.

U will also satisfy the scalar Helmholtz equation. Note that:

ou , 1 oM

If the free-space wavelengthy, is shortk, is large and the second term in Eq. (2.19) may be

neglected compared to the first term:

o~ —jkUn - V. (2.20)
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S, e S

Figure 2.3: The complete optical interconnect channel ertte the whole optical intercon-
nect) can be represented as a collection of surfaces witdrett material properties. The
surfaces are best interpreted as parts of spheres, as shdan if we allow the radii of the
spheres to increase to infinity, the surfaces become padlgtitat and orthogonal to the axis
of propagation, as shown in (b).

Furthermore, if we write:

koVo = ks, (2.21)
then
U « _ikUn- s, (2.22)
on
where
8 = 5,6, + sy€, + s.€., (2.23)
5y = 100 (2.24)

~ kdxy’
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_L1o

2.2
ko (2.25)

and

s, =4/1—s2—s;. (2.26)

Vectorse,, e,, e, represent unit vectors in the y, andz direction respectively. The above

consideration make Eq. (2.17) become

1 e—Jkp

1
Up {U (jk + —) n-e,+ jkUn- s} ds. (2.27)
p

:ESP

Let us fix now thez axis so as to go right through the centre of the interconrtesel. If
each surfacé is taken to be the surface of a sphere of radius sufficientjelto effectively
makez | S, as illustrated in Fig. 2.3, Eq. (2.27) becomes

1 e~ Ikp

Up = — | U
g am Jg P

1
[(jk + —) e.-e,+jke,-s|dS, (2.28)
p

where we noted that now = e,.
The surface of an infinitely large sphere centred pim a region close te, can effectively

be represented by the surface of a square. Hence, the itbegiaEq. (2.28) need only be

performed over a rectangular surface:
1 e~ Ikp

Up = — | U-
g am Js p

1
[(jk+—) e.-e,+ jke,-s|dxdy. (2.29)
P

It is generally not required to painstakingly perform theegration at every single infinitesi-
mally thin surface that makes up the interconnect. In homegas regions it is sufficient to
examine the field at the bounding surfaces only; in the homeges region itself we always
know that the field will satisfy the Helmholtz equation. Weaknow that the effect of a col-
lection of surfaces may be equivalently represented byaition’ at only one representative

surface. The action of the surface is usually taken to be as¢b affect the phase 6f. Typi-
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cal examples of such compound surfaces would be aperteresed and mirrors. If we denote

the action of a surface by(z, y) Eq. (2.29) becomes:

1 o x
U(xvyaz) = E/ / U(Iovymzo)@(xo,yo)

efjkp

1
[(jk: + —) e.-e,+jke,-s|drydyo, (2.30)
p

where we used zero subscripts to clearly distinguish vadtidise surface in question. While
more user-friendly than Eq. (2.17), Eq. (2.30) is still ayvgeneral statement about the be-
haviour of the optical field in an interconnect. In the follogy section we shall reformulate it

into a concrete objective by specifying each of the termsgn(E.30) more precisely.

2.2 Problem formulation

In an optical interconnect the field produced by the VCSEL w@afllays be emitted into a
homogeneous medium, such as the free space or a substrate wh know that it has to
obey the scalar Helmholtz equation. A suitably chosen solutf the wave equation in the
destination medium can hence be used to give us the initiladiield distribution in the inter-
connect. Once the distribution at the initial surface iskngthe fields at all other surfaces can
be determined, by following the process described in theipue section. Very suitable solu-
tions have been found in terms of the free space modes, giver & rectangular coordinates
by the Hermite-Gaussian functions, or in polar coordindgshe Laguerre-Gaussian func-
tions. Experimental measurements have shown that in sitaatieter VCSELSs, such as the
ones used in optical interconnects, it is far more commorbseo/e Hermite-Gaussian modes
in the output beam rather than Laguerre-Gaussian modesa Fser to support Laguerre-
Gaussian modes its resonator must possess a high degreeutrcsymmetry [105]. This
requirement is made difficult by birefringence and astigsmatof the lasing medium, as well
as by the device structural anisotropy. In large-diamet€6¥Ls, however, both families of

modes are frequently observed [106].
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Hermite-Gaussian modes of the free space, are given by [107]

1 1
HG _ 1
o (7:9:2) = w \/2”+m1 m(n!)(m!)

- exp {—j(n + m + 1) arctan - ZS}

ZR
w w
—(2*+y?) | jk(@@® +y°)
- exp [ 3 + R , (2.31)
where
kw?
= (2.32)

is the beam Rayleigh range, andl s the laser beam waist locatedzat z,. At any observa-

tion plane, the laser beam radius and the radius of curvatergiven by

w:w(z):ws{l—l— {%r} (2.33)
and
R:R(z):z{1+ [%r} (2.34)

H,(z) represents the Hermite polynomials of ordegiven by [108]

14

H,(x) = (—1)”exp(x2)dxy exp(—z?). (2.35)

Each member of the Hermite-Gaussian family of functionsahdsgferent shape, but they all
share the same beam waist size and position. These two \difitieguish one set of Hermite-
Gaussian functions from another. This pair of values wiflrther text frequently be referred

to as the set of beam parameters, and denoted-by{ w;, 2 }.
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In further discussion, mainly for mathematical purposes sivall frequently make use of
an alternative formulation of the Hermite-Gaussian modé&9]. The alternative formulation,

with exactly the same meaning as the formulation given by(E&1), is given by [110]

Ui
V2rtm (ml)(n!)

HG (2, y,2) =

-exp[j(n + m + 1) arctan &]

-Hy,(nz) Hy(ny)

 exp {—%77202(962 + yQ)} : (2.36)
where
2(z — z)
- 2.37
3 e (2.37)
2
g V2 (2.38)
wsy/1 + &2
and
o? =1+ j¢ (2.39)

The set of all Hermite-Gaussian modés!G(z, y, 2)}, forms an orthonormal set of func-

hm

tions:

/ / Ui (WHO) dady = Gnpm, (2.40)
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whered,,, andd,,,; are Kronecker delta functions, given by

1 ifpu=v
5y = { s (2.41)

0 otherwise.

On the other hand, the Laguerre-Gaussian modes of the faee spe given by

S g — ZoRliRG—z) [t (rvZ)
T wy/T(L+00m) | (m+m)! \ w

, (z — 2z)
-exp |j(2n +m + 1) arctan —=
ZR

e (5 m) 5 () oo
_ 2exp [—ik(z — 25)] n! <r\/§>m
wr/ (1 + dom) (n+m)! w

- exp [j(2n + m + 1) arctan M]
R

r? kr? o [ 217

whereL{™ (x) is the generalised Laguerre polynomial with radial numband azimuthal pa-
rametermn, and where we have indicated our preference for the cosuaidorm of Laguerre-
Gaussian modes. [111] Again, an alternative formulatiodBaf(2.42) will frequently be found

to be mathematically more beneficial [110]:

|
509 = el o) |2
-exp [j(2n +m + 1) arctan ]

1
- exp [—5772021"21 n (nr)™ Lflm) (n27"2) cos(mb), (2.43)

where

2 form=0
€m = (2.44)
1 form # 0,
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all other symbols have the same meaning as beforepandws, =} is still referred to as the
beam parameter set. The generalised Laguerre polynoméeadgven by [108]
= +m\ (—x)°
L0 () — " =2 2.45
() E_;(n_z) T (2.45)

where("*™) is the binomial coefficient. The family of Laguerre-Gausdianctions {¢5% (r, 6, 2)},

also forms an orthonormal set:

2w 0o
0 0

Since both sets of modes form complete sets, one can eapilgssxone in terms of the other,
as has been shown in the general case [111]. Recently [1&2hitd complete family of exact
and orthogonal solutions of the paraxial wave equation wesgmted. The transverse shape of
these modes is described by the Ince polynomials, and tstally stable during propagation.
Ince-Gaussian modes constitute the exact and continuansition modes between Laguerre-
Gaussian and Hermite-Gaussian modes.

The optical field produced by the laser will not generally leef@ctly equal to just one
Hermite-Gaussian or Laguerre-Gaussian mode. Hence, Welwidys have to express the

field as a weighted sum of the member functions:

V(w,2) =D Y Wanthum(w, 2), (2.47)

n=0 m=0

wherezo is used to denote eithé¢t, y) or (r, 0) (as required)lV,,,,, are the complex weight-
ing coefficients, and),,,(zo, z) denote member function of either the Hermite-Gaussian,
HG (4 y, 2), or Laguerre-Gaussiam,-% (r, 0, z), mode set. The dominant mode in the beam
of a small-diameter VCSEL is the fundamental Gaussian JENde oo (w0, 2) = i (z,y, 2) =
55 (r,0,2). In literature it is frequently assumed that it is the onlydagresent, i.e. that
U(wo,z) = 1oo(wo,z). The presence of higher-order modes (HOMSs) in the laser pbeam

addition to the fundamental one, affects the performan@naptical interconnect greatly. In
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Sec. 4.2 we present the results of experimental measureshtrahsverse mode content in a
laser beam, and use the measured composition to studyctifinan optical interconnects.

The action of a compound surfakedenoted byp(xg, y0), as shown in Eq. (2.30), is given
as

(0, o) = fe(@o,y0) if (z0,90) € Xy (2.48)

0 otherwise,
where}; is used to denote the optically transparent part of the tefinlargeX:, which may

consist of a number of disjoint surfaces. In the case of algiimperture, the action is given as

1 if (l’o, yo) €A
a0, y0) = (2.49)
0 otherwise,

where A could stand for a circle, rectangle, or any other shape tireaperture may have.

With S assumed to be an empty aperture of arbitrary shape, Eq) (2280mes

1 e~Ikp
U(.I’,y,Z) = 4_// \I’(@"o»yowzo)
TJJA P
1

. |:<]k3 + —) e.-e,+ jke. - s| drodyo, (2.50)
P

where we have noted that ndW(xo, vo, 20) = V(xo, yo, 20). Without a loss of generality we
shall first consider the (simpler) case of diffraction at coom aperture shapes, such as circles.
Once we reach a solution we shall turn our attention to monepticated situations.

Before attempting to solve Eq. (2.50), we ought to contersplatat is it that we are
seeking to obtain. We should also examine, based on typptadad interconnect parameter
values, which factors in Eg. (2.50) will affect the solutimost. Some factors are bound to have
more bearing than others, and some will become more adaptalltogether dispensable. It
is generally accepted that the solution of Eq. (2.50) caniadet! into three regions, based
on the position of the observation plane relative to theraiffion plane. The three zones

are determined by the nature of approximations that can lokerfathe factors making up



36 CHAPTER 2. THE PROBLEM OF DIFFRACTION IN OPTICAL INTERCONNECTS

Eq. (2.50). The boundaries between the zones are very tdadyary from one scenario to
another, but the diffraction field features clearly distirglp one region from another.

The first zone is the near-field region in the immediate nesgintbood of the aperture. To
obtain the field in this region no simplifying assumptionsthie diffraction integral can be
made. In the process of derivation of Eq. (2.50) we have dyreaade, in Eqg. (2.20), the
assumption that the wavelength of the incident optical figldmall, as compared to the di-
mensions of the diffracting aperture. A small wavelengthlies a large propagation constant,
k, hence making all terms multiplied bydominant. Given that, due to a large we have

already written:

1 oM
—jkoUn -Vo+U——— = —jkUn - s, (2.51)
M oOn

it seems logical to attempt to simplify the integrand of Efj50) by writing:
. 1 ‘
(]k + ;) ~ jk. (2.52)

However, in the near field even this approximation may notgy@@priate, since there is an
appreciable area of the aperture whefe term is not negligible compared with This region
extends several wavelengths outward from the aperturehemck the variation af, - e, must
also always be taken into account in this first zone.

Numerical explorations of the diffraction field in the neagion are not many; the diffi-
culties associated with evaluating Eq. (2.50) are acknidgéd by many not to be worth the
new insights. From the knowledge gained so far, it can sdfelgssumed that the near field is
determined by geometrical propagation of incident liglysrthrough the aperture. The mean
value of the field intensity has been found to differ littlerfr that of the geometrically propa-
gated field, with a very distinct boundary between the ne&t &ad the geometrical shadow.
As typical wavelength of laser beams in an optical interemns about\ = 850 nm, sev-
eral wavelengths from the aperture takes us negligiblg litito the interconnect to be of any

practical importance.
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After the near-field zone, we pass into the Fresnel regiohefitffraction field. The Fres-
nel region is by far the most important one in the study ofrddtion, and the approximations
made are such that the handling of calculations is conditiesamplified. On the other hand,
the approximations made are not strong in the sense thateheing that we can draw from
the results is heavily restricted. It should be noted, h@rethat by simplifying Eq. (2.50)
in any way, we still introduce errors in numerical resultsg éhat the order of magnitudes of
those error have to be examined in each case separately. @asgulical optical interconnect
parameter values, the origin of which will be considered oredetail in Ch. 4, we shall now
consider the approximations characteristic of the diffoacfield in the Fresnel region.

As mentioned, we fix the wavelength of VCSEL laser beams+0850 nm; this automat-
ically results in a large wavenumber valueiof 7.4-10° m~!. Based on an optical argument,
that will be considered in more detail in Chapter 4 (and thatasely related to the action of
a thin microlens assumed to be located in the apert)rehe distance from the laser beam

waistwy to apertured, denoted by, will be in the range:
f<EL f+ o, (2.53)

where f is fixed to the range from abo@0 to 1000 um, with typically f ~ 800 ym. The
Rayleigh range, given defined by Eq. (2.32), with the lasenbeaist to a typical value of
ws = 3 um IS equal tozg = 33.3 pm. The distance from aperturé to the observation plane,

denoted here by, will be (again based on the action of a fictitious microlanghe range

f§d§4<f+§i). (2.54)

<R

The radial distance from the beam propagation axis to therghgon point; = /x2 + 32,
is closely related to the spacing between the individu&rocdnnect channels, and will be in

the range

0<r<3A, (2.55)
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where the array pitch is taken to be from abou0 to 300 pm.
Due to quite a large value of the wavenumleithe most obvious approximation target

is the jk + 1/p term in Eq. (2.30); we suspect thgt + 1/p ~ jk. Thel/p term will be

maximum wherp is minimum. Remembering that = \/(z — 20)2 + (y — v0)? + d2, we
havepni, = dpin = f = [600 pm, 1000 pm] = 800 um. Hence,(1/p)max ~ 1250 m~!. This
is most certainly negligible when comparedite: 7.4 - 10 m~*

The second approximation concerns thiterm itself. Note thap can be written as

po= V(&—w0)?+(y—y0)?+d
_ d.\/1+<w—dazo)2+<y—dyo)2
o))
() ()
L=

(x — x0)* )

= d+

+($—x0) +(y yo)

. 2.
3d? 3d? * (2.56)

where the square root was replaced with the sum [108]:

B2 b3
VIHR =1+ +o5+. (2.57)

which holds true for allb| < 1. In our case this assumption holds true sifice- o) yax =
(¥ — Yo)max = 3V2-A =~ 1.1 mm = 0.0011 < 1. The actual approximation (the ‘Fresnel
approximation’) consists of retaining terms only up to teeand order in Eq. (2.56):

(r —20)* (v —w0)?

~ d
p R Y

= d+o. (2.58)

If the observation plane is far from the diffracting apegtuve could go even one step further
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and assume that

pad, (2.59)

but this step has to be taken cautiously. We will be on the sidieif we use first approxima-
tion, given by Eq. (2.58), in the exponential term, while #eeond one, given by Eqg. (2.59),
in the ratio. The exponential term is much more sensitiventalbvariations in its exponent,
and that is why we will leave the stricter case as the workimg. o

With the above approximations, Eq. (2.50) becomes

1k ex k(z — 2o)
U(%%Z) = / p —J 0 // xOvyOaZU exp( ]k’Q)

A (z — zp)
-[cos (o) + e, - 8] dzodyp, (2.60)
where
Z— 20
cos(a) = e,-e,=
(@) p P
- TR ETA_ (2.61)

Z2—2zy+ 0 Z— 2

This last approximation is justified by the same argument dse simplifying thep in the
ratio. The diffraction field given by Eq. (2.60) generallyfdis from the expressions for the
Fresnel field generally found in the literature in the preseof the terme, - s which arises
from a nonuniform phase distribution over the aperture. Agehdistribution widely deviate
from a constant phase has a highly dispersed system of ragsiated with it. Under such
conditions the assumption that the energy in the diffractield is concentrated around the
z axis is not valid and the approximations made previously matybe justified. Hence, the
phase distribution of the incident field over the diffragtiaperture, ¥V (z, yo, 20), has to be
examined more closely.

Since we do not really know what the exact modal compositfadhefield is, but since we

are aware that most of the power is contained in the fundaahemide, we will assume that
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W (20, Yo, 20) = %oo(o, Yo, z0). Note that we haverls = ¢, and it does not matter which

one take into consideration. So we have

2 k(xf+5)

b0 = Poo(T0, Yo, 20) = arctan o 2R, (2.62)
10¢yg  —xg
=109 _ —7o 2.63
§ k 8m0 Ro ( )
and
_ 199 _ — (2.64)

e k Oyo R—o’
from which it follows that

x5+

. 2.65

With typical values{z?2 + 43 )max = 22.5 nm; from Eq. (2.32),R§min ~ 642.2 nm. Hence we

have
s, ~ 1. (2.66)

With this final approximation, Eq (2.60) becomes

jkexp[—jk(z — 2]
27(z — 2p)

// W(wo, Yo, 20) exp(—jke) drodyo. (2.67)
A

Ulz,y, z)

In polar coordinates, more suitable in the case when the dragiGaussian functions are
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used, Eq. (2.60) takes the form

U(r,0,z) = m exp[—jk(z — 20)]

/27T /“ { Jk[r? + 12 — 2rro cos(0 — 6y)] }

. exp { —

0 0 2(z — 20)

"IJ(T'(), 90, Zo) Tod?”odeo. (268)

We shall refer to Eqgs (2.67) and (2.68) as the Fresnel diftmadntegral, in rectangular and
polar coordinates, respectively.

The solution of Eq. (2.50) in the third, Fraunhofer regiomiained by making several
other approximations in addition to the Fresnel approxiomst As the Fraunhofer diffraction
integral is obtained by further simplifying the Fresnefdi€tion integral, it represents only a
special case of Egs (2.67) and (2.68). We shall consideetadditional approximations in
a later section, but here we point out that we will not be iegézd in solving the Fraunhofer
diffraction integralper se This is due to the fact that the conditions needed to vadittet far
field (Fraunhofer) approximations can be very restrictivine case of application of the theory
in the design of optical interconnects, as illustrated in.2e3.2. Our primary concern, in the
context of modelling diffraction in optical interconnects solving the (Fresnel) diffraction
integral.

An ideal solution of the diffraction integral, the one tha¢ \are seeking and that will

ultimately be found, has the following characteristics:

e Accurate description of the diffraction field can be obtdiméth little numerical effort,

and with no knowledge of the subtleties of the diffractioadty;

e The solution is such that the results it produces can easilpdorporated into the gen-

eral expressions used for evaluating the overall opti¢aloonnect performance;

e The method of solution could be used in the same way in alagdos of interest in
the design and analysis of optical interconnects: diffoacat apertures of perfect or

imperfect (serrated) shape, diffraction in the presendhiaflenses, and diffraction at
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multiple apertures;

e The method of solution could easily be used to calculate gtea interconnect per-
formance parameters of practical importance, such asatwderto misalignment, or the
effect of the presence of higher-order modes in the lasenbem the optical intercon-

nect performance.

2.3 Existing solutions

The subject of optical diffraction has been treated exinalgtin numerous publications, since
the 17" century, when Christiaan Huygens (1629-1695) proposed whabday refer to as
the Huygens’ principle. Today, one would start any seridudysof the subject from any of
a number of ‘classical’ texts [113, 114, 115]. One of the peots with the textbook-level
approach to the subject of diffraction is that the resulesamost exclusively developed for
the case of planar or spherical-wave incidence, sometineswithout explicit mention. As
laser beams are very different from those simple waves [1h6$t of the easily-recognisable
results have to be handled very cautiously. We shall (cenalay) limit our review of existing
solutions only to that subset which specifically deals wité problem of diffraction of laser
beams, where special care was taken to properly represefielth of the incident beams. As
far as the planar and spherical-wave diffraction goes, aelknt in-depth treatment can be
found in Ref. [117].

Most of the publications on the topic of laser beam diffraictcan be traced back to the
early works of Kogelnik and Li [107], Campbell and DeShazdid]l Olaofe [119], and Dick-
son [120]. The primary aim of Refs. [118, 119, 120] was to itigase the behaviour of
a diffracted Gaussian beam in the Fresnel region, given teeiqus studies where diffrac-
tion in the Fraunhofer diffraction was the primary focus. eTdiriving force behind both
types of studies was the facilitation of laser developmambst of the earlier work on laser
beam diffraction was performed in the practical contextasiek and maser resonator analy-

sis [121, 122, 123, 107]. Investigations of ‘optical beanvevguides,” which today are not
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really used in their original form, established good fourates for the tools used to describe
the laser beams [110, 124].

The early work on laser beam diffraction, performed in cagjion with the development
of numerous laser-based applications, adequately addiéss most important aspects of the
problem. Finer aspects, such as examination of the validitsarious approximation made in
the process of stating the laser beam diffraction proble2b [126, 127, 128], and diffraction-
caused focal shift (relative to the position of the focusdreed by geometrical optics, as well
as focal shift due to aperturing of the incident beam) [123®,1.31, 132, 133]. Similar issues
were considered in the case of incidence of not only the forestdal mode, but also higher-
order laser beam modes [134, 135, 136], and experimentdtigations confirmed all of the
theories that they were tested against [137, 138, 139, ¥4(, Yery interesting (and still very
much inviting) excursions were also made into the field ofl@pg the traditional techniques
on previously-unexplored diffracting structures of fedatature [142, 143, 144, 145, 146].

In order to be able to process the large amounts of publistfedmation effectively, and
select the most likely candidate theories for applicatioaptical interconnects, we have iden-
tified three categories that most of the existing literatae be classified into. The approach
taken in a great portion of the literature, including mosttef works cited so far in this sec-
tion, is very like the approach we started in Sec. 2.2. Nantkeé/diffraction problem is first
stated as a mathematical problem in the form of one of theteungain the hierarchical chain
spanning the principal electromagnetic equations and tesnel diffraction integral. An at-
tempt is then made to solve the problem analytically, oradtievolve it to a more transparent
and informative form, so that the meaning it carries becoohes. The outcomes of the pro-
cess of solving the diffraction problem, in this first appreahugely depend on the chosen
starting point in the consideration, as well as the pararsetethe problem being considered
(such as the type and characteristics of the incident dgiedd, aperture characteristiostc).
Small deviations at the beginning of the process, and eéiffegs in the assumptions made
often mean that the final results obtained will be applicaiiy to the particular situation

considered, rather than a more general situation that eaeras usually interested in. The
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development of the diffraction problem presented in Setiby no means the only correct
path that we could have taken; it is a valid option that isadlé given the characteristics of
our problem. Due to the nature of the diffraction problem tdexisting solutions of the first
kind, it is frequently easier to set up the infrastructuredoe’s particular problem from the
first principles, rather than to try to adapt solutions warket for other situations.

We have termed the procedures using this first approachlasitst by direct integration,
due to the characteristic sequence of setting up the diffragproblem as an integral, and
then attempting to solve it analytically. In addition to tpeblications cited so far, for the
sake of completeness, we include several other works tyfacghis category; first the ones
performed with the aim of obtaining only the on-axis inténsif the diffraction field [147,
148, 149], and then the more traditional considerationsififadtion problems [150]. The
constantly-expanding list of all relevant works in thisegairy is much longer than the one
included here. However, due to the incompatibility proldecaused by the noted lack of
standardisation, the sheer quantity does not indicate aftisedly quality; it even makes
it easier to loose one’s way deciphering the intricaciesawheindividual work, as well as
comparing the merits of one work against all the others. Madior this reason, we have
selected, fairly early on in the research process, theateliework of Tanakat al. as a very
suitable, accurate and comprehensive representativesafiations by direct integration [151,
152, 153, 154, 155, 156, 157]. The work of Tanakal., fully compatible with our formulation
of the laser beam diffraction problem presented in this tdraprovided excellent starting and
reference material for our considerations of the problerasér beam diffraction in optical
interconnects. However, as we shall see in Sec. 2.3.1, lsasrt the optimal way of solving
our problem.

The second category of approach that we frequently encaadhie searching the relevant
literature, termed ‘solutions by further approximatiois,’very similar to the first category.
Namely, the process of first mathematically formulating thiéraction problem, and then
trying to solve it analytically is still present. The difarce lies in the fact that further approx-

imations, in addition to the type of approximations presdnh Sec. 2.2, are made at various
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stages in the process. The most significant characteristitiomethod is that the inaccu-

racies and limitations introduced by those approximatiamsreadily accepted in exchange
for the benefits of easy computation and increased transpardhe typical example of this

kind of approach, which will be examined in more detail in S28.2, used specifically to

model diffraction in optical interconnects, is the one of R8f. Other examples of this cate-

gory include, most notably, the earlier attempts to find apamise between the geometrical
and wave interpretations of the phenomenon of diffractis8] 159], as well as all of the

(simplified) studies of the diffraction field in the far fieltig0, 161, 162].

The third category of approaches to solving the problem fixfadtition in optical intercon-
nects is characterised by the fact that the procedure eteraahin the previous two approaches
is no longer present. The main characteristic of this apgr@athat the original incident laser
beam and diffracting aperture are replaced by an effecéiserlbeam which has the same
functional form but different parameter values. In that \ilag effects of diffraction are inter-
preted, to some extent, as changes in the parameters otcidennlaser beam. The principal
representative of this approach, given in Ref. [163], ise@ed in detail in Sec. 2.3.3; the rep-
resentatives of the previous two approaches are review8dan2.3.1 and 2.3.2, respectively.
The results of Ref. [163], even though not particularly muekidr than any of other results
from the same category, were almost exclusively used in tindighed literature discussing
diffraction in optical interconnects. One reason for teigithe fact that, in the case where no
clear choice for a particular task is evident, previous cé®imade in similar situations tend to
prevail. Another very interesting solution of the diffract problem that falls under this cate-
gory, and that has been exploited very little, includes tileton by expansion in Chebyshev
polynomials [164].

Our review of existing solutions of the problem of difframticannot be complete if we do
not mention the numerous numerical solutions that have peggosed over the years, even
though we do not intend to consider them for our purposesioMarapproaches based on
the Hankel transform were proposed [165, 166, 167, 168, 1B89]. Also, a range of other
methods were considered with varying ranges of success /21 173, 174, 175, 176, 177,
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178, 179, 180]. However, in the context of our modern timeas @orities, a numerical in-
vestigation of diffraction will yield much better resulfsstarted from an existing commercial
simulator (whose algorithms are based on the accepted wbkbers), rather than if started

independently ‘from scratch.

An evaluation of proposed solutions of the problem of ddfian would not be complete with-
out mentioning the approach based on a completely diffettesdry. All of the solutions
mentioned so far are based on the classical electromagneticof the world, which, after
all, is just a model that helps us rationalise our experigné¢hile it has been shown over the
years to be very useful, the electromagnetic paradigm dhmuho means be considered to be
the only possible or perfectly complete one; by changingfiosir principles we could end up
with easier solutions of a whole group of practical problefise more practical answers we
can obtain, given the same amount of invested effort, thiebtte model is, no matter how
wildly different from the classical electromagnetic imgestation it may be. A set of different
principles that could be applied to the general problem fhfadition of light can be found in
the context of quantum mechanics, and the path integralarircplar [181]. We have exam-
ined the characteristics of this approach, primarily basethe very practical and noteworthy
work presented in Ref. [2]. We shall summarise here the bde@ of path integrals, on the
basis of the material contained in Ref. [2].

The basic statement of Feynman’s path-integral formutagdahat the probability ampli-
tude for a particle starting at one location, say paeirtb arrive at another location, say point
is the sum of all the phasors corresponding to each possafeffpma to b. Each phasor, on
the other hand, is a complex number with a magnitude inwemeportional to the (physical)
path length and a phase equal to the action of the (same)dyatted by: = 1 /27, whereh

in the Planck’s constant. Mathematically, this can be emiths

K(ba)=CY 2, (2.69)
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Figure 2.4: lllustration of the path-integral approach atving diffraction problems [2]. All
possible paths that the photon can take from the source tettenation are considered (with
the shape of the obstacle taken into consideration), theracf the path given by Eq. (2.71)
is calculated, and the phasors associated with each pa#tddeel up, as shown by Eq. (2.69).
The result of the process in the probability of a source phgtung to the destination.

whereC' is a normalising constanf), a] represents a path from poiato pointb, [b, a] is the

(physical) length ofb, a], and the actiord [b, a] is defined by a line integral djb, a|:

Swﬂpzf Ldt, (2.70)
bl

where L is the Lagrangian for the particles in question, which, im case, are photons of
wavelength\ originating from a single point. As the photons have no resssnand as their
potential energy is nearly unchanged during propagatiuogir total energy is equal to their
kinetic energy, sd. = hc/ )\, wherec is the speed of light in vacuum. After usidg = ds/c,
we have

he ds 2mh 2mh——o:
Awm:—/ M gs =], (2.71)
A [b,a] C A [b,a] A

which which is a very simple expression and can readily bestgulbed into the starting
Eq. (2.69). Equation (2.69) now gives us the probability kiuge of a photon of wavelength
A getting from one point in space to another. The situatiolustrated in Fig. 2.4.

Our initial perception of the path-integral approach tdrdition was a refreshingly posi-
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tive one; it seemed that most of the practical diffractioopems, such as the ones in optical
interconnects, could be solved by repeating the procedutimed by Eqgs (2.69) to (2.71)
over and over again, until the solution is reached. As thecgle behind this method is very
simple and easy to understand, it seemed that the obstacldd wome from the numerical
perspective, rather than from complicated concepts antenatics. The fact is that a very
large number of paths needs to be considered if an accuratigosas sought, and that this
could pose a big problem in the practical application of pathgrals. Some of the issues
associated with the numerical aspect of the path-integmalcach are addressed in Ref. [2],
where a novel and more efficient algorithm for automaticaiiging paths given an arbitrary
aperture shape was also proposed. However, our main reaisabandoning the path-integral
approach is not due to the numerical intensity of the prqaassmain problem was caused
by uncertainties of how to relate the standard electromagoencepts to the results obtained
by Feynman’s method, and vice versa. The only solid poinetdrence is the fact that the
probability of a photon going from to b can be related to the concept of light intensity at point
b due to the source at However, none one the numerous very important practisakis were
ever addressed in the literature. For example, how doesatieérito account the fact that our
sources are not point sources, but that they have, at bestusstan distribution? How does
one account for the presence of a phase-shifting elemeheiaperture? How do we relate
all this to the concepts of power and phase? While everythag alear in principle, it was a
big gamble, which we did not dare to take, to leave everytleisg and flesh out the details
required for a practical application of the method. It ifl tie belief of the author that, given
enough time and support, this is a very promising methoddabatd be used to further explore

into the phenomenon of diffraction.

2.3.1 Solution by direct integration

After substituting the expressions for the incident fieldeg by Eq. (2.43), into our starting
diffraction integral given by Eq. (2.68), and after integpa with respect talt,, the diffraction
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field assumes the form

|
Upin(1,0,2) = \/W( 2n: ' - cos(m#)

1+ om)(n + m)!
k.jerl

'm -exp [—jk(z — 2)]

- exp {j(Qn +m + 1) arctan &y —
[ o2
0

222
. —TT070 ) krrg
exp (72 ) I (z — Zo) dry, (2.72)

where

2(z — 2s)
kw?

§o = (2.73)
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(2.74)

and

&
72 =14 &+ ——

7770(2 ) (2.75)

After expanding the Bessel and Laguerre functions into thaiver series, given by [108]

<

2+
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J(z) = =5 (~1p

=0

(2.76)
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and Eqg. (2.45), respectively, Eq. (2.72) becomes

1+ §0m)(n+ m

kymtt kr m
————cos(mb) | ——
2n0(z — 20) 2n0(z — 20)
gkr? ]

2no(z — 20)
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s=0

2n!
Upin(1,0,2) = \/7r( I exp|—jk(z — z)]

- exp [j(2n +m+ 1) arctan & —

Equation (2.77) constitutes our first complete solutiortifierdiffraction integral. While easily
obtainable, Eq. (2.77), however, does not meet the reqemésset before us in Sec. 2.2. The

reasons are as follows:

e unless we provide a proper proof, based on I'Hospital’s fateexample, we do not
know for certain if the infinite sum in Eq. (2.77) convergesliverges; hence we cannot

be fully confident in the results that it gives us

e given that the sum converges (following a qualitative pea@nservation argument, for
example) we still do not know what would be a minimum numbeitoterms required
to obtain accurate results in any particular situation; wspgect that the number of terms
increases with decreasing increasingr, and increasing order of the incident mode,

(n,m)

e given the field distribution at a surfacg, in interconnect modelling we are required to
find the field distribution at any subsequent surfage; ; this implies a very dreadful
prospect of feeding Eq. (2.77) back into Eq. (2.68), as tigression for the starting

field, and solving the resulting integral over and over adaireach surface,,

e Eq. (2.77) is only valid for a simple circular aperture; theight of the previous three
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statements would only increase if we attempted to consiaeor@ complicated forms

of p(xo, y0), Such as irregular shapes or thin lenses

e finally, Eq. (2.77) is not transparent; we cannot easily dedbe qualitative information

about the effect of the diffracting surface on the incidezdrn.

In order to get around these difficulties it is common to afiefarther simplification of
Eq. (2.68) in a way similar to the one carried out in Sec. 2.2th\WWe expectation that the
solution of a simplified Eq. (2.68) would also end up less cerabme, we pursue this inquiry

in the following section.

2.3.2 Solution by further approximation

In the process of derivation of Eq. (2.68),

Jkexp[—jk(z — %)
271(z — 2p)

// W (o, Yo, 20) exp(—jko) drodyo, (2.78)
A

Uz, y, 2)

we made the assumption that- o, where

_ (z — on)Q (y — yo)2
0 = Ty T
(2 +9?) | (@3+wus) 2@ -z0+y- o)
_ _ , 2.7
50 T a2g 2d (2.79)

Since the first term in Eq. (2.79) does not depend on the iatiegr variables, it can be taken
outside of the integral. Now, if we assume that the positicine observation plane, is such

that

k- max(ad + 1)
2 )

d= (2 2) > (2.80)
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then the second term in Eq. (2.79) will become ignorably Emal

~ 0. (2.81)

The value ofd required for Eq. (2.81) to hold true needs to be examined @ garticular

scenario. In our case, based on the values discussed slyywe need to have

k-max(z2 +y2)  7.4-10°m~!- 1251075 m?

d
> 2 3

= 115.625 m, (2.82)

wheremax(z? + y2) represents the maximum radial extent of the diffractingtape, which
we related in EqQ. (2.82) to typical channel spacing in opiitrconnects. (Note that in the
case of a circular aperture of radiuswe havemax(z2 + y3) = a*.) Equation (2.82) is also
known as the Fraunhofer condition. Assuming that it holasl thus evaluating Eq. (2.78),
would give us the field in the Fraunhofer region behind th&atting aperture. As observed
previously, diffraction field in the Fraunhofer region istmeally what we need to properly
model optical interconnect channels.

Equation (2.82) is sometimes in the literature expressesl s&ringently by the ‘antenna

designer’s formula’, which we formulate here for @madius circular diffracting aperture:

2
d > 8% (2.83)

where the> sign was intentionally replaced by thesign. With the same typical values used,
the antenna designer’s condition translates to the obsenyalane having to be approximately
14.7 cm away from the diffracting plane. The condition givsnEq. (2.83) is certainly more
forgiving than the original Fraunhofer condition. Howeverstill puts us just outside the
region of the diffraction field that we are most interested in

Fraunhofer diffraction patterns are known to have beenrebdeat distances much closer
than implied by Egs (2.82) and (2.83) [114]. The far-field dition can be met by having the

diffracting aperture illuminated by a spherical wave caogugy towards the observer, or by
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having a positive lens properly situated between the olesamd the aperture. While suitable
in many important practical situations, these two refomtiohs of the Fraunhofer condition
still fall short of reaching the aim set before us. Despigdpparent inferiority, however, we
shall persist in finding out what happens to Eq. (2.78) if weua®e that the relation given by
Eq. (2.81) is valid. The resulting Fraunhofer diffractiartdgral may not give us the precise
distribution of the diffraction field, but it will endow us i a reasonable qualitative insight.
Furthermore, as we already noted, this approach has be@oysky used to study the effects
of diffraction in optical interconnects, and hence quadifier an investment of our efforts.

Assuming that Eq. (2.81) holds, ‘our best result so far’ bees

jk . z® +y°
Unm($7yvz) = %exp |:_.]k (Z+ 9 ):|

-//A\I/(xo,yo,zo)

ik
exp [M] dodyo, (2.84)

z

in rectangular coordinates; in polar coordinates it become

.k 2
Upin(1,0,2) = ;—exp[ jk:< %)]
// 7GO790720

|:j krro cos(6 — )
- exp

> :| ’l“od’l“ode(). (285)

After substituting the laser beam formula given by Eq. (248 Eg. (2.85), and after ex-

panding the Bessel and Laguerre functions into their powggseas was done in Sec. 2.3.1,
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Eq. (2.85) transforms to

where

Upmn (1,0, 2)

- exp [j(Qn +m + 1) arctan &, —

2n! »
\/m ot Pl )]

i Ee )

2n0(z — 20
jkr? }
2n0(z — 20)

53 (Zt@ (1) 9(p+ g +m)!

s plg(p+m)!

|: kr :|2P ( ) )p+q+m+1
27’]0(2 — Zo) 08

2 2 2\ PTatm 2 2 2\ 8
—ngosa 1 (nsoia
Jre (5 S ()]

s=0

oo =1+ j&. (2.87)

The only mathematical difference between Eq. (2.86) anqZd7) is that each? in Eq. (2.77)

is replaced by?2 in Eq. (2.86) [182].

Equation (2.86) is our second solution of the Huygens-Kiafhformula, and it gives us

the diffraction field in the Fraunhofer region behind thdrdifting aperture. Unfortunately, all

the problems that plagued our first solution, given by E.{R.continue to plague Eg. (2.86).

In order to obtain at least some sensible results we proceedib make yet another assump-

tion. It is common, especially in introductory texts on dhfftion and beam propagation, to

assume that the field at the diffracting plane is planar,that U (rg, 6y, 29) = 1 - exp(j 0).

While it is clear that laser beams are not planar, this assomptakes sense if we remember

that any arbitrary field distribution can be expressed asvaduplanar waves. Summing up

such a representation in practice, however, is a compldifgrent matter. With alt),,,,, now
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eliminated from considerations, Eqs (2.84) and (2.85) bero

Ulz,y,z) = ;—exp{ Jk< 22y )1
/ / []k 720 + y%)} daody, (2.88)

and

- 2
U(r,0,z) = ;—kexp[ jk( ;—Z>}

/ / {7 AT COSw 90)} rodrodfy. (2.89)

Both Eq. (2.88) and (2.89) are easily solvable, for instancastbaight-forward invoca-
tion of Mathematic& symbolic integration command [183]. Assuming thits a rectangle
whose end points, in an anticlockwise fashion starting ftbenlower left corner, are given by

{(z1,11), (2, 11), (21, 92), (z2,92) }, Eq. (2.88) concludes to

: 2
jz , r
2rkxy P [ Ik (Z * 22)}
[ (jkxm) (jkxxg)}
- lexp — exp
z z
. {exp (jkzﬂ) — exp (‘@)} ; (2.90)

assuming that is a circle of radius:, Eq. (2.89) concludes to

U(r,0,z) = ‘Yj—k J1 (?) - exp [—jk (z + %)} . (2.91)

U(z,y,z) =

r

Diffraction field intensity, obtained from Eq. (2.91), anden by

I(r,0,2) = |U(r,0,2)* = {Z—k - Jp (@)} : (2.92)

r z

is probably the best known, and most frequently quoted solaif the diffraction integral. Itis
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referred to as the Airy pattern — a pattern of dark and brigigs around a very pronounced
central lobe, where the first dark ring is located at a distawicl.22)\z/a from the axis of
propagation. We note here that Eq. (2.92) is exactly the s#steg. (4-31) in [114]. Given
that all occurrences of;j* are replaced by —-;’, Eqg. (2.92) would correspond precisely to
Eq. (4-30) in Ref. [114]. Equations (2.91) and (2.92) can eesipely be interpreted as the
Fourier and Fourier-Bessel, or Hankel, transforms of the fiekr the aperture.

From Ref. [114], the expression for the diffraction field ire thraunhofer region from a

unit-amplitude incident field is given as

B , gkr?\ ma? Ji(kar/z)
U(r,0,z) = exp (jkz) exp< 5 ) i [2 barjz |’ (2.93)

and the intensity is given as

R LA e 29

In the work of Tanget al.[3], it is assumed that the optical wave emitted from the VCSEL
diode can be assumed to be a plane wave diffracted by an outpdow of finite extent.
They are also using the diffraction integral in the Frauenhafpproximation and hence need to
have lens in the aperture, and the laser needs to be positairibe focal length, i.el = f.
The schematic diagram of the situation is shown in Fig. 2l formalised amplitude of the
electrical field distribution is given by the Bessel-Foutm@nsform of the incident laser field,

evaluated at spatial frequency®f/\ f, and given by

_ Ji(karo/l)

E(ro) = B{E(r)} = p—r (2.95)

where

Grex 0 otherwise,

1 if ry < a
E(ry) = circ (&) = { ' ' (2.96)
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Figure 2.5: Schematic diagram that aids the understandithg evay in which the the solution
by further approximation was applied in Ref. [3].

B stands for the Bessel-Fourier transformatioing(r/as) accounts for the finite extent
of the laser output window with radius,, andr;, andr, are the radii in polar coordinates
in the plane of the laser output window and the plane of m&rs] respectively. All other
symbols have the same meaning as before. Note that only thitade of the resulting field
is considered, and that the phase is ignored. Also, in Reftljig]amplitude of the incident
field is assumed to be@wa?, ). Such choice of the amplitude results in the total power that
goes through the laser output window to be normaliseld o

The point of the above considerations was to find the shapkeointident laser beam;
now we have to consider the effect of diffraction at the miems. The field at the microlens

is modified slightly to account for the finite size of the miens aperturey, to give

E(ro) = E(ry) - circ (@) . (2.97)

Qo

The final field in the observation (diffraction) plane is abh&d by Bessel-Fourier-transforming

Eqg. (2.97):

d)\? 2T agQx 2T apr«
E(ry) = B{E = - J - J , 2.98
(rrs) {E(ro)} o ! ( [3) ) ! ( d\ ) (2:99)

where all the symbols have the same meaning as before. Thie afoation was not actually
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explicitly given in the paper of Tangt al. What is given, the reason for which will become
clear in Chapter 4, are the powers encircled by the diffrgctmcrolens, and an a circular
aperture in the observation plane. As pointed above, ordymmmmalisation was done in the
above calculations, and that was the normalisation of thaliarde of the plane electric used
to model the laser beams. After that all other electric fielgpEtudes are obtained as explained
above. However, in the paper of Taagal. all field amplitudes are normalised by adding a
constant in front of the expressions so that the total pow#re diffraction field equals tb.
If the laser field is diffracted by a microlens aperture ofiuad,,, at a distance of from

the laser, the power encircled by a receiver of radiysat distancel away from the aperture

is given by [3]

Play) = Plap) {1 . [JO (kagla”‘)r - [Jl (k“(;“”‘)r}, (2.99)

where

Pag) = 1-— {Jo (%)} - {Jl (%)} , (2.100)

and all other symbols have the same meaning as before. BqyatiL00) also represents the
power contained in a microlens aperture of radigls
Solutions by ‘further approximation’ are probably the mfasniliar type of solutions of

diffraction problems; anyone with a basic knowledge of ptystnd mathematics would be
comfortable in applying them in a practical situation. Thaimreason for such high status
and popularity of solutions by further approximation isnparily due to the simplicity of the
relations expressing these solutions. For example, E§8)Yand (2.91) can be applied straight
away in any software package in a practical context. Howeaswe have seen at the begin-
ning of this section, Eqs (2.90) and (2.91) are true only en¢hse when the plane at which
we observe the diffraction field is at a large (very largejathse from the diffracting aperture,
and when the incident optical field is a plane wave. As sooneaBy\o improve the situation

by using the more complicated laser beam functions (whilldbslieving that our observation
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plane is very far away from the diffracting plane), the besedif easy expressions are lost
immediately, as can be seen from Eq. (2.86). Hence, the naa@néage of the solutions by
further approximation is that they are easy to understaddcaaply. Their main disadvantage
is the environment of heavy restrictions that surroundsnthén the case of the optical in-
terconnect design, one could perhaps tolerate these hpawyxamations in order to quickly
estimate the order of importance of diffraction effectsything else than an estimate cannot
be guaranteed, and a more appropriate model needs to beusssgl strong approximations
without constantly checking their validity could also tuwuat to lead to faulty designs. The
inability to be fully confident in the results obtained thgbuisolutions by further approxima-
tion’ is the main reason why they are inappropriate to use adetling diffraction in optical
interconnects, and why it is worthwhile to go on looking fooma suitable solutions.

We close this section by remembering that the diffractioka fie the Fraunhofer region is
only a subset of the diffraction field in the Fresnel region. i/making the Fraunhofer as-
sumption allowed us to make a breakthrough in obtaining ahledormulation of the diffrac-
tion field, our primary concern is still the solution in theeBnel region; the Fraunhofer solution
is contained in the Fresnel solution. If we are successfablaing the problem of diffraction
in optical interconnects in the general case, modifyingitover particular subsets of the

problem space is trivial.

2.3.3 Solution by equivalent representation

The ‘equivalent representation’ approach undertaken byaBeland Crenn, as detailed in
Ref. [163], is fundamentally different than the top-down ggch we used to obtain the first
and second solution of the diffraction equation. The défere stems from the fact that Belland
and Crenn aimed to identify the changes in the incident lasambdue to diffraction at an
aperture, rather than to work out the full form of the diffiaa field.

In the method due to Belland and Crenn, laser beams are areessore purely Gaus-
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sian, and they are characterised by their transverse itywgmefile, given by:
I(r,z) = Iyexp(—r?/w?), (2.101)

wherel, is the on-axis intensity; is the radial coordinate, andis the locall /e beam intensity
radius. Thel /e intensity radius is related to thi/e field radius,w, by w = w/v/2. The
minimum value of the beam intensity radius, the beam wastenoted by, while the beam

divergence characteristié, is defined by
05 ~ tan b = 1/kws. (2.102)
With this notation, the total beam power is given as

2m 00
P = / / Iy exp(r? /w*)rdrde
o Jo
= 7wy = Wi, (2.103)

wherel, represents the beam on-axis intensity at the beam waist pldre two values, beam
waist size and on-axis intensity at the beam waist planestitate the beam parameter set,
pBC = (Ws, I5).

Belland and Crenn have considered what happens to the laserdgreen by Eq. (2.101)
passing through and being diffracted by a coaxial, plamat,crcular aperturel of radiusa.

In order to represent the extent of diffractionAtthey define the clipping ratia;, as

K= =2 (2.104)

wherew, represents the beam waist radius at the aperture ptare,z,. Apart from few

special cases, their results can be summarised as follows:

Case 1:x > 2.12 Diffraction effects are negligible, and the charactecstf the Gaussian

beam are unchanged behind the aperture.
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Figure 2.6: Schematic diagram that aids the understanditigeavay in which the method of
Belland and Crenn works.

Case 2:1.13 < k < 2.12  The weakly diffracted Gaussian beam, in the far field, lodkes |

a Gaussian beam, with a different set of parameter vapes(ws, I;)

Case 3:k < 1.13  Diffraction effects become large, so that the diffracteafite is no longer

Gaussian, and the new set of parameter values is no longer val

The new parameter values can be obtained by

Wg —1—ex —(12 ]{ZCLQ

w O {wz 1+ (20/kuz)] }COS{% [1+ (k2 /20)] } o
and

£ =1-—2exp o Cos fa” (2.106)

I, w? [+ (20/ku?)?] 20 [1+ (kw?/20)°] | ° |

where/ represents the distance from the plane of the laser beanm wadise plane of the
diffracting aperture/ = z, — z,, all other symbols have the same meaning as before, and
the process is illustrated in Fig. 2.6. Note that the pasitbthe beam waist in the effective
beam remains the same as in the incident beam. Belland an Cagaralso found that with

a relative power loss of only 1% only through the apertures{edent to a clipping ratio of

k =~ 1.56), diffraction effects can already modify the angular beaweience by about 10%.
Consequently, the criterion of small losses of beam poweutin the aperture is not sufficient

to assume that the beam has not suffered any modification.
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The two most important positive characteristics of the méthy Belland and Crenn, as

related to optical interconnect modelling are:

e it is numerically simple and easily applicable, even in thsecof diffraction of a se-

guence of circular apertures

e it expresses the effect of diffraction on the incident beat@erms of changes ips, the

set of incident beam parameters.
The list of negative characteristics is, unfortunatelynsahat longer:

¢ the method is very inflexible since only the intensity of theident and diffraction fields

are considered

e diffraction of higher-order modes,,,,,,(zo, z), cannot be considered, as we would gen-

erally like to in optical interconnects

e since the method relies on a particular direct solution ef diffraction integral, any
possible extensions to situations involving more compléattting surfaces cannot

easily be made

¢ the method only provides solution for a limited range<pfwhich may not necessarily

be sufficient for our purposes.

The method of Belland and Crenn should not, however, be coelpléismissed. The whole
idea of equivalent representation, as we shall see in Ch. IBplay a crucial role in the

formulation of an appropriate method for optical channetigiting.

2.4 Summary and conclusion

We applied two fundamental principles of electromagnégoty, as given by Eqs (2.1) and (2.2),
to the problem of channel modelling in optical interconsedthe result is the diffraction for-

mula, given by Eq. (2.30). After consideration of typicatg@eter values, we concluded that
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the diffraction equation need only be solved in the Fresaegion, where it assumes the form
of Eq. (2.67) in cartesian coordinates, and the form of E§8@in polar coordinates. Suitable
and numerically efficient solution of the Eq. (2.67), andeleivalent Eq. (2.68), is the key to
successful channel modelling in optical interconnects.

Existing solutions of Eq. (2.68) abound, yet we were abledentify three classes: di-
rect, approximate, and effective-beam solutions. Theopype of the direction solution is
given by Eq. (2.77), and the prototype of the approximatatsmi is given by Eq. (2.98). The
most notable example of solution by equivalent represemas summarised in Eqs (2.105)
and (2.106). While accurate and important in their own rightpf the three classes of solu-
tions were found to be lacking; they did not meet the requénets of channel modelling in
optical interconnects.

While not perfectly aligned with our aim, the approach by Balland Crenn, however,
offers an alternative to the algebra-dominant solutiorss Gonsidered. It is also the method
that has most frequently been used to model the optical eéiace of interconnects. Its main
strength lies in a radically different and more natural falation of the diffraction field; its
primary deficiency is the limited range of possible applmat In the following chapter we
shall examine an even more general equivalent solutiontwihilt turn out to be very suitable

for modelling diffraction in optical interconnects.



Chapter 3

Novel way of modelling diffraction

The aim of this thesis is to formulate a suitable method fodefiong diffraction in optical
interconnects. As we saw in the previous chapter, this lagesinto finding a most optimal
way of solving the diffraction formula in the Fresnel regioiWhile none of various existing
solutions were found to fully meet our requirements, theaive-representation approach of
Belland and Crenn has been identified as the most promising longhis chapter we shall
pursue this effective-representation line of inquiry,taseems to be the one most suitable for
optical interconnect channel modelling. However, while approach may conceptually be
similar to the method of Belland and Crenn, it is technicallyyvdifferent. Our approach
is based on an orthogonal, or modal expansion of the dirdati@o found in the previous
chapter. The orthogonal expansion not only expedites theenigal evaluation of the direct
solution, but it allows us to altogether reinterpret the meg of the diffraction integral and
hence reach the thesis goal. While the idea of using modahsiqato reformulate and ratio-
nalise a difficult problem is not a freshly conceived one \lag in which we have connected
it with the diffraction problem, especially in the contextaptical interconnects, is novel. The
structure of this chapter is as follows. In Sec. 3.1 we pregenprocess of modal expansion
and comment on the results. In Sec. 3.2 we present an alte&raatd more insightful approach
to the expansion. In Sec. 3.3 we formalise our findings as theenexpansion method, and in

Sec. 3.4 we verify and illustrate its performance.

64
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3.1 Modal expansion of the exact solution

We can express any diffraction field( z=, z) by a set of normal functiong/, (=) }:
Ulw,z) = Z Ch Yn(wo, 2), (3.1)
n=0

wherew = (z,y), orw = (r,6), depending which coordinate system is more appropriate,
and where”}, are the expansion coefficients. As the Hermite-Gaussiahagderre-Gaussian
families of functions were noted to be orthogonal, diffracffield of each particular free-space

mode,U,,,,(zo, z), may be written as:

A, =0
where(C},;, are the expansion coefficients, aﬁgl,ﬁ is the set of modes used to decompose
the diffracted field, and,,,, is the set of modes used to decompose the incident field. (Note
thatU,.,(w, z) represents the diffraction field of each incident begm (==, z) and that the

whole diffraction field is given by:

Ulw,z) = i Wom Upm (T2, 2), (3.3)
n,m=0
whereWV,,,,, are the weights representing each madg,(zo, z) in the complete laser beam
U(wo, z), as Eq. (2.47) shows.) The expanding set of functions méneelte taken to be
Hermite-Gaussian i, (w0, 2)} = {¢1S(z, 1, 2)}, or it may taken to be Laguerre-Gaussian,
{am(w, 2)} = {X8(r. 6, 2)}. The choice primarily depends on the nature and geometry of
the diffraction problem in question. Any other set of ortbogl functions may be considered,

however, we expect quick convergence of the sum in Eq. (B2 incident and the expanding

set of functions have the same form.
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Continuing our established preference for Laguerre-Ganssaides we write

Unm(r7 97 Z) = Z Cﬁm 1/3%%(7’, 97 Z)

7, =0

= Z Z Clon Y (1,0, 2), (3.4)

n=0 m=0

where the second line in the above equation indicates thatilivdrop the LG superscript in
later equations, for practical reasons, and where thetdsdation of the diffraction integral

in the Fresnel region is given by Eq. (2.77), which we repea¢ lfior easier reference:

(1 4 dom)(n +m)!

Rt cos(mé) {L} "
2n0(z — 20) 2n0(z — 20)
jkr? ]

27]0(2 — Zo)

53 (T_ZL) (~1)+1(p + g +m)!

== plg!(p + m)!

ker 2p s o\ PHatml
. [27}0(2 - ZO)} <§>
92 9 9\ Ptgtm 92 9 9\ §
—npTa 1 (n5T7a
. [1 — exp (T) ; ] ( 5 ) ] , (3.5)

and the set of Laguerre-Gaussian laser beam functionses @y Eq. (2.43), which we also

Unm(r,0,2) = \/ 2n’ exp[—jk(z — z)]

- exp {j(Zn +m + 1) arctan &, —

repeat for easier reference:

2(1)

e (N + 1)

Dam(1,0,2) = exp[—jk(z — )]
- exp [j(Qﬁ + 1 + 1) arctan é}
1 o

- exp {_Eﬁ%%ﬂ n (fr)™ L%m)(ﬁ%ﬁ) cos(mb). (3.6)

As indicated by the hats in Eg. (3.6), the beam parameterseoéxpanding beam set,=

{ws, 5}, do not generally coincide with the parameters of the inditbeam set.
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The expansion coefficients can be evaluated by invertind34)):
21 0o R
D= [ [ Uanl002) G (6. 2) v 3.7)
0 0

where the asterisk denotes complex conjugation. If we gutestEgs. (3.5) and (3.6) into

Eq. (3.7), the coupling coefficients assume the first the foim

B 2n/! (s o kgt
Urm(0:2) = \/ (L4 dmo)(n +m)! expl k(= S>](Z—Zo)

jkr? ]

- exXp |;](2TL +m + ].) arctan 50 — m
— <0

-cos(m@)-/ (noro)™ T L™ (m5rd)
0
1 k
- exp <—§77(2)7’2T(2)> I ( o ) dro, (3.8)

Z— 20

and then the form of

Cam = \/(n —T—le)!\/(n f' I exp[—jk(zs — Zs)]0mm

~exp[j(2n +m + 1) arctan & — j(27 + m + 1) arctan ]

m+1 p+q p+q+m>
2%2_¢0§:§:§:

i pldllp+m)!
n+m 2 p+g+m+1 L m
GG me)

. _L ” Am+1 n+m (_ﬁQ)t
| 210(2 — 20) g n—t t!

.2m+p+t(Bﬁ2)flfmfp7t<m +p + t)‘

[ 2 9 9N\ Ptqgt+m 9 9 9\ 8§
—NGTHa 1 (nim5a
o (331 (550 o9

s=0

where

=14+ (3.10)

773(2 — 20)
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A 71k

B:1—j§+m. (3.11)

The orthogonal reformulation of Eq. (3.5) was performedhia hope that the resulting
expression for the weighting coefficients would turn out éosimpler and more suitable for
application in modelling diffraction in optical intercoects. However, the coefficients given
by Eq. (3.9) suffer from the same problems as the direct isoludf the diffraction integral

given by Eq. (3.5). The most important issues are:

e without an explicit proof we cannot assume that the infinitexsn Eq. (3.9) will con-
verge; the issue of convergence is more important in Eq) (B&h in Eq. (3.5) due to

the fact that an infinite number of modes is summed up to oltha@idiffraction field

¢ the coefficients given by Eq. (3.9) are only valid for diffti@a at a circular aperture;
if any parameter of the diffraction problem changes we neeé-derive the weighting

coefficients

¢ if any parameter of the diffraction problem changes, weightoefficients can be ex-
plicitly found only if an analytic expression for the solni of the diffraction integral

for that particular case exists

e sinceB is a function ofz, the value of each coefficient depends on the position of the

observation plane, and hence needs to be recalculatecdkfriygu

On the other hand, the problem of sequential-apertureadiifsn is handled much easier by
the orthogonally-expanded solution. Once e&égh, is calculated it can be combined with
Wans to form the weighting factorV;,,,, for each mode in the ‘new’ incident beam at each
subsequent aperture. The initial disappointment noteatiding, we shall continue our pursuit
of an optimal way of equivalent representation in the negtise, with the hope that a craftier

mathematical insight will result in a better solution of enodelling problem.
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3.2 Alternative approach to modal expansion

Orthogonal expansion of the diffraction field has been aersid previously, particularly by
Tanakaet al. [182]. The approach undertaken in Ref. [182] differs fronm oanventional
approach assumed previously in the fact that a specialae$tip between the Bessel and
Laguerre functions is used, rather than each one of thenglmimectly expanded into an

infinite sum. This special relationship is given as [108]:
o (m) P m
Tn(2V/tz) = exp(—t) Y Ly (@ (@) : (3.12)

If in Eq. (3.12) we let

r = A%, (3.13)
and
k*r?
_ i 14
t 4A%(z — z9)? (3.14)

the Bessel function becomes

7 krro o —k*r? krrg 1™
m = €X
z— 2y P 4A%(z — 20)% | [2(2 — 20)

N O s NI T
2 (p+m)! {4142(2«_020)21 ) (3.15)

p=0
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whereA is an arbitrary constant. After substituting Eq. (3.15piBQ. (3.7) the solution of the

diffraction integral becomes

- 2n! . L
Yol 0:2) = ¢ (1 + Gom) (n + )emﬂjﬁz+%ﬂ%dz—%)

jkr?
M}
. {2770(57; Zo)}m i zn: L%:)J(ré;;?) {4142773(]{»:— Zo)zr

p=0 ¢=0

(n - q) (=1)9(p + ¢ + m)! (E)pmmﬂ

n—+m q B

1 pt+g+m 1 2 2B s
. [1 — exp <—§n§a2B> Z a (7706; >

s=0

-cos(mb) exp [j(?n +m+ 1) arctan &y —

, (3.16)

where all the symbols have the same meaning as before. BQu&til6) is equivalent to
Eq. (3.7), given that! is large enough.
After substituting Eq. (3.16) into Eqg. (3.8), and after penfiing thedd part of integration,

the coefficients are given by

! %! L
Cﬁm == ~ 5mm
(n+m)! | ("4 m)! 2n0(z — 20)

cexp|—jk(zs — %) + j(2n +m + 1) arctan &

—5(27 +m + 1) arctan €]

ii( Dip+qg+m)! (n+m
(p+m)!q! n—q

p=0 ¢=0

9 p+q+m-+1 kg p
(5) |

2 92 p+g+m
—nia“B 1
'll—exp(%) >

2
o n2 2
.exp( T ) (m(A2r%) LS (#%02) dr. (3.17)
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After rewriting the integral in Eq. (3.17) as

R A e i
exp (‘”f) " (A22) LR dr
- il (B)

> 2A%z 2
: —a)z™ L™ L (=2 ) d
/0 p(=a)e" Ly <ﬁ20> n\c)™

setting the arbitrary constartto

and by using the formula

m - n-—+m n—t 7 (m
L0 (ay) = ( )(1—x>taz L) ().
t=0

the coupling coefficients are transformed to

\/ n—+m)! \/ (74 m)! expl=jk(zs = 2)Omn

+j(2n +m + 1) arctan &y + j(m + 1)2

—j(2h +m + 1) arctan €]

iz ) (p +q+m)! (n+m)
g s plq! n—gq
+m ) p+g+m+1 ) p+m+1
()6 @
c-2 k2 b
S 4770A2(Z — 2p)?
m+1 2 2
—nsa B)
| — 1 —ex
] [ (S

p§m1 ngaQB 2
s! 2

s=0
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(3.18)

(3.19)

(3.20)

(3.21)
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By noting that:

k » ) "
C = m €xXp {_] arctan |:£ - m} } , (322)

and

- - k
arctan £ — arctan [5 — Agi]
(2 — zo)
k

72(z = 20) (1 +&2) — k¢
= —arctan (i) , (3.23)

€o

= arctan

the final expression can be simplified to

c n! n! " s

+j(2n 4+ m + 1) arctan &,

—j(2n+m + 1) arctan &

'iéié@dﬁ+q@+q+WM(n+m)

1! _
90 =0 plq! n—q
(ﬁ + m) (z)p+q+m+1 <@> 2p+m+1
n—p B o

2 2 ptg+m 2 92 2
—nga-B 1 (nga B
. [1 — exp < 5 ) Z o ( 3

s=0

, (3.24)

where all the symbols have the same meaning as before.

The expression for the coupling coefficients given by EqR4Bis mathematically equiv-
alent to the expression given by Eq. (3.9). However, the ibefisum present in Eq. (3.9) is
eliminated from Eq. (3.24), thus clearing up any convergeticubts (and hence implicitly
proving that the infinite sum in Eq. (3.9) does indeed comeerdJnfortunately, Eq. (3.24)
inherited all other problems originally associated with E19). Nonetheless, a crucial devel-
opment presented in the next section will finally allow us takena break-through in our quest

for the most optimal way of working out the expansion coeéints in any given scenario.
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3.3 Mode expansion method

3.3.1 Derivation of the method

Thez dependence of the coupling coefficients, as given by Eg4)3c®mes througl®, which
was defined by Eq. (3.11):
k2

k
B=1 ] _ 3.25
TR e [&) TR = z@] ’ (3.25)

where A was assumed to be an arbitrary constant. Sihémas subsequently been defined by

Eq. (3.19):

1, 1 k

2 zZ—29)
B is more accurately given by

2 4 52 2
p=" ";770 +j§0770 50770 (3.27)
"o Uk

Equation (3.27) is quite remarkable since we see thatas wrongly interpreted to be a func-
tion of z. As B is independent of the position of the observation plane redhe weighting
coefficients given by Eq. (3.24). This not only eliminateg @f the problems listed at the end
of Sec. 3.1, but also opens up a new avenue for interpretatithe diffraction phenomenon.
We now turn to the idea of modal expansion with the aim of reidating the direct solu-

tion of the diffraction integral in the Fresnel regidn,,,.(r, 0, z), in a more suitable way:

Upin (7,0, 2) ZZCW ) Yam (1,0, 2), (3.28)

n=0 m=0

where the coefficients were supposed to be obtained by ingefte above equation:

2 0o
Z) - / / Unm(rv 67 Z) z&;fn(r’ 0’ Z) Td?"de. (329)
0 0
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In Egs. (3.28) and (3.29) represents the position of the observation plane. Matheatat
formalism and initial results indicated that the weightoogfficients(C;,;,, changed depending
on where we wanted to observe the diffraction field. This &t we had to solve Eq. (3.29)

at each observation plane. Since thdependence of weighting factors was eliminated by a
proper choice ofd, Eq. (3.29) need only be worked out once, on one arbitrarfaseaiinside

the interconnect (as there is nodependence it does not matter which surface). Let that
arbitrary surface be the surface just to the right of theraifing element, located at= z.

In that case Eq. (3.29) becomes:

27 e’}
Chp = / / Upin(r, 0, 28) 022 (1,0, 25 ) rdrd®, (3.30)
o Jo

where ‘just to the right of’ was indicated by the ‘+' in the supcript. As we defined each
surface within the interconnect to be infinitesimally thinfollows that the diffraction field
distribution just after the diffracting surface is the saasethe field distributiorexactlyover

the diffracting surface:
U'flm(r> 07 Z(—)‘r) = Unm(rm 807 ZO)' (331)

The same reasoning allows us to conclude that the fieldloligion exactly over the diffracting
surface is given as the incident field distribution just befib, multiplied by the action of the

surface. As our diffracting element is still an empty apertuve have

Unm<7nU> 907 ZO) = wnm(ra 97 Za) YA (7’0, 00)7 (332)

wherep, (19, 8p) was first introduced in Ch. 2, and is also given by Eq. 3.45. @ulisn of

Egs. (3.31) and (3.32) into Eq. (3.30) leads to

27 e’}
Chm = / / U (1,0, 25) palro, Oo) 1[1;;7%(7‘, 0, z3) rdrdd. (3.33)
o Jo

If we extend our thin-surface reasoning to both the incidesitl as well as the expanding
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functions:
¢nm<ra 97 Z&) = 7ybnm(ra 67 Z(;r) = ¢nm(7”07 907 Z0>7 (334)
&ﬁm(r, 9, Zar) = &ﬁm(ﬁ 0, 26) = ?;ﬁm(ro, 8o, Zo), (3-35)
and
é;fm%(ra ‘97 ZJ) = T%m(ﬁ 67 26) = &;m(ro, 907 ZO)? (336)

Eq. (3.29) finally becomes:

Cim = / / Yrm (10, 60, 20) ©a (10, 60) %Zm(ro,eoazo) rdrdf

= / /?/)nm 7“0790,2’0 &2,%(7“0,90,2’0) rodrodfy. (3-37)

The message of Eq. (3.37) is extremely pleasant and ceatpaltsolution of the problem
of channel modelling in optical interconnects. By substiytEg. (3.37) into Eq. (3.28) we

obtain

27 a
- / / (70, 60, 20) U (16, 00, 20) rodrodfo,  (3.38)
0 0

which means that the optical field at any point in the intermat can be obtained without any
use of the previously-formulated diffraction formula oryaof its solutions. Equation (3.38)
tells us that the diffraction field can be found from the iresitifield distribution and the knowl-
edge of the expanding modes. Before analysing the conseegiefithis finding, let us confirm
it by a reverse procedure; let us see if the evaluation E7§3vill lead us back to the result

given by Eq. (3.24).
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After substituting the modal expressions into Eq. (3.3@} after integrating with respect

to df, we obtain

o = ¢mi2ﬂ¢mTLNMMﬁM%_%”

(o)™ exp[j(2n +m + 1) arctan & — j(27 + m + 1) arctan &

/ P2t LM (mer?) L (Rar?) exp|—<r?] dr, (3.39)
0
where
2 | 22 2¢  _ #2F
¢ = Mo + o + jnogﬂ 77050' (340)
2 2
Integration with respect tdr, yields
2n! 2n!
Cﬁm - ~ —jk s As
\/(n +m)! \/(n +m)! exp[—jk(z = %))
-explj(2n 4+ m + 1) arctan & — j(2n + m + 1) arctan éo]
fiji C@+n? Cm+m><—¢yﬂ
‘=i \n—p) \n-p/ plg
772p—i—m—‘,—17»72(14-771—}—1
o o
If we note that
2
B
¢ =12 (3.42)
2
and that [108]
ym+p+g+la’) = (m+p+q)
1 - pt+g+m 1 77(2)6123 s
[1 — exp (_E%a B) ; o 5 , (3.43)
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Eq. (3.37) assumes the form

Coam =

Q

n! n!
—Jjk s As
+j(2n +m + 1) arctan§
+5(27 +m + 1) arctan &]

535504V“@+W%Hm<n+m)

g _
p=0 g=0 p:q: n—q
<ﬁ+m) (3)p+q+m+1 (@>2p+m+1
n—q) \B Mo

1 pt+g+m 1 2 QB s
e E 3

s=0

(3.44)

The fact that Eq. (3.44) is identical to Eq. (3.24) completesreverse-engineered proof.
The benefits of finding the optical field due to diffraction ategoerture by using Eq. (3.38)
over any other method examined so far are many. In additicghadenefits of the modal

expansion approach in general, we note that:

¢ the diffraction field can be found just by calculating the gling coefficients and sum-
ming up the weighted expanding modes; there is no need te solwumerically evaluate

the diffraction formula

e the position, size, or shape of the diffracting apertureesalo difference in the calcula-
tion process since the evaluation of the coupling coefftsiéakes place over the whole

diffracting surface

¢ the coupling coefficients can be found either by using thdi@kgxpression given by

Eq. (3.44), or by straightforward numerical integration.

The mode expansion method, as given by Eq. (3.38), howetidaes not posses all the
characteristics of a method suitable for channel modellingptical interconnects. Its most
notable drawback is that it still does not offer any insigftbihow to deal with diffracting

elements different from simple apertures. Let us theretmmsider the case in which the
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diffracting apertured considered so far is replaced by a circular and coaxial #ns bf radius

a, denoted byl.. While the action of a diffracting aperture was given by

0 otherwise,

(o, 0o) { L (o, f0) € A (3.45)

where A represented the aperture region, the action of a diffrg¢tim lens is given by

(3.46)
0 otherwise,

@L(ro,eo) { fL(T()yeO) if (rmgo) cL

where L represents the thin lens region (for now assumed to be aalaarsle of radiusa),

and

2
krg

fL(To, 60) = ﬁ (347)

In Eq. (3.47),f represents the lens focal length. Since we changed the fbthe @lement

action, the formulation for the diffraction integral in tReesnel region also changes from

Uﬁm(T,dg,Z) = Mexp[—jk(z—zo)]

2w o]
/ / ¢nm(r07007zo) @A(TO’OO)
0 0

{ gk[r? 4+ 12 — 2rrg cos(6 — 6)] }
-eXp J—
2(z — zp)

rodrodty (3.48)
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in the case of an aperture, to

Uk (r,0,z) = L)exp[—jk(z—zo)]

27(z — 2o

27 00
/ / ¢nm(r0700a20> QDL(TOaHO)
0 0

{ gk[r* 4+ 13 — 2rrg cos(0 — 6)] }
. eXp J—
2(z — zp)

‘To d?“odeo (349)

in the case of a thin lens.

The initial solution of Eq. (3.48) was obtained relativefsgy by direct integration, and is
given by Eq. (3.5). That may not necessarily be the case fofE49), due to its additional,
andd, dependence introduced through(ro, 6y). Instead of first attempting to solve Eq. (3.49)
by direct integration, as we did in the case of Eq. (3.48), menediately assume that the

resulting solution can be written in terms of functions ofaathogonal set:

U (1,0, 2) Z Qain Vi (09, 2), (3.50)

n,m=0

whereQ;z how represent the expansion coefficients. As before, tharesipn functions are

the Laguerre-Gaussian functions:
zﬂﬁm(w,z) LG(?" 0,z) = zﬂﬁm(r,e,z), (3.51)

and the expansion coefficients can be found by inverting E§0j:

2m
. 52
Qi (2 / / (r,0,z) V% (r,0,2) rdrdd (3.52)

While we were able to find the analytic expressions for the egioa coefficients in the
aperture-diffraction case, we may not necessarily be abbotso for thin-lens diffraction.
However, the whole point of finding the expression for theaggion coefficients in the previ-

ous section turned out to be just a stepping stone; we onlyatkethe explicit expressions for
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the coupling coefficients until we realised that they did Imate any: dependence. Once we
realised that, it was relatively simple to show how the saoeficients can be obtained in an
alternative and much easier way. As long as we can provehbal's, worked out by solving
Eq. (3.52), do not depend arwe can apply the same reasoning as in the case @i'the

The proof turns out to be much simpler than expected. We matethe only difference
between Eg. (3.48) and Eqg. (3.49) is in the element actionpA8,, 6,) does not depend on
z, there is no new dependence introduced by going from Eq. (3.48) to Eq. (3H48hce, the
expansion coefficients given by Eq. (3.52) will also not depenz, and can easily be worked

out as

2 a
Qﬁm = / / 1/Jnm(7“0, 0o, Zo) SOL(TO, 90) w%m(ro, 6o, 2’0) rdrdd, (3-53)
0 0

without any need for explicit integration. By responsiblystituting Eq. (3.6) into Eq. (3.53)
we can find an expansion coefficient expression in the sameawaye obtained Eq. (3.44).
Similarly, the alternative equivalent formulation of Lagte-Gaussian laser beams, given by

Eq. (2.42), and repeated here for convenience:

bom(r,0,7) = 2SPLIME= ) [ ! (r\/g>

wA/7(1 4 dom) (n+m)! w

- exp {j(Zn +m + 1) arctan M]
ZR

r? kr? o [ 27
- exp (_E —jﬁ> Lm ( ) cos(mb) (3.54)

w?

could be used to obtain the expression for the coupling @efiis. By substituting Eq. (3.54)
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into Eq. (3.53) we obtain:

Qﬁfn = Anm(ZO) Knm A;Lm(ZO) [A(ff

(BY)™? S (1 + Som) T

Z Z(_l)p+q g

1 g!
p=0 ¢=0 P&

n+m n—+m
n—p n—q
g~ 1—-m-p—q

2

where

Am@@:@m{4@n+m+1hmmnPg£:@]—M%—%ﬂ},

2
TW;

A;m(qﬁzzexp{—j‘}2ﬁ%—nz+])anman[5£@£%éﬁ}-—k(%-—ég}},

TW;

V!
Kz/ - )
oV !
2
ﬁ:w_%a
2
7:@_(2)’

and all other symbols have the same meaning as before.

y(m+p+q+1,d°0),

81

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

Hemreceame mode expansion
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method can be applied regardless of what the element asti@silong as it does not intro-
duce any new: dependence. Also, by settinff — oo Eq. (3.55) becomes an alternative

equivalent expression for the expansion coefficients ircése of an empty circular aperture.

Let us formulate the mode expansion method formally. Dubédcetjuivalence of the Laguerre-
Gaussian and Hermite-Gaussian modes, we shall formulatedghations in a general form
that is applicable to both. The specific coefficient expssior the most important element
functions, in the case that the incident and expanding macdeblermite-Gaussian, are given
in Sec. B.1 of App. B. The central two statements of the mode restipa method are as

follows. Given a general incident laser beam
lIlnm<73'7 Z) = Z Z an %m(W, Z)a (362)
n=0 m=0

and a diffracting surfac& located at: = 2, whose action is given by(zz), the resulting
optical field is given by
U(wo,z) = i f: Wom Upm(To, 2), (3.63)
n=0 m=0
where the diffraction field of each individual mode is given b
Upm (o, 2) = i i Cim a0, 2), (3.64)

n=0 m=0

and where the general coupling coefficiets;,, are given as

Cnm = //2 wnm(WOa Zo) SO(WO) &Zm(woj Zo) dwo. (3.65)

In any practical calculations the number of modes used tesemt the laser beam, and the

number of modes used to represent the diffraction field willibite. The complete diffraction
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field then becomes:

M
Ulw,z) = Wi - Z Carin V(@ 2)

5—0

WE
M=
M-

3
I
=)
3
=)
3
o

1

=

NE

an) éﬁﬁllﬁﬁﬁl(wa Z)

0

3
Il

[
WE
Il M

3
]

[
WE
M=

n

<N
0 m=0 \n=0

vV N N
S Wom Cnm) Vi (0, 2)
n=0 m=0

0 m=0

=

- Z Z Wi Vi (2, 2), (3.66)
A=0 1h=0
where
N M
Wi = Z Z Wi Casins (3.67)
n=0 m=0

for each expanding mode, ). In the case of compound diffracting elements that consist o
more than one surface, we can simply repeat the whole pratessh surface, thus ending up

with

(1,6, 2) ZZ W) (.0, 2) | (3.68)

n=0 m=0

where

Z Z WE o (3.69)

n=0 m=0

Equations (3.62) to (3.69) form the mode expansion methdd\iyl MEM allows us to treat
any problem related to channel modelling in optical intersects. We can examine diffrac-
tion at apertures of any size, position, or shape, evendnujucomposite apertures that con-
sist of several disjoint regions. This is due to the fact thatcoupling coefficients, given by
Eq. (3.65), are found by integration over the whole of théraiting surface’, whose char-

acteristics are hence irrelevant. The MEM is not just capabtealing with empty apertures,
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but it also allows for the action of the surface to be specififedughy(zo). In that way the
effect of thin lenses, graded-index structures, or varaherrations may be examined. Even
with the action of the diffracting surface is specified, th&Mi still allows us to construct
and move it around as we please. The process of applicatitmtedlEM does not depend
on the number, or relative position of the diffracting saga. Hence, multiple diffraction, or

diffraction at compound elements containing a number dases may be examined.

3.3.2 Guidelines for practical application

One final issue, however, needs to be examined before we agrapplying the MEM in
practical situations. The set of modes used to decomposdiffrection field, {¢ (wo, 2)},
was always assumed to have the same functional form as thesma@d to represent the
incident laser field{,.,(z=, z)}. The only difference, as indicated by the hats, is in the beam
parameters of the two setg: = {ws, 25} for the incident modes ang = {uy, z;} for the
expanding modes. While we can safely assume that the indidamh parameters are known,
the process of choosing the set of expanding beam paranmeteds to be examined in more
detail. Theoretically, any choice gfwould suffice and is not necessarily an issue; in the first
testing case one is most likely to tage= p. Practically, however, the choice pfis closely
related to the minimum number of expanding modes requirags&in order to accurately
represent the diffraction field. In Eq. (3.66), the order tué highest expanding mode was
denoted by IV, M), we shall writeN'M/ to denote the actual number of the expanding modes
needed. A proper choice gfresults in minimumN M. Exactly the same observations can
be made regarding the relation betwegihe set of incident beam parameters, ahtl/, the
minimum number of modes needed to represent the incidest fe$d. After all, the nature
of the two problems is common. We assume that the modal catiggosf the incident field
and its parameter values are known either a priori, or by xgatal measurement (as indeed
will be the case in Ch. 4).

Let a diffraction field obtained by experimental measureinjenperhaps numerical inte-

gration of one of the solutions of the diffraction integria#) denoted b/ (zo, z). Let the same
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field be approximated by the MEM, and denoted/b(zo, ). The difference between these
two functions, and hence the quality of the representatjoiné mode expansion method, can
be defined in numerous ways. For example, the simple difberabeach point at a particular

observation plane is given by
Dl(waz) ZZ/{(W,Z) —M(W,Z), (370)

while the difference in the intensities of the two fields pad$ each point at a particular obser-

vation plane, is given by
DQ(w7 Z) - |L{(w, Z)|2 - ’M(W, Z)|2' (371)

For either of the above two definitions, the total differeatéhe given observation planeis

given as

D() = / /E Do s (59, 2) doo. (3.72)

One could also go a step further and find the total differewvee entire interconnect space by
performing adz integration. Other similar definitions could also be foratall. However, the
problem with each goodness-of-fit criterion of the type gy Egs. (3.70) and (3.71) is that
they require an a priori knowledge of the resulting diffrawtfield, which we will generally not
have. What we have is the incident field, description of eafffadting surface, and the MEM
representation of the diffraction field. Let us see if we camealop a qualitative argument
around the knowledge of those three values.

Our alternative efforts start by first noting that in our gieal application of the MEM we
will primarily be concerned with approximating the intetlysof the diffraction field, as well as
the closely-related encircled power, as (i) they are mdsvaat in the study of optical inter-
connects, and (ii) they can relatively easily be determerquerimentally. However, the same

reasoning could be applied to approximating other quastitsuch as the field amplitude or
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phase. Second, we note that the integral in Eq. (3.72) withgs$ have to be replaced by a sum
calculated at a finite number of points in the observatiomglanainly in order to simplify
the calculation of the total approximation error. Finallke note that our considerations will
be made easier if we restrict the incident optical field taabxi(f-wise) symmetric modes.
This is due to the fact that the resulting expression will leauer, as there is only one inde-
pendent variable in the observation plane (the radial nicsgt@f the observation point from the
propagation axis; = \/W). Generalisation to the incidence of any mode can easily be
made in all equations, by simply summing up with respect éoatimer spatial variable. Given
the above conditions, a simple but very stringent critedounld be used to compare the two
diffraction fields (one obtained by numerical integratiane@perimental measurement, and
the other by the MEM) at each point on the observation plareoAding to this criterion, the

total difference as an average percentile difference piet ogiven as

gint -

Ar-1 Ay N
Ar - 100% Z —1I(r, z )]’ (3.73)

rmax Tmln r? Z)

T=Tmin

wherel,,(r, z) represents the intensity of the ‘measured’ diffractiondfiélz, =), I(r, z) is
the intensity of the diffraction field obtained by the mod@ansion method; remains fixed
as the position of the observation plane, and the intéryal, r...| represents the region of

interest in the observation plane, through whidl swept in steps of\r:
T = Tmin, Tmin + A7, Tmin + 2A7, rmim + 3Ar, ..., Foax. (3.74)

We useNM here to indicate the number of modes used by the MEM. The nuofbest
POINtS, (rmax — min)/Ar is increased if the stefdr is made finer. As indicated by Eq. (3.73),
at each test point we calculate the percentage of how difféhe approximate diffraction in-
tensity is from the ‘measured’ intensity, ignoring the safrthe difference as irrelevant. We
then add up all those percentile differences and divide éydtal number of points considered
in order to obtain an average difference per point. If we jick observation point in the inter-

val [rmin, "max), @ particular numerical value éf,; tells us what is the most probable difference
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between the measured and approximated diffraction fieltteaparticular observation point.
The main problem witlf,.(N), as defined by Eq. (3.73), is, still, the need for an a priori
knowledge ofl,,,(r, z). As we shall see later, in the case of fundamental-modeénciel we
have the benefit of knowing the measured distribution, buhécase that other modes are
incident, or that a different diffraction configuration isrisidered, we may not have the same
information at our disposal. Hence, in order to work out whestop adding modes, we can

only use the information provided by the MEM, and hence amptdacriterion may be more

suitable;
. R Ar - 100
Cod(NM + ANM) = 27 100%
Tmax Tmln
Qe |y NM)—1I(r,z; NM + ANM
Z | T 2 (Tvzl + )| (375)
Nl I(r,z; NM)

In EqQ. (3.75), we are also determining the average peregtifference per pointasin Eq. (3.73),
but now between the approximate intensity obtained by theVMEth N/, and NM +
ANM number of modes. By using Eq. (3.75) we want to determine hgnahilifference
would adding a few modes make in the already existing appration. Assuming that each
new mode contributes to the approximation in the best plessiay, then a small value of
C(NM + ANM) indicates that the fit witiV’A/ modes is already good, and that adding an
additional AN'M modes does not improve the situation considerably. Heheeapproxima-
tion could relatively safely stop a@ )/ modes.

In the same way as we definég,(N'M) andCy,.(NM, NM + AN M) for intensity, we
can define them for the purpose of approximating the endrptaver, however without the
need for the ‘per point’ refinement:

| Pu(r,2) — P(r, 2; NM)\
Pu(r, 2)

Ep(NM) = -100%, (3.76)



88 CHAPTER 3. NOVEL WAY OF MODELLING DIFFRACTION

and

|P(r,z; NM) — P(r, z; NM + ANM)|
P(r,z; NM)

Cop(NM,NM + ANM) = - 100%.  (3.77)

In our original goodness-of-fit criteria, we assumed that difference in the MEM ap-
proximation at each point in the observation plane is egualportant. In frequent cases,
such as in the design of optical interconnects, this mayeptowe too strict, as we are gener-
ally more concerned by fitting the portions of the diffraatiieeld that carry more power. We
may then choose to weigh the contribution of each test poititd total error, which results in

the following reformulations:

. Ar - 100 . —I(r,z:NM 2
En (N M) = Ar-100% I (r, 2) = I(r, 2; )| - exp - . (3.79)
’ Tmax — Tmin r—r [m (T’, Z) w2
and
A - Ar - 100 —r?
Cou o(NM + ANM) = B72100% ( _ )
rmax 7ﬁIIllI‘l w

Z [I(r,z; NM) —I(r,z; NM + ANM)|

- . (3.79)
I(r,z; NM)

wherew = w(z) represents the spot size of the effective beam at the oligerydane, and the
subscript ‘w’ indicates that a weighted criterion is usede ¥toose the Gaussian weighting
function since it emphasises the error close to the axis @pgmgation, at the expense of the
laterally removed points, which is exactly what we wererafte

Alternatively to all the previous criteria, the most intué way to determine the number
of expanding modes needed is to consider an energy conseraatument. The total power

that goes through a diffracting surface is given by

Po = / 10 (e, 20)|? (w0, 20) deo, (3.80)
>

where represents the whole area of the surface, @q, zo) represents the shape of the
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transparent portion of the surface, regardless of the ty@etoon of the transparent portion
(we indicated this by using(zoy, 2o) rather thanp(zoy, zo), the complete surface action). On
the other hand, the total power contained in the MEM repiasien of the diffraction field is

given by

Pout = // |M(dw,z)]2 doo
%
2

= //Z XN: i Cin @ﬁm(W,z) dwo, (3.81)

n=0 m=0

whereX: represents the observation plane. Note that, even thougspeaifically stated, the
limits of integration in Egs. (3.80) and (3.81) cover the \eharea of>>. Our energy conser-

vation argument is that we expect to have

lim (P — Pyu) = 0. (3.82)

NM—oc0

As we will never have an infinite number of expanding modesrdhvill always be a difference

betweenP,, and P, ;:
D(NM) = Py, — Py (3.83)

For each given number of expanding mod&s\/, there always exists an optimal set of pa-
rameters of expanding modegs,which will result in the smallest difference (as the pooinfr

which we can choosgis infinite):
Dinin = min D(NM). (3.84)
p

The principles of choosing the expanding parameter set@iaiis of Eq. (3.84) in practice
will be illustrated in the following section.
Given that the incident laser beam is the fundamental Gamsand diffracting aperture is

infinitely-large the beam will propagate through the aperunchanged and we will simply
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haveP,, = P, for p = p. If the aperture is slightly decreased, most of the incigewwer
will remain in the effective fundamental mode, and the réshe power will be redistributed
among the higher-order effective modes. The more the apesiae is decreased, the less
power will remain in the fundamental mode. So, the natur@efiroblem is such that most of
the power will always be coupled into the expanding mode efsame order as the incident
mode, and finding then consists of maximising the incident-to-incident domgpcoefficient
as a function ofp. In the case of empty-aperture diffraction, this condittanslates into

solving simultaneously [182]
Eomya® = Eofga’, (3.85)
and

1
(naa* — nga®) {1 — exp [—5(7]3@2 + f]gaz)} }
R X 1 R
FRa R + i) exp | S + )| =0, (3.86)

for 5 andn (by first solving foréo andrn). Equations (3.85) and (3.86) can actually be analyt-

ically solved [182], angb can explicitly be found to be

g V2 (3.87)

Mo/ 1+ ég
and

k 2
fpa? (1 + &)
Similarly, when we are considering diffraction at a micra@dehe optimal parameter set can

be found by minimising (or equivalently maximising its naége)

_ 2exp(—1va®) cos(Ca*) + exp(—2da®) — 1
N (By)~H (2 + ¢2) ’

e (3.89)
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where

V=—+ —, (3.90)
Wy Wy
k k T
- — — 3.91
=3B, 2R M (3.91)

and all other symbols have the same meaning as before. Whilgene able to derive the
expression for some simple cases analytically, a numeaigptoach is best suited in other

situations.

3.3.3 Other approaches to modal expansion

The original method of beam mode expansion of Taneikal. [182] was developed in the
context of diffraction of (principally) Laguerre-Gaussiand (secondary) Hermite-Gaussian
laser beams by an empty aperture. The main objective of thike was to show how to refor-
mulate the obtained analytic solution for the diffractiogldiby using modal expansion, and
not to explicitly illustrate how to solve any (related) d&€ttion problems by using the same
technique. While there are some indications of how the meshadld be developed further,
the general impression is that the authors stopped shodrofally generalising their con-
clusions. Also, no attempts were initially made to apply tinethod in a variety of practical
situations, test its efficiency, and formulate guidelinesits practical application. Slightly
modified groups of authors did, however, perform furtheds of the workings of the mode
expansion method. First [151, 184], the mode expansion adettas applied to study the
transmission of a laser beam through a system of two apertdiee main aim of the study
was to establish the conditions for optimum transmissibro(igh the two aperture stops) of
the power carried by the fundamental Gaussian beam. Howéeediffraction fields behind
both of the apertures were represented by using only onédgfuental Gaussian) expanding

mode. Second [185], the same modal expansion idea was usagi{othe transmission and
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reflection of a Gaussian beam at oblique incidence on a diielestab. The main objective of

the study was to find out the differences in the transmissimahraflection of Gaussian beams
(with finite spot sizes), and the transmission and refleatioplane waves (with infinite spot

sizes). While the nature of this work is not exactly alignethvaiur present purposes, it is still
worthwhile mentioning as further proof of the usefulnesshef mode expansion method. Fi-
nally [186, 153, 154, 155, 156, 187, 157], the mode expansiethod was applied in a range
of situations closely aligned with our present aim.

The mode expansion method was found to approximate thadlifn field, in the Fraun-
hofer region, due to a fundamental-mode laser beam pagssioggh a circular aperture very
well [154]. Again, only one expanding mode (the fundame@alssian beam) was used.
The diffraction field due to focussing a Gaussian beam thr@ufjnite aperture lens was also
well approximated by the mode expansion method [186]. Hewethe procedure used in
Ref. [186] was different than the procedure proposed in S8cl.3Namely, in Ref. [186] the
diffraction field was found in two steps: first, the effect of e@mpty-aperture diffraction was
considered by using the mode expansion method and an efeutiltimodal beam was ob-
tained; second, the effective beam obtained in the firstwtpimaged (by using the ABCD
law [188]) by the lens now assumed be of infinitely large disané/Nhile this alternative pro-
cedure is likely to also lead to correct results, the addéi@fficiency and insights obtained by
using the procedure of Sec. 3.3.1 are lost. The applicalfithe (single-expanding-mode)
mode expansion method in the cases of empty-aperture difrawas also experimentally
confirmed [156]. The method presented in Sec. 3.3.1 and dligestmentioned in this section
so far all share the same root: the results contained in R&2][HHowever, the method pre-
sented in this thesis has a more general character, higkdsility, and improved numerical
efficiency.

Interestingly, and in a sharp contrast to the work based on[[R&2], essentially the same
formulations of the expanding coefficients were found withany explicit mention of the
diffraction equation [189]. The coefficients presented irh. RE89] were derived for the pur-

pose of calculating the efficiency with which laser beam poves be coupled from one prop-
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agation structure to another, and not for the explicit paepaf studying their diffraction fields.
An especially fertile ground for application of the idea obdal expansion was found in the
domain of quasi optics [190], with the most illustrative exzles of application in the study
of millimetre-wave systems [191, 192, 193, 194]. Howewerli these works, as is the case
in Ref. [189], the emphasis was placed on using the effeceanis to study the transfer of
power, and not the approximation of the diffraction field ashs The details of the great
number of other cases where modal expansion was used, gangin acoustical problems to
atmospheric propagation of laser beams, have the samegpiiccal thrust behind them, but

fall outside the scope of our present concerns.

3.4 Numerical illustration and verification

The application of the mode expansion method is illustrateBig. 3.1. As it is shown in
Fig. 3.1, the mode expansion method consists of replaciagnitident laser beam and the
diffracting surface by an effective laser beam. The opfiedd due to the effective laser beam
at any observation plane is the same as the field due to thmctiten of the incident laser
beam and the diffracting surface. Modelling the propagatb light in an optical channel
hence consists of ‘working through’ each diffracting sugfdhat makes up the interconnect.
The effect of each consecutive surface is incorporatedtirgeffective beam, which is then
simply propagated to the final observation plane.

Let us now apply the mode expansion method to diffractionnaémpty aperture, in a
situation illustrated in Fig. 3.1(a). The wavelength of theident laser beam i5 = 850 nm,
the beam waist size i, = 3 um, the beam waist is located at = 0, and the beam is
travelling toward the diffracting surface at a distanceloft 800 um away. With the given
laser beam parameters and the input distahtiee diffracting aperturel has to have a radius
of « = 100 um in order to give a relatively ‘weak’ clipping ratio of = 1.5, while it has
to have a radius o = 50 um to give a ‘strong’ clipping ratio ok = 1.0. (The clipping

ratio « is the ratio of the radius of the diffracting aperture and lbeam radius at the plane
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Figure 3.1: lllustration of application of the mode expamsimnethod: the incident laser beam
and the diffracting surface, as shown in (a), are replaceahbgffective laser beam, as shown
in (b). The parameters of the effective laser beam are wuritt®old. In this particular example
the diffracting surface was assumed to consist of a cir@apartureA, of radiusa.
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Figure 3.2: The behaviour of the magnitude of the first foypagsion coefficients assuming
that the incident laser beam is a Laguerre-Gaugs$iai) mode. The inset on the left shows the
the intensity profile of the TENM mode at the plane of the diffracting aperture, assuming the
usual parameter values. (Note the difference in the coatdirange in Figs 3.2, 3.3, and 3.4.)

of the aperture, as first defined by Eq. 2.104 in Ch. 2.) All of adheve parameter values,
were chosen since they represent typical parameter valwasoptical interconnect. We shall
use them for illustration and verification purposes in thst of this chapter. The reasons for
choosing those particular values are discussed in mord gethe following Ch. 4. We use
the equations presented in Sec. 3.3.2 to find the optimalfdstaom waist size and position
for the expanding modes. In the case of the situation showiigin3.1(a), and with the given
parameter values, it turns out that the the least numberpsreding modes is required when
p=D.

The behaviour of the expansion coefficients, assuminglileantident laser beam consists
of only the fundamental Gaussian TlgMnode, is shown in Fig. 3.2. If the diffracting aperture
is more than roughly twice the beam spot size at the diffingcsiurface, resulting in > 2,
the only expansion coefficient present is the fundamentltiddamental coupling coefficient

Coo- This means that the incident beam goes through the apemarféected. As the extent of
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Figure 3.3: The behaviour of the magnitude of the first foypagmsion coefficients assuming
that the incident laser beam is a Laguerre-Gausgdiar) mode. The inset on the left shows the
the intensity profile of the TElM mode at the plane of the diffracting aperture, assuming the
usual parameter values. (Note the difference in the coatéirange in Figs 3.2, 3.3, and 3.4.)

diffraction increases (| decreases and other modes start figuring more prominende N
that the number of expanding modes is always infinite; we balyegshown the most prominent
ones. Furthermore, note that each combination of paramehees that leads to the same
in the scenario depicted in Fig. 3.1(a), will result in thensacoefficient behaviour. This fact
may be used to reduce the number of times that each coeffieeqals to be evaluated.
Figures 3.3 and 3.4 show the behaviour of the coefficientsnaisg that the incident laser
beam consists of only one Laguerre-Gaussian mode of ¢tdéy and (2, 2), respectively.
From the results shown in Figs. 3.3 and 3.4 we see that themamik required for unperturbed
transmission of the wider incident modes is larger than 2nddein the case of multimode
laser beams, the condition for diffraction-free travebtingh circular apertures must carefully
be examined. It may not be sufficient to assume that difivactiffects are negligible as long
ask > 2. There are several other interesting features of the seepuéisented in Fig. 3.3.

First, we note that no coupling coefficient magnitude goe=eto wherk is in the vicinity of
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Figure 3.4: The behaviour of the magnitude of the first foypagsion coefficients assuming
that the incident laser beam is a Laguerre-Gauggia?) mode. The inset on the left shows the
the intensity profile of the TENM mode at the plane of the diffracting aperture, assuming the
usual parameter values. (Note the difference in the coatdirange in Figs 3.2, 3.3, and 3.4.)

rk = 2.0; this is in stark contrast to Fig. 3.2 where both,| and|Cs| disappear in the region
wherex ~ 1. This indicates that any sort of ‘modal filtering’ would b@&we more complicated
in the presence of higher-order modes in the laser beam.n8gidhe incident laser mode
is ¥11(r, 0, z), higher expansion coefficients, such@gs and C3 gain prominence quicker
than lower coefficients such &%,. This means that in the determination of the number of
required modes we always need to start from the order of tlest(prominent) incident mode.
Furthermore, while)y(r, 0, z) is always the dominant effective mode in Fig. 3/2,(r, 0, z)
gives way toyy,(r, 0, z) at the (seemingly characteristie) = 1 point. Finally, coefficient
variations were much ‘neater’ in Fig. 3.2; there seems todelvious trend in Fig. 3.3. Most
of the statements relating to Fig. 3.3 apply to Fig. 3.4 a$,wed most notable exception being
the fact thafCy| = 0 at one point. This only confirms overly general statementiathe
behaviour of the coefficients should not be made. Their ctanatics should be examined on

a case-by-case basis.
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Figure 3.5(a) shows how the mode expansion method can beaisadcessfully calculate
the intensity of the diffraction field on a screen located gtaticed = 10.4 mm away from
the diffracting surface. The overall setup is still the saamseshown in Fig. 3.1(a); we fixed
the clipping ratio tox = 1.6 (with « = 120.3 um), and we used 20 expanding modes in
both cases. The incident laser beam was taken to begtfie, 0, z) mode. We compared our
values to the solution obtained by numerical evaluatiorhefliuygens-Kirchhoff diffraction
integral, by using the procedure outlined in Ref. [186]. Thenber of expanding modes that
need to be used varies depending on the desired outcomeayfpheximation. If we desire to
approximate the diffraction field close to the diffractingface, at large radial distances (away
from the propagation axis), or with lowvalues, the number of required modes increases. In
layman’s terms, the more ripples there are in the desireidmenf the field distribution, the
more modes we need to employ. The results obtained with thiel M never be completely
incorrect, they always give us some information about tis&itution of the diffraction field.
For example, Fig. 3.5(b) shows how the MEM approximates iffi@dtion field when only one
mode is used. When few modes are used the intensity profiledesdy different, however,
the power (the area underneath the curves) that they debvarparticular area is exactly
the same. If we wish to approximate the diffraction field ie #ncircled power sense, as is
frequently the case in optical interconnects, not more #ksut a dozen expanding modes are
required in the expanding beam, as shown in Fig. 3.6.

We now compare the performance of the mode expansion metfadsa the method of
Tanget al. (an example of a ‘solution by further approximation’ pretsel in Sec. 2.3.2),
and the method of Belland and Crenn (an example of ‘solutiondoyvalent representation’
presented in Sec. 2.3.3). We compare the methods by coimgjdesw they approximate the
encircled power in the diffraction field. There are two edlang areas we are interested in:
a circle coaxial with the propagation axis (the signal reeeb), and an offset circle (the
noise receiverV), as shown in Fig. 3.7(b). Radii of both circles argy = 125 pm, and the
distance between their centreig?2 x asn. All other values are same as before. We first

consider the case of where apertdreemains empty, and then we look into the situation where
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Figure 3.5: Approximating the diffraction field (solid lipdy the mode expansion method
(large dots): in the profile-matching sense (a), and in tr@reled power sense (b). If the
profile of the intensity in the diffraction field is to be apgnmated, generally more modes are
required; fewer modes are required if only the encircledqraw the diffraction field is to be
found.
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Figure 3.6: Encircled power calculated directly and by tremexpansion method, with dif-
ferent number of modes in the expanding beam. Using one dipamode only approximates
the encircled power in the diffraction field well only in thases of weak diffraction; if more
modes are added to the effective beam, the approximatiamiescprogressively better.

apertureA contains a thin lens with focal lengfh= 800 xm. TheS and N encircled powers
obtained by the four different methods are compared in E&). Bhe mode expansion method
approximates both the signal and noise powers very well theewhole range of values,
i.e. from the case of diffraction-free operation to the cakeery strong diffraction effects.
The method of Tangt al. overestimates the signal power and underestimates tee power
over the whole clipping range. The method of Belland and Creawiges rapidly-oscillating
values for the signal power in the region of strong diffranti but the values converge as
diffraction effects weaken. However, the method of Belland &renn clearly overestimates
the noise power over the whole clipping range. The mode estparmethod hence evaluates
the encircled power of interest in optical interconnectmbetter. The conclusions for the
thin-lens case, as shown in Fig. 3.9 (when apertummntains a thin lens) are the same as for
Fig. 3.8. The method of Belland and Crenn provides rapidlyHasiag values for the signal
power which disappear as diffraction effects weaken, bunderestimates the noise power
completely. The mode expansion method models both thelsigilnoise powers very well

over the whole range of clipping ratio values.
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Figure 3.7: Similarly to Fig. 3.1, this figure illustratesethpplication of the mode expan-
sion method. The stress here is, however, on the fact thatame o calculate power in the
diffraction field, both on the on-axis encircling ar€aas well as the off-axis are’s.
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Figure 3.8: Encircled power calculated using differentimoels on (a) receive$, and (b) on
receiverN: direct integration (solid line), mode expansion methedgé dots), the method of
Belland and Crenn (small dots), and the method of Teingl. (broken line). Apertured is
empty and the distance to the franto the observation plane is= 2.6 mm.
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Figure 3.9: Encircled power calculated using differentimels on (a) receive$, and (b) on
receiverN: direct integration (solid line), mode expansion methedg¢ dots), the method of
Belland and Crenn (small dots). Apertufecontains a thin lens witlf = 800 pm, and the
distance fromA to the observation plane &= 10.4 mm.
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Figure 3.10 also shows encircled power calculations, btiteencircling radius of the sig-
nal receiver S is changed. In the diffraction-free mode @rapon ¢ = 2.0, Fig. 3.10(a)) both
the method of Belland and Crenn and the mode expansion metipodxapate the directly-
calculated curve well. Some deviations start occurringha method of Belland and Crenn
in the weak diffraction regions( = 1.5, Fig. 3.10(b)). However, considerable difference is
present in the strong diffraction regiorn & 1.0, Fig. 3.10(c)). The mode expansion method,

on the other hand, approximates the encircled power wetltxeewhole clipping-ratio range.

In all of the above cases when a thin lens was present in apettuhe beam parame-
ters,p were found by maximising the expression given by Egs (3.99)94), at the end of
Sec. 3.3.2. As shown in Fig. 3.11, the maximisation stepstaut not to be a difficult one,
as there is only one clearly prominent maximum present. Theue and prominent max-
imum value occurs whe, = 50.97 um, andz, = 9.54 mm, which we worked out by
usingMathematic& FindMinimum[183] numerical optimisation routine. Due to the effect of
diffraction, the obtained values are clearly differentfrthe values of; spcp = 11.25 mm
andws, apcp = 51.02 um, obtained by the ABCD Law. The value of the fundamental expan-
sion coefficient, for different values aif; andZ; is shown in Fig. 3.11. The optimal value pf
changes with decreasing clipping ratio, as shown in Fig2.3&k shown in Fig. 3.12, wheg
is sufficiently largep becomes identical tb,gcp. AS we decrease, and increase the extent
of diffraction, the effective beam waist first comes to a maxm, only to then monotonically
decrease, at the same time moving closer to the diffractyegtare. The phenomenon where
the focus of the diffraction field, produced by an incidenldfieeing imaged and diffracted
by a lens, has been studied previously, and, depending aefivétion of the focus, various
guantifications of the phenomenon exist. One possiblepreéation of the phenomenon by
using the mode expansion method could be proposed. To thefls knowledge, this inter-
pretation of the diffraction-caused focal shift has notrbeensidered so far. We consider this
idea as far-reaching, as the process of working out the &gtilwould be the same regardless

of the diffraction conditions, or the order of the incidenvae, unlike the methods proposed
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Figure 3.10: Calculations of encircled power vs. receivdiusug for 0 < ag < 125 pm and
for three different clipping ratios calculated by: direatagration (solid line), mode expansion
method (large dots), and the method of Belland and Crenn (hrioke). ApertureA is empty

andd = 10.4 mm.
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Figure 3.11: lllustration of the way in which the optimal pareters of the expanding beam
set,p are found. In the case of TEjMimode incidence, the optimal, andz, are the ones that
maximise the fundamental-to-fundamental coupling caeffic The expanding set almost
always has to be found numerically, but in some cases simpab/tic expressions may be
used.
previously.

In Fig. 3.13 we give some indication of how the MEM approxiggathe intensity of the
diffraction field with an increasing number of expanding reedin the case when a thin lens
is present in the aperture. Our reference, ‘measuredaditiion field was obtained by numeri-

cally solving the diffraction integral, by using the procee outlined in Ref. [186]. Essentially,

the diffraction integral was reformulated so that any passaumerical difficulties are avoided:

1 /2 4F
Pulri2) = a\/;m

i FR?
- exp {—jk(z — z5) + jarctan y — J ]

21— M)

1 2 F
/0 Ry exp (—%R%) Jo (1 f];}) dR,, (3.92)
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Figure 3.12: Changes ifi (w is shown in (a), and, is shown in (b) above), due to changes
in the clipping ratio at the diffracting aperture. Brokerglgnin both (a) and (b) represent the
values obtained by the application of the ABCD Law.

where

~ 2(20 — 2)
= (3.93)
rR="_ (3.94)

a
a=2 (3.95)
a
ka?

F=—, 3.96
7 (3.96)
Y (3.97)
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and

jo?FM

=1+ jx+o0——.
T +jX+2(1_M)

(3.98)

We note straight away that Eq. (3.92) is formulated spedtlfi¢ar the fundamental-mode in-
cidence, and it cannot be used to calculate the diffractield fn any other cases. Even in
extreme situations, as shown in Fig. 3.15, the mode expams&thod still works very well,
given that a few more modes are added to the sum. We have adahe mode expansion
method to approximate the diffraction field in the case thatihcident field is not the fun-
damental Gaussian beam, as shown in Fig. 3.14. In this cas#towmt have a reference
‘measured’ value, but have to use another criterion, indage the one given by Eq. (3.79), to

determine when a sufficient number of expanding modes wehedad in the approximation.

As shown in Fig. 3.13, with the fundamental Gaussian modegoran the effective beam,
only the central lobe in the diffraction field is correctlytditl, but none of the other inten-
sity variations are followed. With a sufficient number of negdthe MEM approximation
converges to the ‘measured’ value, in the given observaggion. The results shown in
Figs. 3.13 and 3.15 suggest a simple, but somewhat crudermathe more ripples there are
in the diffraction field, the more modes are required in thprapimate expression. Hence,
in the cases of strong diffraction, when the lateral obdemadistance is large, or when the
observation plane is close to the diffraction plane, we ekfgehave to use a larger number of
modes,N'M, in the effective beam.

In the verification of the mode expansion method performefdisove have had the luxury
of knowing the expected result, and we just added a sufficiantber of modes, depending
on what we wanted to achieve. Frequently, we will not be inddme situation, and we will
not know what the outcome of the approximation should be hétt tase we can use one of
the criteria presented in the previous section. Figure 8hbvs the behaviour foint(NML
as given by Eq. (3.73), an@,.(NM,NM + ANM), as given by Eq. (3.75). The results

show that with less than about a dozen modes in the effectiaenlihe average error is more



3.4. NUMERICAL ILLUSTRATION AND VERIFICATION 109

E
S,
>
‘@
c
ol
£
0 100 200 300 400 500
E
S,
>
‘@
c
ol
£
5
S,
>
‘@
c
g
£
0 100 200 300 400 500
E
S,
>
‘@
c
g
£

0 100 200 300 400 500

radial distance [um]

Figure 3.13: Approximating the diffraction field with an neasing number of effective modes,
in the case wher = 1.0, the observation distance is 20.8 mm: (a) 1 mode, (b) 4 m¢dgs,
modes, and (d) 12 modes.
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Figure 3.14: Diffraction field of an incident TEM produced by the mode expansion method.
There are two most notable differences in the profiles of iffeadtion field in the case of
TEMy, and TEMy incidence: (i) the TEM, diffraction field carries less energy close to the
propagation axis(and the first local minimum of the field oscat a smaller radial distance),
and (ii) the second local maximum is much more pronouncexl itihghe case of incidence of
the TEM,;, mode.
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Figure 3.15: Given a sufficient number of expanding modesntbde expansion method is
capable of approximating even extreme diffraction situai This figure shows the diffraction
field in the case wher = 0.1, and the observation distance, measured from the diffrg.cti
aperture is 0.1 mm (20" of its usual value). 33 modes were used to construct the eipgn

beam.



3.4. NUMERICAL ILLUSTRATION AND VERIFICATION 111

of—E —— T T L 407

D\ —o— Error
—e— Change

\
~ TN\ 7

- 10’

Error [%]
[%] 8bueyd

\. °

D/.\

0.1 T T T T T T T T T T T 10°
0 20 40 60 80 100

Number of modes used

Figure 3.16: Plots of the ‘direct’ approximation dlfferemé'mt(NM) as given by Eq. (3.73),
and the ‘adaptive’, or ‘change’ dlfferenoem(NM NM + ANM) as given by Eq. (3.75).
&t Measures the average relative difference between the neelamud approximated diffrac-
tion field, whileC;,,; measures the change in the approximated field resultingdiddmg more
modes.
than 50% at each point. Increasing the number of modes froto 30 results in the error
dropping from 3% to 1%, while the minimum of 0.3% (with no mahan 100 modes ever
used) is reached at about 80 modes in the effective beam. éothler hand, as also shown
in Fig. 3.16, the local minima af,.(N'M, NM + AN M) coincide with the local minima of
Eint(NM), hence reinforcing the validity of the assumption undedyEq. (3.75). Namely,
when the approximation is relatively good (indicated by @alaninimum of&,,.(NM)), the
change in the approximation (indicated by a local minimur@ip(NM, NM + ANM)) is
also minimal. Hence, we can determine the number of requiredes in any situation by
looking for the local minima o€,,.(NM, NM + ANM). Depending on required accuracy,
the smallest or the largest local minimum can be used.

We also note, in relation to Fig. 3.16, that the approximaéuoré’(NM) decreases in a
very characteristic spiral fashion. At the beginning, asaglé more modes, the decrease in the

error is very sharp and rapid. However, we soon reach a pdiaetethe approximation is good,

except for a particularly stubborn peak or a valley (prop# away from the propagation axis
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Figure 3.17: Plots of the ‘direct’ approximation differené., (N M), as given by Eq. (3.76),
and the ‘adaptive’, or ‘change’ differenO@ep(NM, NM + ANM), as given by Eq. (3.77),
in the case of approximating the encircled power in the diffion field. This is different from
the results shown in Fig. 3.16 where we were examining thoe &rat occurs in approximating
the intensity of the diffraction field.

for which modes of much higher order are required). Onceglmasdes are incorporated into
the effective beam, the problematic region is fixed. Howea#irthe other approximations,
previously correct, are now disturbed. The ensuing distiicks are fixed by adding even
more modes, until another problematic fold is reached, athvpoint the process is repeated
but at a much lower error scale.

In the case that we are interested in approximating the @adipower in the diffraction
field, we can use Egs. (3.76) and (3.77), in the same way as eeEgs. (3.73) and (3.75).
The results are shown in Fig. 3.17. While the previously-eitdd trend of the minima of
following the minima ofC is no longer present, we see that even with only one or two siode
present in the effective beam, the error is less than 10%elhs reasonable to say that as soon
as the adaptive change drops below 1%, the number of modssféicgent, as the overall error
is less than 1% too. By adding no more than 20 or 30 modes, tbhe@n be decreased to
even below 1%.

The criteria used to produce Figs. 3.16 and 3.17 are, as motdw previous section,
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Figure 3.18: The results presented here are exactly the sapwnciple as the ones pre-
sented in Fig. 3.17; the only difference is that the weiglgeddness-of-fit criteria, given by
Egs. (3.78) and (3.79) are used. The important messagesyahby Fig. 3.18 are the same as
the ones conveyed by Fig. 3.17, the main difference is thedl@werall level of approximation

error.
very strict, as they assign the same importance both to timtspdose and far away from the
propagation axis in the observation plane. As a way of renmgdiat problem we introduced,
in Egs. (3.78) and (3.79), the weighted approximation ateAs we can see from the results
shown in Fig. 3.18, using a weighted fitting function resuitthe same overall behaviour of
the approximation error, but with intrinsically smallerans. Finally, if we use the simplest
energy-conservation criterion given by Eq. (3.83), as showFig. 3.19, we see that indeed
very few modes are needed to make sure that nearly all of tideint power is carried through
by the modes used to approximate the diffraction field.

We conclude this chapter by noting that, as indicated by3ty.and confirmed by Fig. 3.20,
even only one expanding mode can be used to properly reprimepower contained in the

diffraction field, given that the diffraction situation isttoo harsh.
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Figure 3.19: The results of the simplest, energy-convarargument, given by Eq. (3.83), is
used to estimate how many expanding modes need to be usedeintoraccount for all the
power that carried by the light beam that goes through theadifng aperture.
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Figure 3.20: The number of modes required, at each diffesigoping ratio x, to properly
account for 99% of the power in the diffraction field.
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3.5 Summary and conclusion

The aim of this chapter was to further investigate the edg@itaepresentation solution of
the diffraction integral formulated in the previous chaptehis particular way of solving the
diffraction integral, in the context of channel modellimgaptical interconnects, was identified
in Ch. 2 as the most promising one. Our particular aim was ton@@the idea of modally
expanding the direct solution of the diffraction integthljs not only expediting its numerical
evaluation, but also better understanding the effect dfadifion. The process was started, in
Sec. 3.1, by a ‘blind’ orthogonal expansion, which did naidarce the result we needed. In
Sec. 3.2 we turned to a conceptually equivalent, but tealigidifferent orthogonal expansion,
first performed by Tanaket al. This new technique, whose main feature is the establishmen
of a relationship between the Bessel and Laguerre functiedsys to the crucial observation
that the expansion coefficients were independent of theiposif the plane at which the
diffraction field was observed. In Sec. 3.3 we cashed-in @ fthding and formulated the
mode expansion method, defined succinctly by Eqgs. (3.63.69J. In Sec. 3.4 we illustrated
the application of the MEM in the context of optical interomet channel modelling, and
we also successfully verified its numerical performancee Tifode expansion method was
also found to outperform all other methods previously usesiddel diffraction in free-space
optical interconnects. We have hence reached the goal ajumst, as defined in Ch. 2. All
that remains to be done now is to use this novel method to shedgld problem of diffraction

and channel modelling in optical interconnects.



Chapter 4

Application in optical interconnects

In the previous chapter we have creatively solved the proldélaser beam diffraction, and
thus the problem of channel modelling in optical intercastae The mode expansion method
was shown to be accurate, easy to use, as well as to outpestbenmethods previously used
for the same purpose. In this chapter we use the mode expams&thod with the aim of
evaluating the optical interconnect performance. Basedparenentally-measured and typi-
cal parameter values, we use the mode expansion methodtdatalthe optical interconnect
performance parameters, such as the maximum achievalgith Jatensity, space-bandwidth
product, signal-to-noise ratio, and the optical carreenbise ratio.

To this end, in Sec. 4.1 we present our optical interconnesigth model, specify the scope
of our inquiry, and the way in which the mode expansion metisaapplied. In Sec. 4.2 we
present the experimental setup and measured parametesvdiuSec. 4.3 we quantify the
effect of diffraction and examine the device performand&warious combinations of param-
eter values; tolerance to misalignment is examined in Sdc.lA4 Sec. 4.5 we summarise our
findings, and draw conclusions about the optical intercondesign process. The significance
of this chapter is twofold: first, we illustrate how the modg@ansion method can be applied
in a practical situation and used to obtain important patamealues; second, we present and
evaluate an interconnect design model that facilitates tesign process, as well as shows

that optical interconnects are feasible and well suitegbfactical deployment.

116
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Figure 4.1: Schematic diagram of the interconnect configamavhose performance is evalu-
ated by using the mode expansion method.

4.1 Design model

The schematic diagram of the optical interconnect that veegaing to use throughout this
chapter is shown in Fig. 4.1. We have only shown three reptaee channels, denoted
by Cy, Cy, andCg. The three dots above and below each plane indicate thaestef the
channels were omitted from the diagram. Furthermore, we baly shown the longitudinal
cross-sectional profile of the three-dimensional intenemn.

While we allow for each channel in the interconnect to operatependently, we assume
that all channels are identical and that it is sufficient talgtthe operation and performance of
only one representative channel. Chanfiglas shown in Fig. 4.1, is chosen as the represen-
tative channel. It is outside the scope of this dissertatiaxamine in detail the way in which
information is encoded onto laser beams. We shall simplyrasghat a modulation scheme
with direct intensity modulation is employed. In our intentiect, in most general terms, each
of the VCSELs will be electrically biased to the midpoint of linear output region, and its
output optical power will be modulated by varying the cutraround that bias point.

With laser clipping eliminated, the most dominant sourceeletctrical noise within the
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VCSEL is the relative intensity noise (RIN). RIN is caused by ¢bepling of spontaneous
emission from the VCSEL into the stimulated emission. Thigadimg causes unwanted fluc-
tuations in the optical power level, and hence generatessa carrent in the receiver circuit.
RIN is usually measured in a finite optical bandwidth, and egped in dB/Hz. Because of the
extremely high reflectivity of the VCSEL mirrors, RIN is genkyaery low, typically around
-125 dB/Hz [195, 196]. However, RIN is known to increase by aldd+—20 dB by having
the VCSEL light reflected back into the cavity. Even thoughuniaterconnect configuration,
as shown in Fig. 4.1, there is a possibility of laser lighteetihg back into the VCSEL from
the transmitter microlens, we shall assume that the retlqubever is negligible, and that it
does not affect the RIN. In our considerations we are primanterested in the optical side
of interconnect design; the electrical parameters aredwsz for completeness and to obtain a
relative sense of values, not to open up another avenuedspth research.

The most important VCSEL-related characteristic requingcafcomprehensive intercon-
nect analysis is the laser beam modal content. A VCSEL is gablgra high finesse Fabry-
Perot resonator with two high reflectivity distributed Bragdfjector (DBR) mirrors [1]. The
mirrors are separated by a multiple of2, typically by one whole wavelength, and an active
medium, such as multiple quantum wells, fills the cavity. Du¢he shortness of the cavity,
only one longitudinal resonant mode of the cavity spectrallerlaps with the gain spectrum
of the active medium. This leads to the VCSEL producing onlg tongitudinal mode of
operation. As the length of the cavity }s and the diameter of the DBR mirrors is about 10
to 100\, it is reasonable to assume that the DBR mirrors have infingmeter. A Fabry-
Perot resonator with infinite-diameter plane mirrors std@upport no transverse modes of
oscillation. The VCSEL should ideally emit light in only onéthe transverse cavity modes.
However, since the very inception of VCSELS, the presencearérthan one transverse mode
in the output beam was observed experimentally. This igbedi to be due to several different
phenomena, such as: diffraction effects on DBR mirrors, ¢gfle, absorption, and spatial
gain distribution. It is also known that the transverse nhegactrum not only depends on the

resonator structure, but also on the temperature and cdrsigibution in the cavity. Due to
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Figure 4.2: Schematic diagram of the representative chare

the fact that the laser beam consists of many modes, as weasauened throughout Chs 2

and 3, we describe the emitted laser beams as a weighted suodek of the free space:

\IJ(W,Z) = ZZ anwnm(wvz)

n=0 m=0

= DD Wan tum(z.3,2), (4.1)

n=0 m=0

whereV (zo, 2) is the field distribution of the emitted laser beam,, (==, z) are modes of the
free space, an@/,,,,, are the modal weights. As indicated by Eq. (4.1), it is mdslyi that
the laser beams will be easier to describe in terms of the Hei@aussian, rather than the
Laguerre-Gaussian functions, as already indicated in CExperimental measurements, in-
cluding the ones presented in Sec. 4.2, have shown that ihdimaeter VCSELS, it is much
more common to observe Hermite-Gaussian modes in the oodaum rather than Laguerre-
Gaussian modes. For a laser to support Laguerre-Gaussidesrite resonator must possess
a high degree of circular symmetry. This requirement is ndiffieult by birefringence and
astigmatism of the lasing medium, as well as by the devicettral anisotropy.

Now that we have identified which VCSEL parameters we considgortant and relevant
to the design of optical interconnects, we turn our attentiothe issues of channel modelling
in optical interconnects. We have already assumed thattaldonnect channels are equivalent
in their characteristics and operation, and that it is siefficjust to consider one representative
channel. Our representative channel, denoted'§ys shown in more detail in Fig. 4.2.

The optical interconnect is situated in such a way that thedlute’ > axis coincides with
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the optical propagation axis 6fy, as shown in Fig. 4.2. The laser beam waigis located at
z = zs, Which is taken as the ‘beginning’ of the interconnect. Wemassume that the vertical
plane containing the beam waist coincides with the plane@MCSEL top mirror. From its
beam waist position, the laser beam travels to the trarsmmittcrolens, located at = z,
where its beam radius, increased due to diffractive spngadiuring propagation, is denoted
by wy. The transmitter microlens images the incident beam to ¢éhielream waisti,, located
atz = Z;. From the position of its new beam waist, the laser beam coes travelling to the
receiver microlens located at= Z,, which focuses is onto its final beam waist, located at
z = z. Fromw the laser beam travels to the photodetector, located=at,, where its beam
waist assumes the final value @f. In many situations, the interconnect may be designed so
that the position of the photodetector will coincide witke thosition of the final beam waist
(2 = #0).

Depending on the characteristics of the laser beam, theasidéhe position of each ele-
ment inCy, a particular portion of the power emitted by the VCSEL wikecé the photodetec-
tor. If the radii of the transmitter and receiver microlenaee large enough, all of the incident
power is collected by the microlenses, and transferredamtew beam whose parameters can
be calculated by the ABCD law. Since the microlens radii arédjrand sometimes such that
they clip the incident beam considerably, the structureéhefinaged beam changes and the
size and position of its beam waist cannot be determineddgithple ABCD law any longer.
Hence, the mode expansion method needs to be used to detdtminptimal placement of
the planes so that most of the power emitted by the VCSEL raattigephotodetector. The
situation is complicated further by the fact that an intargect consists of an array of chan-
nels, as shown in the (repeated) Fig. 4.3. As illustratedign 43, the transverse profile of
laser beams is generally such that a considerable portitmeafpower crosses over into the
neighbouring channels, both at the transmitter and thevecenicrolens planes. The portion
of power that crosses over into the neighbouring channéteisptical crosstalk noise (OCN),
and its presence further complicates the process of opigatonnect design. The portion of

the OCN power that crosses over into the neighbouring chammté¢he transmitter microlens
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Figure 4.3: The optical crosstalk noise, indicated by ctwstshing, and made up of the stray-
light crosstalk noise (introduced at the transmitter mame plane) and the diffraction-caused
crosstalk noise (introduced at the receiver microlensglais a major limiting factor in the
design of optical interconnects.

plane is the stray-light crosstalk noise (SLCN), and theipof the OCN power that crosses
into neighbouring channels at the receiver microlens pianiee diffraction-caused crosstalk
noise (DCCN).

The origin of the term ‘stray-light crosstalk noise’ comesnf the fact that the light that
crosses over at the transmitter microlens plane is alwaggéth in such a way that it never
returns back to its original channel. As illustrated in Mg, and as shown by simulations
in Code V[197], the light that crosses over from one channel into lagroat the transmitter
microlens plane will always stray away from its original nhal, and thus always contribute
to the OCN.

The origin of the term ‘diffraction-caused crosstalk noiselue to the diffractive spreading
of laser beams during propagation. Once the laser beam getin® its intermediate beam
waist, w, at z = Z;, and the SLCN is accounted for, the beam continues propagetithe
receiver microlens plane. As illustrated in Fig. 4.3d@ the cross-sectional profile of the laser
beam spreads during propagation, and a part of its powerignda the receiver microlenses

of the surrounding channels. The microlenses then focugtveer onto their receivers in the
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Figure 4.4: The portion of the incident laser power that segssover into neighbouring chan-
nels at the transmitter microlens plane (the stray-ligbsstalk noise) is always imaged in
such a way that it never ends up on the photodetector for whweas intended.

same way they focus the proper signal power for that chaanedlhence the communication
guality is degraded. There are several factors that deterimdw much of the incident laser

power in a particular channel ends up as the DCCN:

e Size of the transmitter microlens, its focal length, and thedistance between the
VCSEL and the transmitter microlens plane. The smaller the transmitter microlens
is, the more the incident beam is diffracted, and more higheéer modes are present in
the effective beam. Higher-order modes are laterally widan the fundamental mode,
they spread more during propagation, and their contributiahe DCCN is larger. Mi-
crolens characteristics, such as its focal length andivelabsition, have a big role in
determiningw, andz,, as well as the modal structure of the imaged beam. Sipiadli-
cates that the imaged beam has a longer distance to trahel tedeiver microlens plane,
and hence it will diffract more; small; indicates that the rate of diffractive spreading

is larger.

e Modal content of the incident laser beam Higher-order modes present in the incident

laser beam will diffract differently than the fundamentd&Nl,, mode. Higher-order
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modes in the incident beam will produce even more higheerombdes in the effective

beam, and hence increase the DCCN.

e Spacing between the channels and the position of the receiveiicrolens plane.
Clearly, the closer the channels are spaced, the easierat thd laser beam to cross
over. The effect of the location of the receiver microlerangl is the same as the effect

of Z,: the farther the plane is, the more ‘time’ the beam has toatitf

e Size of the receiver microlens, its focal length, and the diance from the receiver
microlens to the photodetector planeln the same way as for the transmitter microlens,
this will determine how the beam will finally be imaged onte fphotodetector. How-
ever, as the photodetector is in most cases positioned sg|thaz., the crosstalk noise
introduced at the photodetector plane can generally beégihdn our considerations,
we will simply assume that all the power that falls on a patcreceiver microlens will

duly be focused onto its associated photodetector.

In the case when the optical interconnect consists of onengianly, as shown in Fig. 4.2,
the design problem consists of positioning the optical elet®so that most of the laser beam
power emitted by the VCSEL is collected by the photodetecktowever, as we add more
channels the design problem complicates, since we havé&earito consideration the optical
crosstalk noise as well.

The plane of output mirrors of all VCSELSs, transmitter mierd plane, receiver microlens
plane, and the plane of the photodetector will have the saveealh layout, as shown in
Fig. 4.5. The elements in each plane (VCSELSs, microlenselsphotodetectors) are arranged
in ‘square’ arrays as Fig. 4.5 depicts. Each channel is daségl an area of\?, where A
represents the spacing between the channel centres (#yepétch). All elements in each of
the arrays are circular, with the generic radius denoted. by particular, we shall denote the
radius of the VCSEL output window hy, radius of the transmitter microlens by, radius of
the receiver microlens hy,, and the photodetector radius &y all in correspondence with the

symbols used in Fig. 4.2. All radii within an array will be assed to be identical, and’s for
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Figure 4.5: Schematic diagram indicating the arrangemiegiements (VCSELSs, receiver and
transmitter microlenses, and photodetectors) in the plamaking up the interconnect. The
footprint of all elements is circular; whil& (array pitch) has to be the same for all planes,
(generic element radius) can vary from plane to plane, buiwthin one.

all arrays of course have to be the same. As in Fig. 4.3, wesimdyed a section of the array,
centred around the representative charrel The way in which the channels are numbered,
which may have been unclear previously is now more eviddattiBg fromCy, and looking
in the direction of beam propagation, the first channel uptarttie right ofC, is namedC}.
The layer of channels immediately surroundifigis numbered in an anti-clockwise manner,
starting fromC;. The next layer of channels is numbered in an anti-clocksgseal fashion
starting fromCy, which is immediately up and to the right 6f.

At each plane we can define the fill factgra ratio of element diameter to the array pitch,
that indicates how much of the available channel area eaely atement occupies. For the

VCSEL array we have

Vg = ——, (4.2)
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for the transmitter microlens plane we have

2(10
= — 4.3
for the receiver microlens plane we have
2ay
0g = —— 4.4

Uy = —— (4.5)

where the nomenclature is consistent with our previous idiefirs. A fill factor of less than
unity not only results form the production requirementg, ibunay also be used as another
degree of freedom in the design process. In addition to thiadilors, we also define clipping
ratios at both the transmitter and the receiver microleasgk ands. The two clipping ratios
are useful measures of the extent to which the incident laesam is diffracted at each plane,

and have already been introduced in Ch. 3. At the transmitignolens plane we have
ag @

ne w(2) " w (4.6)

while at the receiver microlens plane we have

. _ (4.7)

where thew’s represent the beam radii at the respective microlenseplam the context of
this dissertation (and as is the commonly-accepted peaictithe literature), ‘beam radius’ will
always represent the beam radius of the fundamental gjEEMdde, as defined by Eq. (2.33).
As such, is not equivalent with the beam radius of any higinder mode, which is generally

larger, and for which exist numerous definitions [116].
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The total amount of the crosstalk noise that enters our septative channel, from all
the neighbouring channels can be calculated as the sum tdttiestray-light crosstalk noise

and the total diffraction-caused crosstalk noise:
N = Ng + Ny, (4.8)

where N represents the total OCNY, represents the total SLCN, and,. represents the
total DCCN. In our present considerations, as indicated pusly, we assume that the optical
field that falls onto a particular receiver microlens willlgllbe focussed onto the associated
photodetector. This practically means that we ignore thatively small contribution to the

crosstalk noise introduced at the photodetector plaQgs given by
Ng = N1 + Naga + Nas + -+ + Nan (4.9)

where Ny ,, represents the amount of power from chanfigthat crosses over int@; at the
transmitter microlens plane, andis the total number of channels surroundifig In turn,
each/Ny ,, can be calculated as the integral of the intensity of ther lasam from channel’,

over the surface of th€), transmitter microlens({, TML):

Nain = // W (u,v, 20)|* dudv. (4.10)
CoTML

The explicit usage of the ordered péir, v) instead of the rectangular coordinatesy) indi-
cates a coordinate transform may need to be used in integrats the common axis goes
only through the centre af',. The diffraction-caused crosstalk noise can be found icthka

the same way:

Nac = Nacq + Nacz2 + Naeg + -+ - + Naex, (4.11)
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OC@®@O OOO

Figure 4.6: lllustration of the equivalence principle usedcalculation of the SLCN and the
DCCN. The crosstalk noise from any chandg] that ends up iy, as shown in (a), can
equivalently be calculated as the noise fropthat ends up irt”,,, as shown in (b).

where

Naen = // | U, (u, v, 20)]? dudv, (4.12)
CoRML

whereCy,RM L denotes the area of th{& receiver microlens.

Fortunately, the fact that we treat all of the interconnéetrmels as identical may be used
to facilitate the evaluation of Egs. (4.10) and (4.12). 8iadl channels in the interconnect
are equivalent, then the amount of (both stray-light anfiladifion-caused) crosstalk noise in-
troduced fromC), into Cy is equivalent to the amount of the crosstalk noise introddfoem
Cyp into C), [93]. This equivalence principle is illustrated in Fig. 4 8ote that the principle
holds for all channels, even though only the channels imatelyi surrounding’, are shown.
Fig. 4.6(a) shows the OCN interpreted as being the portioroafp from surrounding chan-
nels that ends up i6; Fig. 4.6(b) shows the crosstalk noise equivalently irtetigrd as being
the portion of power fronC) that ends up in the surrounding channels. The interpretatio
shown in Fig. 4.6(b) is more suitable for calculating thesstalk noise in an interconnect as

there is no need for any coordinate transformation. As leefoe write

N = Ng + Ngc, (4.13)
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where
Ng = Nag + Naga + Nag + -+ + Ny, (4.14)
and
Nic = Ngeq + Nacz + Naes + -+ + Naex. (4.15)

However, now we have

Nan = // U (z,y, zo)|2 dzdy, (4.16)
CaTML

and

Naen = // |W (z, vy, 20)|2 dzdy. (4.17)
CnRML

In the same way as EQs. (4.13)—(4.17) prescribe the way intwthie optical noise can be
calculated, we can write an equation for calculating th&capsignal power that is successfully

transmitted from the VCSEL to the photodetectotin

s=[[ iz dudy (4.18)
CoPD

where the only difference is that the integration is perfednover the area of th@, photode-
tector (C,PD). In Eq. (4.18) we have not used the simplifying assunnptiat we used in the
calculation of the total optical crosstalk noise. Even tilothe more accurate Eq. (4.18) will
not change the numerical results considerably, it will aidhe illustration of the principle
should our original assumption be found not to be suitab&ome situations.

We are in a position now to define several optical interconpecformance parameters.

The parameter easiest to calculate is the interconneeindisil, defined as the distance be-



4.1. DESIGN MODEL 129

tween the VCSEL plane and the photodetector plane:

L =z)— z. (4.19)

The second parameter is the channel densit\given as the number of interconnect channels

per unit area:

D=—. (4.20)

Given a patrticular required data transfer rate, as welllastlar interconnect parameters, the
most general optical interconnect design goal is to maxntsdength,., and channel density,
D. Laser beam diffraction, quantified as the optical chanredstalk noise, is the main factor
that limits bothZ. andD. As noted previously, there are three main factors affgdtie OCN:
spacing between channels (channel density), spacing eetmerolens planes (interconnect
length), and the way in which the incident laser beams arg@udy the microlenses. Small
channel spacings and large inter-planar distances resuitore OCN, as the beams stray
and diffractively spread more. While intrinsically relatexdthe channel density, the effect
of imaging on OCN is, however, much more subtle. Given that@atens aperture is large
enough, the incident beam is, according to the ABCD law, tanséd into a beam with the
same functional form as the incident beam, but with diffetesam parameters. The purpose
of the microlens transformations is to periodically redfedhe beam and hence allow it to
travel a greater distance. As the size of the microlens apeis decreased, and as it starts
to ‘clip’ more of the incident beam power, the incident beaamot only imaged but also
diffracted by the microlens. Depending on the extent ofrddtion, the diffraction field will
generally have a wider starting lateral power distributemd it will spread diffractively more,
thus unequivocally resulting in more OCN. Ultimately, howgwvthe effect of imaging and
diffraction results in limitation of the maximum intercagat length and density.

L and D are closely related and dependent on each other: given alasgy channel

spacing (and hence wasteful interconnect design), the ®eaalirtravel long distances; given
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a short required length (and hence an inflexible design);hlenel density can be made very
large. Having in mind a particular receiver bandwidth, elgselated to the main information-
transfer purpose of the interconnect, it therefore makaseséo combind. and D into one

performance parameter, the space-bandwidth product, SBP:
SBP=B-L-D. (4.21)

SBP gives us an indication of the information transfer ratasared in Hz, per unit area, mea-
sured in metres, and unit channel density, measured by tmberof interconnect channels
per square metre.

Further interconnect performance parameters may be defineaf them being the optical

carrier-to-noise ratio (OCNR), defined as
OCNR = 5 (4.22)
=5 _

wheresS is calculated by using Eqg. (4.18) andis calculated by using Eq. (4.13). The OCNR
measures the importance of the OCN relative to the usefuivetsignal power, and hence
gives an indication of the interconnect optical perforneartdowever, our most important and
most comprehensive performance parameter is the (compigteal-to-noise ratio (SNR), in
which both the optical and electrical characteristics efititerconnect are taken into account.
The interconnect signal-to-noise ratio is given as [198] 19

X(RS)?

SNR = ==, (4.23)

where

H = RIN-(R-S+R-N)>-B+2-¢-(R-S+R-N+1,)-B

+(4-kg -T/Reg)-B-F,+ X - (R-N)?, (4.24)

and where:
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X is the ‘modified’ extinction ratio, defined by = (FR—1)/(ER+ 1), whereER is

the ‘real’ extinction ratio [198]

R is the photodiode responsivity [W/A]

S is the optical signal average power [W]

RIN is the VCSEL relative intensity noise [dB/Hz]

N is the optical crosstalk noise power [W]

B is the receiver bandwidth [Hz]

e is the charge on an electran= 1.60218 - 1071 C

14 is the photodiode dark current [A]

kg is the Boltzmann’s constant,3807 - 10722 J/K

T is the operating temperature [K]

R, is the equivalent resistance of the photodetector load esmhpplifier f2]

Fi is the preamplifier noise figure [dB].

The signal-to-noise ratio, commonly used to measure thfeqpeance of communication sys-
tems, is essentially the ratio of the modulated power (wlgtiies the transmitted informa-
tion) and the total noise power. The first term in the denotomiaa Eq. (4.23) represents the
RIN portion of the noise in the received signal (which is dudoth the optical signal and
crosstalk noise incident powers). The second term accéamtise photodiode noise, the third
term is due to the preamplifier noise, while the final term aot® for the current produced
due to the optical crosstalk noise. In practical calcutabbthe SNR, as given by Eq. (4.23),
the most important issue is the calculation of the (realhaignd noise powersy and .

These powers are obtained from the ‘normalised’ opticalaignd crosstalk noise powers,

andN. Itis in the way thatS and N are calculated that the relevance and strength of the mode
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expansion method comes to prominence; without MEM the &atiom of S, N, and hence the
complete SNR would be very difficult and impractical.

For the sake of generality and rigour, and as will be confirtmgthe experimental mea-
surements presented in Sec. 4.2, we have to assume thataimepgoeduced by the VCSEL
will contain an unknown number of modes. The modal weight&clwikdetermine the modal
make-up of the incident beam, as introduced in Eq. (4.1) beaorganised in the vector form

as follows
W = (Woo, Wor, - .., Wou, Wio, Wi, oo o s Wiy o oo, Woo, Wor, .., W) (4.25)

where the order of the highest-order mode is now represéyted (sinceN is already taken),
and the modes are ordered first with respect, tand then with respect to. The total number
of modes, as in Ch. 3 is denoted by. Theoretically, eachV,,,,, has to be a complex value in
order to account for the relative phase differences betweemodes emitted by the VCSEL.
Practically, we can (easily) only measure the relative povegried by each modeV,,,,|%;
special procedures need to be employed if the phase diffeseare to be measured. While the
mode expansion method is capable of dealing with compléxeaddV,,,,,'s, we will simplify

our considerations and assume that for ag}, we have:

an =V |Wn |2~ (426)

If we denote the total optical power emitted by the VCSELPag, and the vector containing

the watt power in each mode as
P = (PO[))POla"'7PO;L7P107P11a"'7P1;L7"'aPVO7PV1a"'7PV/L)7 (427)
then eachP,,,, is given as

an = -Ptot : ’an|2a (428)
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where bothP,,, andW,,,,, = /|W,..|?> are experimentally measured. As our expression for

the modes of the free spaag,,,(zo, =), are power-normalised, it also follows that
W1z = (|[W]]2)* =1, (4.29)

where|| - || represents the vector norm.
We can use similar notation for the values of the stray-lgbsstalk noise. If the stray-
light crosstalk noisej,,,,,, of each pure modej,.(z,y, z), is in the manner of Eq. (4.16),

given by

A=Y J] om0 dody (4.30
=0/ /CqTML
then the sefA,,,,} can also be written in vector form as
A = (Moo, Moty -y Aoy Moy Aans ooy Ao Aoy A, o Ay (4.31)
The normalised SLCN of the multimodal incident beam is theemgias
Ny = |[W|]?*- AT, (4.32)

whereT signifies the transpose operation, dnf is performed on each individual element of

W. The real, watt SLCN is given by
Ny=P- AT (4.33)

where we have, as before, used the hat to distinguish bettheemormalised optical power
and the received watt power.

Similarly, the normalised DCCN can be calculated as

Nge = |W2- YT, (4.34)
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and the DCCN in watts can be calculated as
Nye=P-YT. (4.35)
In Egs. (4.34) and (4.35), vectar,
Y = (Yoo, Yors---» Yous Yoo Yty o ooy Tapy ooy Yoo Loy oo, Lo s (4.36)

denotes the diffraction-caused crosstalk noise of eact faser beam mode,,.(x, y, 2),

with

R
Tom = // |V (20, 9o, 20)|* ditodio, (4.37)
q=0 CqRML

in the manner of Eq. (4.17) and similarly to Eq. (4.30). Hoarethe key thing in the proper
calculation of the DCCN is the determination B and P, which we can do by using the

mode expansion method¥, explicitly given as

~

W = <W007 WOlv SRR WOua Wl())Wll) ) I/T/llm SR WV()?WI/l) ) Wuu) ) (438)

contains the complex-valued modal coefficients of the alttied and imaged laser beam, in the
same way a3V describes the modal composition of the incident laser beBmis worked

out as

wli=qQ w7, (4.39)
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whereQ,

00 0 .. QW ... 00 00 ... 00

00 01 Op v0 vl v
01 (0 QOl . 01 or .. 01
00 01 Op 0 vl v
08 0B . 0 ... OO O 0
00 or Qou o Qyo le e Ql/u
Q=| : : : : : : : : I (4.40)
20 [ZV N QﬁO . 0 0, .. 0
00 01 Op 0 vl v
0 [ QﬁO . 0 [ 0
00 01 Op 0 vl v
v OTE L. QP ... QP QPR ... QP
00 01 QO,LL QVO Ql/l v

represents the modal expansion coefficients used to actoutite effects of imaging and

diffraction. As shown in Ch. 3, each coefficient can be worketas:

Z% = // ¢nm($o,ym Zo) : ¢(€Eo, Yo, Zo) '@E}Zm(xo,yo, Zo) dxodyo, (4-41)
CoML

where (n, m) indicates the order of the incident mode, &ndrm) the order of the expand-
ing mode. If we denote the total number of incident modes byand the total number of

expanding modes hyj, the the dimension of each matrix is given as:

dim(W) = vu x 1, (4.42)

dim(Q) = vu X vu, (4.43)
and

dim(W) = v x 1. (4.44)
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In our calculations, somewhat at the expense of modellifigadtion of higher-order incident
modes, we assume that the total number of expanding modgeds for example aty = 20.
This number of expanding modes, as shown in Ch. 3 is usualficigutt. Finally, P is given

as
P = (P, Por, o Pogs Pro, Pras o Prg o Poo, oty P (4.45)

with each coefficient explicitly given as
P = Piot - [Woml*. (4.46)

Needless to say, whilP is a physically measurable quantity, the physical exigei®, even
though also measured in watts, should be meditated uporcaittion. It is a strong belief of
the author thaf? does exist physically; its elements, however, may not reecég be given
by Eq. (4.46) as our chosen orthonormal set may not be theaptistal one.

By combining Egs. (4.33) and (4.35),
N = Ny + Ny, (4.47)

we solve the first problem associated with the practicalutaton of the SNR; the remaining
problem involves the calculation &f Following the logic and conventions used to filigwe

have:
S=|W'? & (4.48)
where

P = (q)007 q)Olu S 7(1)0/17(1)107 (I)lla sy cblfu R (I)1907(I)1917 R (I)IQ,&) ) (449)
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(I)nm - // |7~$nm(£07 @07 20)’2 di‘di& (450)
CoRML
and
S=P.®" =P, -8S. (4.51)

Instead ofP and W, we now haveP’ and W, due to the fact that diffraction occurs at two

consecutive aperture$V’ is calculated by repeating the process used to calciifate

~

WH'=Q W', (4.52)

where eaclt),,;, can be calculated by using Eq. (4.41), with the only diffeesthat the inte-
gration is performed at the receiver microlens plane. Eéaent of P/, on the other hand is

given as
P = Piov - (Wi (4.53)

With the framework for a application of the mode expansioithoé in place, we can now
commence the task of finding appropriate parameter valeethas reasonable performance

estimates can be obtained.

4.2 Experimental details

The following three measurements were performed in ordeltain realistic parameter values

to be used in EqQ. (4.23):
e measurement of the VCSEL light-current characteristic
e measurement of the laser beam spectrum and modal compositio

e measurement of the VCSEL relative intensity noise.
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All measurements were performed oMade 8085-2020aser. The primary tools employed
in laser characterisation were [199]:

e Agilent 84140B Optical Spectrum Analyser

e Hewlett Packard 8565E RF and Microwave Spectrum Analyser

e Agilent 86100A Oscilloscope

e Anritsu ML9001A Power Metre

e Hewlett Packard 8510C Network Analyser

e Newport Model 8000 Laser Driver

e Agilent 8133A Pattern Generator

e Various optical components (as shown in experimental sétagrams) and.abView
National Instrumentsgraphical programming language used to interface with tha-m

suring equipment.

The experimental setup used to measure the VCSEL lightaiufité/) curve is shown in
Fig. 4.7, where the laser power and input voltage were medstrintervals of 0.05 mA. The
measurement results are shown in Fig. 4.8. Figure 4.8 atsesshow the measured data was
fitted to a simplified form of the rate equations, that is kndwhe a reasonable approximation

of a laser’s actual light-current curve, given by [200]

QPP - ([~ Iy~ L)~ I, I=0, (4.54)
where
2.¢.
oA (4.55)
h-c-n

e is the charge of an electroin s the wavelength of laser light (the actual value used fongjt

was\ = 850 nm),h = 6.626068-10~3* Js is the Planck’s constart= 2.99793-10® m/s is the
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Figure 4.7: Schematic diagram of the experimental setud tmemeasuring the VCSEL's
light-current characteristic.
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Figure 4.8: Experimentally-measured and numericalledittesults of the VCSEL’s light-
current characteristic.
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Figure 4.9: Schematic diagram of the experimental setud fmemeasuring the VCSEL
beam’s modal and spectral characteristics.

speed of light in vacuum, angrepresents the laser efficiency. The measured data was fitted
to Eq. (4.54) by using a nonlinear fitting function Mathematicg[183], and the following
parameter values were extractdg; = 4.47 mA, I, = 6.73 pA, andn = 0.715 W/A.

The fitting of the measured data to Eq. (4.54) is valid if treetds considered to emit light
in the fundamental mode only, which is generally not the cdaeereality, the light-current
characteristic shown in Fig. 4.8 is the result of activitdaombination of multiple modes,
with each mode having its own threshold current and effigielbe presence of higher-order
modes is hinted to in Fig. 4.8 by the gradient discontingiggident in the measured results.
In particular, the gradient discontinuities can be found® abA and 14 mA, and hence we
suspect that higher-order modes appear at those curremigeMdr, this can only be confirmed
by further spectral measurements of the laser beam.

The experimental setup used for modal and spectral measatems shown in Fig. 4.9. As
in the case of light-current measurements, laser spect@aseenpled and examined at various
currents, as shown in Fig. 4.10. As we see from the preseaseits, the laser started single-
mode operation right after the threshold current, but mdiieient modes of higher order
appeared at 6 mA and 14 mA, as first guessed by observing thiecligrent characteristic.
By the time the current reached 16 mA, four different highelteo modes were present in
the laser beam. While the light-current and spectral measemts enabled us to confirm the

presence of higher-order modes in the laser beam, they tgahbe used to identify those
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Figure 4.10: Experimentally-measured VCSEL's modal and@tspkcharacteristics.
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Figure 4.11: Modally resolved VCSEL's light-current chasatstic.

modes. Moreover, multiple transverse modes may exist atdhee frequency. In addition to
confirming the presence of higher-order modes in the lasembéhe spectral measurements
shown in Fig. 4.10 also show the symptoms of adiabatic chitgiabatic chirp consists of
the lasing frequency of each higher-order mode being shétenigher drive currents, due to
a change in the refractive index of the material [201]. THeatfof the adiabatic chirp on an
optical communication system is twofold. First, the cawatyd material gain peaks become
unaligned, resulting in power roll-off for the fundamentabde, and higher gain for higher-
order modes. Second, when directly modulated, adiabaitip odsults in dispersion penalties
due to the different optical wavelengths that are transwhitbr high and low pulses.

The magnitude and position of the peaks shown in Fig. 4.10ewiacted automatically at
every current, and a modally-resolved light-current cuves constructed. The curve is shown
in Fig. 4.11. In Fig. 4.11, the power content of each modec(dated by integrating the area
beneath the spectral peaks) was first found. Then the powéermioof each mode was added
and compared to a scaled version of the light current meamne If the two curves resemble
each other, we can conclude that the laser modal behaviasicaraectly interpreted. The

adiabatic chirp was constant for all modes, and it was detexuiio be 0.3 nm/mA. However,
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Figure 4.12: Wavelength of each laser beam mode, obtaireed the data presented in
Fig. 4.10.

in our further considerations we shall ignore the effectdbatic chirping on the performance
of the optical interconnect.

Figure 4.11 still does not offer us a full insight into the mbkdehaviour of the laser beams.
While we are able to establish the presence of higher-ordelesim the laser beam, we still
are not able to identify which modes they are, in terms of ¢amdard Hermite-Gaussian or
Laguerre-Gaussian modes of the free space. In order tossntilg modes further, we have to
capture the incident beam by a CCD camera, process it by a bediteprand examine the
obtained beam profile. The experimental setup is shown ird=eg By analysing the captured
beam profiles, and comparing their changes to that of thersjmecit is possible to determine
which transverse modes are present. Most of the modes calebgfied in this manner, but
not all of them as multiple modes sometimes lase simultasigodlternatively, a scanning
spectrum analyser probe could be used instead of the CCD caasesiaown in Fig. 4.13. The

wavelength of each mode, as it changes with the drive cyrieglhown in Fig. 4.12.
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Figure 4.13: Schematic diagram of the experimental setad t@ spectrally-resolved modal
measurements.

In Fig. 4.13, computer controlled actuators are used to a¢ao-dimensional area, record
the spectrum at each point, and in this way reconstruct arsfligeresolved near-field image
of the laser beam. Such image could consequently be anadgsalg, and the modal distri-
bution would be established more precisely [202, 203, 205, 206, 207, 208, 209, 196].
Furthermore, laser beam spot size and divergence wouldbalsasier to analyse by using this
technique.

Figures 4.14, 4.15, and 4.16 show laser beam profiles takeariatis drive currents, and
with various polarisations, by using the experimental gstwown in Fig. 4.13. By comparing
the changes in the beam profiles to the changes in the spedinenfollowing transverse

higher-order (Hermite-Gaussian) modes were identified:
e TEMy, which appears at threshold,

e TEM,; and TEM,, which appear simultaneously, with different polarisasipat ap-

proximately 6 mA,
e TEM,, which appears at approximately 14 mA.

From Figs 4.14, 4.15, and 4.16 it can be seen that the idexidfic of a particular mode
by a camera is not easy, especially if the mode is not domiatlgast in polarisation at a

particular current. In addition to the highest identifieddadTEM,;) there probably exist, at
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Figure 4.14: Profiles of VCSEL transverse modes, with thersaaset to 15 polarisation.
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the same wavelength, other degenerate modes that canrsmléed due to their low power.
However, regardless of their shortcomings, the laser-igitent and spectral measurements
have enabled us to establish the modal properties of the besen, as relevant to the design
and analysis of optical interconnects.

The experimental setup used to measure the final parametdedgthe relative intensity
noise, is shown in Fig. 4.17. A laser driven with a perfectighte source will still exhibit
fluctuations in its output power, which are mainly due to theations in photon density. In
the experimental procedure used to measure the RIN, thegdtettior output is first separated
into DC and AC streams that represent the laser power andrasse respectively. Then, a
high quality electrical amplifier and spectrum analyserwsed to amplify and measure the
noise over a large range of frequencies. As in the case ofrgpateasurements, the presence
of the optical isolator prevents the undesired back-refiestwhich significantly alter laser

performance [210, 211]. The results of RIN measurementshenersin Fig. 4.18.
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Figure 4.15: Profiles of VCSEL transverse modes, with thersaaset to 15 polarisation.

The following conclusions, in relation to the evaluationtbé SNR Eq. (4.23), can be

drawn from our experimental measurements:

e The total laser output poweF,.;, ranges from 0 mW to 6 mW, for the laser drive current
ranging from 4 mA to 16 mA, as shown in Fig. 4.8. The middle & linear output re-
gion occurs for the drive current of about 10 mA, for whichYH@SEL produces output
power of about 3.0 mW. We choose the ordered pairP;.;) = (10 mA, 3.0 mW) as

our operating point.

e Depending on the particular drive current, as shown in Eityl 4one or more transverse
modes may be present in the laser beam. Generally, the plipbabfinding a higher-
order mode in the laser beam is higher when the laser is proglugore power. At the
drive current of 10 mA, there are two modes present in the VCIS#am: the fundamen-
tal mode and the first higher-order mode. As noted previotisé/fundamental mode

can be modelled by the TEMHermite-Gaussian mode of the free space, while the first
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Figure 4.16: Profiles of VCSEL transverse modes, with thersaaremoved from the setup.
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Figure 4.17: Schematic diagram of the experimental setagd e the relative intensity noise
measurements.
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Figure 4.18: The results of relative intensity noise measients.

HOM can be modelled as a combination of the TEMnd TEM, Hermite-Gaussian

modes.

At the drive current of 10 mA, as shown in Fig. 4.11, the powaried by the fun-
damental mode is equal to 1.13 mW (37% of the total emittedegppwvhile the power
carried by the first order mode is 1.92 mW (63% of the totalegdfpower emitted by the
VCSEL). Furthermore, we assume that the total power caryetid first higher-order
mode is split equally between the TEMand TEM, modes. According to our general

model, explained in Sec. 4.1, we haw&;;,=0.37,W,; =0.315, and1;,=0.315.

Depending on the value of the drive current, each mode vg# &t a slightly different
wavelength, as shown in Fig. 4.12. At our chosen drive ctiméd0 mA, we see that

all of our modes will have, approximately, a wavelengtb\e845 nm.

An average value oRI N = —130 dB/Hz, as indicated in Fig. 4.18, will be used for the

laser relative intensity noise.
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In addition to the above experimentally-measured values fallowing conclusions will
also be taken into account in the evaluation of EqQ. (4.23):

e The photodiode responsivity used is the typical respotysofithe Emcores 8485-1400
four-channel Gallium Arsenide PIN photodiode, namgly= 0.5 A/W (given assuming
that the incident power level will be between 3 and -26 dBm,fanthe light wavelength

of 850 nm).
e The dark current for the same photodiodéjs= 0.3 nA.

e Typical (matched) equivalent resistance of the photodetdoad and preamplifier is

R., = 50 ©, while a typical preamplifier noise figure is = 3 dB.
e A typical receiver bandwidth i = 1 GHz.

e The operating temperature can safely be assumed to be eqi@ toom temperature

of 290 K.

The following values were taken quite arbitrarily, as tygpiepresentative values, and can

easily be changed, depending on the design requiremenasdt h
e modified extinction ratioX = 0.125
e array pitch,A = 250 um
e transmitter and receiver microlens array fill factars= 0y = 0.95
e microlens focal lengthf = 800 pm.

The final, and probably the most important ‘geometricaltéaare the relative positions of
the planes inside the optical interconnect. As indicatetiezathe position of the laser plane
will be taken as the reference plane. Based on the ABCD law, drerevo limiting cases in

which the microlens can be placed, where Fig. 4.19 is pravidebetter reference:

l.d=z—2=f

In this case the position of the imaged beam waist is givefi-asz, — z, = f, while
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Figure 4.19: The graph for explaining the choice of the irgistance.

the size of the imaged beam waist is givenias= ws|f|//d? + z%. In the setup
where both the input and the output distances are the samen#dged beam waist has
the maximum size, and hence the minimum rate of increaseglpropagation further

alongz.

2.d=zy— 2= f+zr
In this case the position of the imaged beam waist is givehasf + f?/2zr, while
the size of the imaged beam waist is givenias= wy|f|//d? + 2. If we move the
transmitter microlens away from the focal length by a retdyi small distance, the effect
is that of the ‘maximum throw’ whereby the position of the gea beam waist, relative

to the position of the transmitter microlens, is greatest.

The first configuration will generally be referred as the ‘maxm waist configuration’, while
the second one will be referred to as the ‘maximum throw conditjon’.

The position of the other planes in the interconnect may lberaened in several different
ways. The simplest approach would be to position the reste@bptical elements symmet-
rically. Namely, if we set the receiver microlens array satth= 2, — 2, = ¢, then, given
that diffraction does not occur, the distance from the reranicrolens to the final beam waist
image is/ = z/ — 2, = d. Asd = ¢ and/ = d the system is rightly called symmetrical. The
particular choice of the input distance does not make arfgrdifice in symmetrical systems,
i.e. either the limiting case (1), (2), or any other comhimain between, could be used. The

problem with systems that rely on their symmetry for propgeration lies in the difficulties
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associated with the maintenance of the symmetry. Alteralgtias we shall see in the follow-
ing section, the planes may be positioned in such a way astiaylar optical interconnect
performance parameter, most likely the overall SNR, is oiggh

In the next section, where we evaluate the optical intereohperformance, the ‘standard’
set of parameter values consists of all the parameter vasted above, with the geometrical

configuration taken to be the maximum-throw configuration.

4.3 Evaluation of optical interconnect performance

Our first aim in this section is to demonstrate the importaoic¢he proper modelling of
diffraction in the calculation of the overall optical intennect performance. Figure 4.20
shows the OCNR for an optical interconnect with standardmpater values, and a symmet-
rical maximum-waist configuration. In order to change theeekto which the incident laser
beam is diffracted (i.e. in order to changg we change the fill factor of th€, transmitter
microlens, while all other values, including the fill factaof all other elements are kept the
same. While, for purposes of easier calculations, we asstimgthe incident laser beam was
the fundamental TEN mode, our conclusions can easily be extended to the casetihven
cident laser beam contains HOMs too. Due to their wider esaessional profiles, HOMs will
diffract more than the fundamental mode, and hence a propdeling of their diffraction is
even more important. We first calculate the interconnect OGNRssuming that the incident
laser beam was only ‘clipped’, i.e. that, regardless oit always remains a Gaussian. The
beam parameters of the imaged beam were calculated by &rRBCD law, again regard-
less ofx, and the total power of the imaged beam was taken to be eqtia¢ toower of the
incident beam that passes through the transmitter mics@eerture. With this relation, and
with the knowledge of the imaged laser beam parameters wabdeeo fully reconstruct the
imaged beam.

As it can be seen from Fig. 4.20, this fairly naive interptieta of diffraction in optical

interconnects leads to a prediction that the OCNR will notpdoy more than about 10%
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Figure 4.20: Proper modelling of diffraction in the designoptical interconnects is very
important. The topmost solid line (labelled ‘clipping’)@hlis the expected OCNR when the
incident laser beam is assumed only to be clipped by therriies microlens aperture; the
top broken line (labelled ‘1 mode’) shows the calculated OCMien MEM with only one
expanding mode is used; the bottom broken line (labelled 68les’) shows the calculated
OCNR when MEM with 6 expanding modes is used; and the bottord 8ok (labelled ‘12
modes’) shows the calculated OCNR when MEM with 12 expandingles is employed.
Standard parameter values, maximum-waist configuratiot fandamental-mode incidence
were assumed. The OCNRs were normalised to the diffractemvialue of 54 dB.
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even in the cases of extremely strong diffraction. Choosingnodel diffraction in this way
would hence lead to an overestimation in the expected iomerect performance. We now
consider using the MEM to model diffraction, but with onlyeoexpanding mode. As shown
in Fig. 4.20, this leads to an improved estimate of interemtperformance in the region of
strong diffraction, and an reiteration of the clippingynésults in other diffraction regions.
Considering the minimal operational change brought by theerande MEM, as compared
to the clipping-only model, the resulting improvement isysignificant. Let us, as before,
denote the fundamental-mode incident laser beamigse, v, z; w;, z5), and the diffracted
and imaged fundamental-mode beancas%o(x, Yy, z;Ws, 25), WhereC' is a complex-valued
constant. In both the clipping-only and one-mode MEM metha@ model diffraction by
assigning appropriate values €4 w,, and z;. In the clipping-only method we do this by

stating that:

Ws = Ws, ABCD, (4.56)
Zs = Zs ABCD; (4.57)
and that
// ‘CQ&OO(ZEJy?Z;wSaéS)P dA: // W)OO(L?J; ZOQIUS7ZS)|2 dA
oo CoTML
—lop= [[ WPl (@59
CoTML

where the ‘ABCD’ subscript indicates that the values wereuwated by the ABCD law; can
take on any value in between the transmitter and the receil@plens arrays; = z is the
location of the transmitter microlens arrayl = dxdy, andCyT' M L represents the area of the
central channek{,) transmitter microlens. As we can see from Eq. (4.58), irctipping-only

method we can only work out the absolute valueCofrather than its full complex value. On
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the other hand, the same parameter values in the one-mode &i&orked out as follows:

ws = ws, opt) (459)
’28 = 2s,opt7 (460)

and
C = Qoo, (4.61)

wherew, o, @andz o are the two ‘optimal’ values that maximi€|?, and all other values
have the same meaning as before; note that Eq. (4.61) giveswthe complete value df,
not just its absolute value. While the operational chargttes of both methods are the same,
as we are in both cases perceiving the diffracted and imagathtas a fundamental mode,
the way in which we chose to calculate the characteristidhatfbeam have clearly made a
considerable difference in the final results. This subtfeedince already demonstrates the
strength of the mode expansion method, even in the casaustaine mode is used to model
the diffraction field.

In relation to Fig. 4.20, we finally note that adding more notiethe effective beam, in
the way described in Ch. 3, quickly makes the OCNR curve coevexghape that closely
resembles the one obtained by using a dozen modes in théeffbeam. In the diffraction-
free region, i.e. whem > 2.0, all four lines converge to the same OCNR value, as there
diffraction is practically nonexistent. As soon as we gdtafithe diffraction-free region, the
diffraction effects affect the OCNR greatly, in such a wayt thath the clipping-only and one-
mode MEM methods lead to gross over-estimations. The sesbtained even with only six
expanding modes are remarkably close to the results obtdyeising twice the number of
expanding modes, hence indicating that a proper includialiffoaction effects in the optical

interconnect design can easily be obtained by the MEM.
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Next we examine the performance of the whole interconnsaeheasured by the signal-to-
noise ratio, given by Eq. (4.23). Figure 4.21 shows the aptiterconnect SNR as a function
of both L, the interconnect distance, andl the channel density. In producing Fig. 4.21 we
assumed all the typical parameter values, a symmetricalmam-throw configuration, and a
fundamental-mode incidence. The position of the trangmitticrolens plane relative to the
laser plane, as well as the position of the photodetectoiepialative to the receiver microlens
plane, were always kept fixed at the prescribed valué ef f + zg. The position of the
transmitter microlens plane relative to the receiver miars plane, however, was increased
irrespectively of the original maximum-throw prescriptjan order to increasé. As noted
previously, this does open up the possibility of introdgcsmall errors in the calculation
of the optical crosstalk noise, as the position of the phetector is not actively adjusted
depending on the position of the receiver microlens arréng dhannel density was increased
by changingA for all arrays, while keeping all fill factor values the sams.noted previously,

L andD are the two most important optical interconnect designrpatars. The interconnect
distance, usually approximated as being simply the disténom the transmitter to the receiver
microlens arrays, determines how far apart can the two camwation ends be. This will
ultimately determine the design of the components thatrite¥¢onnect is meant to connect.
The further apart the two planes are, i.e. the longer thedatmect distance is, the more
will the laser beams be allowed to spread and more opticaktatk noise will be introduced
in the system. The spacing between the individual chanméigh solely determines the
interconnect channel densify, has the same sort of importancelasA close channel spacing
will result in small and compact interconnects, with a lacgpacity for data communication.
However, as the channels are brought closer together, $be l@ams need travelling smaller
distances before crossing over into the neighbouring adlanand thus contributing to the
optical crosstalk noise.

Figure 4.21 clearly shows that there is a nearly linear taftidetween the maximum
attainable channel density, for any given interconnedadise, and vice versa. Practically,

almost anyL can be achieved, given that the channel spacing is largegan@s we increase
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Figure 4.21: Design curves of the optical interconnectaigo-noise ratio as a function of

the interconnect density and distance. Given a particelguired SNR we can use this graph

to estimate what sort of a device we can make. The SNR contyersll 3 dB less than

the previous one, starting from the 33 dB contour. Typicakhpweeter values, symmetrical
maximum-throw configuration, and the fundamental-mod&lgece were assumed.
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the density of channels, we need to sacrifice some of theconeect distance, and bring the
transmitter and receiver arrays closer together. Simiguraent could be presented for any
interconnect density: practically any value ©Bfmay be obtained given thdt can be set to
arbitrarily small values. Finding an optimal balance betwe and D, given a particular target
performance value, is the key task of a successful optitatégonnect design; the purpose of
the mode expansion method is to allow the designer to aayratd efficiently determine the
relationship between the two most important values. Aleothterconnect parameter values,
such as various fill factors and very precise optical layopltsy a much less important role
in the process of interconnect design for two main reasoinst, s will be shown later, fine
adjustments of the remaining parameter values only leadsriosmall improvements in the
overall interconnect performance. Second, the problesecéated with practical realisations
of those fine adjustments easily outweigh their benefits.
The relationship betweehandD values resulting in the same SNR, as shown in Fig. 4.21,

is nearly perfectly linear. For example, if the desired SEIR0 dB, the maximum interconnect

density that can be achieved is given by

D~ —123- L+ 54.21, (4.62)

whereL is measured in mm, anB! in channels per mia If L is increased by 1 mn1) has to
be decreased by 1.23 channels/nm order to keep the same SNR of 30 dB.

Our other performance measure, the space-bandwidth gr(g®BP), builds up on the spe-
cial relationship betweeh andD. SBP is the product of the receiver bandwidthmeasured
in Hz and taken to indicate the electrical information-Harglcapability of the whole inter-
connect, and of. and D, for a particular value of the interconnect SNR. SBP gives us an
indication of the overall interconnect information-handl capability. The ‘space’ factor is
L - D, whereL and D regulate each other in the manner indicated before. Thedtbiith’
factor is the utilised portion of the total receiver bandiidlf we aim to increase the inter-
connect spatial characteristics, such as to increasenggher density, and if we have to keep

the same overall value, we have to decrease the utiliseiVeedmndwidth. A reduction in
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Figure 4.22: For any given required SNR, an optimal balantgd®n/ andD can be obtained

by maximising the optical interconnect space-bandwidtdpct. In this figure, the required
SNR was set to 10 dB, the channel density to 4 channel$/imma . was changed to fine-tune
the design. The incident optical field was assumed to be thdgimental Gaussian beam.

the bandwidth will result in a decreased rate at which theraannect transfers information.
Alternatively, if we wish to improve the transfer of infortan, we have to relax either of the
two spatial interconnect characteristics. As the SBP eisdlgntepresents a balance of two
competing factors, there must be a particular set of valdes, andD that results in an opti-
mal SBP. In Fig. 4.22 we show the behaviour of the SBP for the sateeconnect described
by Fig. 4.21. While keeping the SNR at 10 dB, and the channeliyeats} channels/mif we
changed the interconnect distaricand observed the change in SBP, as shown in the resulting
Fig. 4.22. As expected, there exists a maximum SBP value & Bz mm-channels/mrh
that occurs wher, = 48.7 mm. The value of. = 48.7 mm does not represent the maximum
interconnect distance attainable, as shown by the resukgi 4.21 (this can be seen by vi-
sually extending the second-last contour in Fig. 4.21 tgothiat whenD = 4 channels/mrh
which certainly occurs for ah that is much larger than 48.7 mm.).

The SBP offers an alternative way of reaching the optimalaghof parameters when de-
signing an optical interconnect. In Fig. 4.21 we examinedréiationship between the two

most important parameters, the interconnect lerignd densityD, and found that they are
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related in a very special way. Given a particular valuépthere exists one particular maxi-
mum value of that will result in the required SNR, and vice versa. Howetfes, approach to
the design of optical interconnects handles only the dpaterconnect characteristics, with-
out any considerations their temporal, or informatiomsfar characteristics. Using the space-
bandwidth product as the measure of interconnect perfazeas shown in Fig. 4.22, allows
us to choose such a set of parameter values that results iotiaalonterconnect designed to
support the maximum possible rate of information transfer.

However, both in Figs. 4.21 and 4.22 we accepted the widagerassumption that the
incident laser beam consists of only the fundamental Gang¥tM,, mode, which is not sup-
ported by the experimental results presented in Sec. 4.2eWé#culate the SNR, in the same
way as we did in the production of Fig. 4.21, but now assumivag the incident laser beam
has a particular modal composition, as explained in Sec.#he resultant values are shown
in Fig. 4.23. The results shown in Fig. 4.23 follow the trertlsy the results of Fig. 4.21; the
most notable distinction being that the contours in Figl4a shifted up and to the left. This
indicates that an optical interconnect with the same SNRbeadesigned even if the lasers
emit multimodal beams, but that the resulting maximum cdanect lengths and densities are
much smaller. The compromise betweeand D, in the case of a multimodal laser beam and
for the same value of SNR is still roughly linear. Howevekg 8lope of the contour lines is
much greater in the multimodal regime of operation, indigathat a higher price in density
needs to be paid for each increase in the interconnect lerigih the previously-examined

SNR of 30 dB, the maximum interconnect density that can beegetiis given by

D~ —1.44- L+ 56.88, (4.63)

wherelL is still measured in mm, an® in channels/mrh So, if L is increased by 1 mm))
has to be decreased by 1.44 channelsinfmally, the equi-SNR contours are much closer in
Fig. 4.23 than in Fig. 4.21, indicating that an optical iot@rnect operating in the multimodal
regime is much more sensitive to variationgimand D.

Figure 4.24 shows the relationship between the SBPamithe case of multimodal laser
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Figure 4.23: Design curves of the optical interconnect aigo-noise ratio as a function of
the interconnect density and distance. Given a particelguired SNR we can use this graph
to estimate what sort of a device we can make. The SNR contoersll 3 dB less than
the previous one, starting from the 33 dB contour. Typicakhpeeter values, symmetrical
maximum-throw configuration, and the measured laser beanpasition were used (with

VCSEL drive current of 10 mA, modal weightgy, = 0.37, Wy, = 0.315, W3, = 0.315, and
the wavelength of 845 nm, as per the findings of Sec. 4.2).
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Figure 4.24: For any given required SNR, an optimal balanted®n/ andD can be obtained

by maximising the optical interconnect space-bandwidtdpct. In this figure, the required
SNR was set to 10 dB, the channel density to 4 channel$/immad . was changed to fine-tune
the design. The incident optical field was measured lasenlmadal composition.

operation, in the same way as Fig. 4.22 illustrates the SBRvialr in the case of single-
mode operation. As shown in Fig. 4.24, the maximum SBP ocdufs & 42.6 mm, and
SBP =~ 37.9 THzz-mm-channels/mrh The maximum space-bandwidth product has decreased
significantly, compared to the single-mode case, indigdtiat a multimodal VCSEL reduces
the interconnect information-carrying capacity.

We turn our attention now to other, slightly less significaatameters that, nonetheless,
affect the optical interconnect performance, as measweabedSNR. The first issue that we
concentrate on is the issue of the relative placement obwararrays in the interconnect.
As we discussed previously, the most important value is thiamce from the laser array to
the transmitter microlens array, as that distance will mheil@e most of the other distances
in the interconnect. We also noted that there were two lilgitases: the maximum-waist
configuration, where = f, and the maximum-throw configuration, whefe= f + zz. So
far we have mainly been concerned only with one of those tmdtihg values, most notably
the maximum-throw configuration, as it is directly relatedour desire for larger values of

interconnect distanced,. However, it may be interesting to see if there was a pasdrcul
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Figure 4.25: The maximum attainable interconnect lengthdensity can be increased even
further if the placement of the transmitter microlens arrajative to the VCSEL array is
allowed to depart from the two limiting cases (indicated oy vertical dashed lines).

distanced = z, — z,, such thatf < d < f + zr, that would allow us to obtain a longer
interconnect distanceg, or a larger density, for the same value of the SNR. By a longer
or alargerD, we meanl. and D values greater than the ones obtained by assuming one of the
two conventional situations, as shown in Figs. 4.21 and.4.23

Figure 4.25 shows the effect of changing the first input distd, on the maximum attain-
able interconnect length, and densityD. When calculating the results shown in Fig. 4.25
we used the typical parameter values, except for the ingtémice, and we also assumed the
fundamental-mode incidence. As the limiting values foritiput distance are effectively de-
termined by another parameter, the focal lengtive normalised by dividing it by f, in order
to get a more general result that would not depend on thecpéatichoice for the numerical
value of the focal length. As shown by the two vertical line$ig. 4.25, the maximum-waist
configuration corresponds tty f = 1, while the maximum-throw configuration is found at
d/f ~ 1.04. Note that the two lines shown together in Fig. 4.25 wereutated separately,
but shown together only for easier comparison. When calogidt, for each particulad/ f
value we moved the receiver microlens array as far as pessiblery small steps, until the

SNR dropped to our desired value of 15 dB. The interconnetartie/ which resulted in the
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15 dB SNR was recorded on the graph. We used a similar proeechen calculating): for
each value ofl/ f we assumed a symmetrical configuration of other planes, aoegdsed the
channel spacing until the SNR dropped to 15 dB, at which pbettaximum channel density
was recorded.

Several conclusion may be drawn from the results shown in£&Rp. Indeed there is a
particular value ofi/ f that lies in between the two conventional values and thatallus to
slightly increase the total interconnection distance. ulgisg either one of the two conven-
tional configurations is employed, we would hdve- 44 mm. By tweaking the input distance
slightly, to the pointwherd/ f ~ 1.017, we see from Fig. 4.25 that an interconnection distance
of L ~ 48 mm can be achieved. Similarly, by settidgf ~ 1.038 we see that we can obtain
a channel density oD ~ 18 channels/mrfy which is only slightly higher than the value of
D =~ 17.5 channels/mrh which can be obtained in the maximum-throw configuratioowH
ever, the fact that in both cases there exists an optimaewafld/ f, that lies in between the
two known configurations, is important as it proves our aiassumption. We are now in a
position to hypothesise that for any other performancerater value, such as for example
the SNR, or the SBP, there are yet otligf values that would lead to the optimisation of those
performance parameters. However, the practical gainsnalatdoy assuming an optimdy) f
value (in particular a gain if, of about 4 mm, and a gain i of about 0.5 channels/nin
are very small in comparison to the problems potentiallgiag from trying to place the trans-
mitter microlens plane at a distance ®df= 1.1017f, ord = 1.1038f away from the laser
array. Any disturbances in the precise position, possibly t temperature or manufacturing
tolerances, would quickly lead to losses of the benefitseghthrough optimisation. Note,
however, that the sensitivities of the interconnect leragtti/or density to changes ity f are
smallest ford = 1.1017f, ord = 1.1038 f; this may be turn out to be the strongest reason for
using those values in practice.

Figure 4.25 contains yet another feature that deserve@wliattention. Namely, it is in-
teresting to realise that the maximum interconnect digtdinat is obtained in the two limiting

configurations is roughly the samk,~ 44 mm, contrary to the popular expectation that the
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Figure 4.26: The density of optical interconnect channatslze increased if the wavelength
of laser light is decreased, or if the incident beam waishisgased. Both of these changes,
however, can be interpreted by the corresponding chandhs itlipping ratiox.

maximum-throw configuration would always lead to a largesrall L. While the intermediate
beam waists are well placed in the maximum-throw configomatihey are relatively small,
thus resulting in the imaged beam spreading quickly, anddenon reaching the maximum
interconnect distance. In the case of the maximum-waidiguamation, on the other hand, the
beam waists are imaged closer to the transmitter microtarighey spread slower and reach
larger interconnection distances due to their large beaistsvaOn the other hand, Fig. 4.25
shows that a larger interconnect density can be obtaindwimaximum-throw configuration,
which effectively makes it the preferred arrangement.

Figure 4.26 shows the effect of the incident laser beam \eagth and beam waist size
on the interconnect channel density. Similarly to the cds# ¢ these two parameters would
be very difficult to change in a practical situation, and leetieir manipulation does not have
much importance in the design process. We briefly examiriedffect so that a better overall
insight into the interconnect behaviour can be obtained.otkler parameter values used in
drawing Fig. 4.26 were standard, the maximum-throw con&igon was used, and the channel
density was increased by decreasing the spacing betweahan@els. As Fig. 4.26 shows,

we see that using laser beams with larger beam waists irg#as maximum channel density
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that can be achieved. If the beam waist is doubled from iteeativalue of 3um to to about

6 um, the maximum achievable channel density also doubles ffsehannels/minto about
35 channels/m# Similarly to the case of the maximum-waist configurati@anger laser beam
waists indicate that the beams diffractively spread slaagethey propagate, thus contributing
less to the total optical crosstalk noise, and allowing fighbr densities to be reached. It is
interesting to notice in Fig. 4.26 that the relationshipaAmsn the beam waist value and the
channel density is roughly linear.

Figure 4.26 also shows that the effect of changing the lasambwavelength on the max-
imum channel density attainable is very similar to the ¢ftdchanging the beam waist size.
As the laser wavelength is decreased (and their frequerncygarsed) the channel density in-
creases, but at a slightly less rate than the one for charigengize of the beam waist. As
the radiation frequency increases, the beams become mrertidinal and spread less as they
propagate. The relationship between the channel dengityp@am wavelength is also nearly
linear. This means that changing either the beam waist sizihe wavelength will have the
same effective result, and hence it would make sense taluintea normalised beam param-
eterws/A, or A\/wg, and hence decrease the total number of design parameteisscdmes
as no surprise as both, and A figure in x, our overall measure of the extent of diffraction,
although not necessarily as a ratio. Changing either oneeskttwo parameters, or one of
their combinations, given that all other parameter valtieg the same, effectively amounts to
simply changingz. Larger values of, regardless of how they are obtained, always indicate
less diffraction at any one particular aperture, hencenatig the whole interconnect to be
configured for a better overall performance.

The final point of interest in this section is the illustratiof the effect that changing one
small geometrical parameter of the interconnect can hav®mverall performance of the
device. So far we have intuitively assumed that the arraegemf the elements in each of
the arrays making up the interconnect is very regular andasg|, as shown in Fig. 4.27.
However, we could assume that the elements are arrangedifier@k pattern, such as the

hexagonal one, as also shown in Fig. 4.27. In order to covedarwange of possible element
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Figure 4.27: So far, we have assumed that the arrangemeltgroéets in arrays follows a
‘square’ pattern. By sliding each of the columns with respe&ach other we can ultimately
reach the ‘hexagonal’ arrangement, decrease the amouhe afgtical crosstalk noise, and
hence improve the performance of the interconnect.

arrangements within the arrays (each array, of course,dhbhave the same configuration),
we have interpreted the hexagonal arrangement as beingdb# of sliding one column of
elements with respect to the reference one. The refereemonaan be taken to be the one
that containg”,. The amount that one column is shifted with respect to theregice one, can
be measured by the value of ‘offset’, which is the shift idiroed between the channel centres,
as shown in Fig. 4.28, and the offset can either be positiveegative.

Figure 4.29 shows the effect of changing the array configarain the OCNR, assuming
that the incident beam is a pure fundamental Gaussian mollstafdard parameters and a
maximum-throw arrangement were used, as in the case of 2@. # the array configuration
is changed fully from the rectangular to a hexagonal onenenease of about 5% in the OCNR
can be achieved. The change in the OCNR is fairly monotonigiwis understandable since
the cross-sectional profile of the fundamental mode doesamiain any unusual geometric
features.

The effect of changing the column offset proves to be moer@sting if we assume that the
incident beam is a higher-order mode, with more complexszsastional profiles. Figure 4.30
shows the improvement in the OCNR if we assume that the intideam is the Hermite-

Gaussian TEM, mode. We purposefully chose this mode, and assumed thasithveaonly
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Figure 4.28: The relative sliding of the columns illustdhia Fig. 4.27 is measured by the
amount that the element centres are offset with respectto@her. The square arrangement
corresponds to 0 % offset, while the hexagonal arrangenoerésponds to 100 % offset. Slid-
ing the columns upwards results in a positive offset valuaensliding the columns down-
wards results in a negative offset value. In both casesettiffig the columns by more than
A/2 (half the array pitch) can be interpreted by changing theedfign.
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Figure 4.29: In the case of the TEMmode incidence a better optical interconnect perfor-
mance is obtained (by about 5 %) if a hexagonal arrangemet@y elements is used.
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Figure 4.30: In the case of the TEMmode incidence a better optical interconnect perfor-
mance is obtained (by about 6 %) if a hexagonal arrangementay elements is used.

one present in the laser beam, in order to accentuate tk&dtion of the offset phenomenon.
Again, the best OCNR, some 7% better than the ‘rectangular’ O@\&hieved if we assume
a fully hexagonal element configuration. In contrast to Bi@9 we see that the change of
OCNR in Fig. 4.30 is not monotonic at all. The rectangular gpnfition does not result in
the lowest OCNR, which occurs for an offset of about 30%.

Finally, Fig. 4.31 shows the effect of changing the columfseifin the case that the
Hermite-Gaussian TEM mode is assumed to be the only one present in the incident lase
beam. The trend displayed in Fig. 4.30 is similar to the tremolvn in Fig. 4.31. The OCNR
is again about 5% higher in the hexagonal than in the rectangtray configuration. Further-
more, the rectangular configuration again does not resutigrworst OCNR, which occurs
when two adjacent columns are 50% offset. Some general wsinoks can be drawn from
the results presented in Figs 4.29—4.31. First, it is cleat, tdepending on the geometrical
properties of the incident beam, the array configuratioriccbe adjusted so as to maximise
(or even minimise) the interconnect OCNR. So far we have obsihat hexagonal configura-
tions almost exclusively lead to improvements of about 5—7%e OCNR. Second, in order

to observe even a slightest change in the OCNR, the presenc®MfkHh the laser beams,
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Figure 4.31: In the case of the TEMmode incidence a better optical interconnect perfor-
mance is obtained (by about 5 %) if a hexagonal arrangementay elements is used.

unfortunately, has to be very pronounced. The whole idedfséiting the array columns is
based on the exploitation of the geometrical shape of sessenal profiles of various modes.
Finally, the practical significance of column offsets is patticularly great, as the small gains
obtained may easily be cancelled out by variations in otheaipeter values, not to mention an
inherent decrease in channel density. While the channeltgdénsasily calculated in the case
of a rectangular array configuration, it not only drops in &agonal configuration, but it is
also quite difficult to precisely calculate. As we shall se&ec. 4.4, for example, even small
changes in the alignment of the arrays in the interconnattwape out the offset benefits.
Nonetheless, we should not forget that so far we have onlgnaea the effects of parameter
variations independently of all other changes. It may weltle case that best-performance
interconnect design can be reached when an optimal condmnaftparameter values is used,
and this can only be verified by including global optimisatio the design process.

In this section we have examined the effect of various depayameters on the perfor-
mance of the optical interconnect, as measured by the OCNR, 8NiRe SBP. The mode
expansion method, derived and presented in Ch. 3 has enableddo these calculations,

which otherwise would be very difficult to accurately penforThe examination of the optical
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interconnect performance behaviour allows us to gain a&betsight into the way in which
we should go about the design and global optimisation ofetliesices. However, before at-
tempting to precisely formulate an optical interconnectigie procedure, we have to consider
the variations in its performance due to yet another parmm#te misalignment between the
arrays. Once an optical interconnect is designed withqadai global characteristics, such as
its length, density, and the space-bandwidth product fularelative placement of arrays, or
adjustment of elements arrangements, could lead to imprents in its overall performance.
However, all those improvements can very easily be lost groper regard is given to the
commercial aspects of the design, such as the manufactassgmbly, or temperature toler-

ances.

4.4 Tolerance to misalignment

The issue of tolerance of optical interconnects to misatignt has been a subject of many
studies [100, 99, 212, 62, 47, 98]. This particular toleeahas been identified as the most
important factor preventing a mass production and deployrokoptical interconnects, in a
range of practical systems. In these studies, apart frontreagment employing th&/? for-
malism [99], the VCSEL beam has been assumed to have the femainGaussian intensity
profile. While theoretical and experimental agreements vi@rad to be in relatively good
agreement (with the Gaussian-beam assumption) [100],nregwactical systems the optical
crosstalk noise was measured to be substantially higherdkpected, possibly due to the
presence of higher-order modes [62]. Here we examine theabtterconnect tolerance to
misalignment when the properly measured beam composgiased. We shall restrict our
examination of the effect of tolerance to the case of diagataral misalignment, as illus-
trated in Fig. 4.32. In our calculations we assumed that t6SKL array and the transmitter
microlens array were always properly aligned, and that geeiver microlens array and the
photodetector arrays were also always properly alignedcelethe misalignment considered

was the misalignment between the transmitter and receiv@olans arrays. All other pa-
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Figure 4.32: Schematic diagram of the misalignment mesiam optical interconnects. Here
we assume that the lateral misalignment occurs betweewthsitles of the interconnect, and
that the VCSEL and transmitter microlens array, as well agehbeiver microlens array and
the photodetector array are, respectively, aligned.

rameter values were standard. As a measure of misalignmetdke the ratio of the actual

misalignment distancé&and channel spacing:
- )
Lateral Misalignment = N 100%. (4.64)

In order to illustrate the mode-dependent behaviour of tkerconnect misalignment tol-
erance we first assumed that the incident beam consistethef enly a TEM,, or a TEM;;
mode, and calculated the SNR. The result is shown in Fig. 4f3Be VCSEL beam is as-
sumed to be purely the fundamental Gaussian mode, our biptieeconnect has been shown
to tolerate lateral misalignment of up to about 10% very wdbtwever, if the incident beam is
assumed to be the TEMmode, the interconnect can virtually tolerate no misaligntrat all.
Figure 4.33 also shows that assuming the TEMcidence dramatically worsens the overall
interconnect performance, as well. TEMmode has a very different cross-sectional profile

than the TEN, mode, and it is hence imaged and diffracted very differefiythermore, the
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Figure 4.33: The effect of lateral misalignment on the skigaanoise ratio of the optical inter-
connect in two cases: when the fundamental Gaussian beagident, and when the TEM
higher-order mode is incident. As soon as the incident figdttidution is changed from the
smooth Gaussian function, the tolerance to misalignmehdtically decreases. The amount
of lateral misalignment is defined by Eq. (4.64).

amount of the optical crosstalk noise introduced by the TEMode, for the same channel
spacing, is significantly larger. An improvement in the rigganent tolerance and the overall
interconnect performance, in the presence of HOMs, can taénalal by increasing the channel
spacing, and hence decreasing the interconnect density.

Following our initial experiment, we study the interconheusalignment tolerance by
using the measured beam composition, as shown in Fig. 4i8dire=4.34 was produced by
using the same data used for Fig. 4.11, the only differenicegyhieat the power was normalised
to the total output power, and the particular drive curresiigs were replaced by ‘Beam
Composition Numbers’. Beam Composition Numbers describeader lpumping level, and
are proportional t@I — I,,), wherel is the laser driving current, anig, is the laser threshold
current. Normalisation by the total output power helps usde the relative relationships
between the modes, and beam composition identifiers hetpessily address each particular
composition.

The interconnect tolerance to misalignment in the case winemeasured beam compo-



4.4. TOLERANCE TO MISALIGNMENT 173

Portion of Total Power

: : T : T : :
0 50 100 150 200 250
Beam Composition Number

Figure 4.34: The measured modal composition of the incideetr beam, represented in terms
of the amount of power that each mode carries relative todkepcarried in the fundamental
mode. Beam Composition Numbers describe the laser pumpiely &wd are proportional to
(I — Iin), wherel is the laser driving current, ang, is the laser threshold current.

sition is used in calculations is shown in Fig. 4.35. Thertdanect parameter values used in
the production of Fig. 4.35 were the standard ones, includisymmetrical maximum-throw
configuration. The only difference is that the channel spgaeias increased from the standard
value of A = 250 um to a slightly higher value oA = 300 um. This was done so that
relatively reasonable SNR values can be obtained in thepcesf higher-order modes in the
laser beam. We first assume that the two parts of the inteexbnvere properly aligned, and
observed what happens to the SNR. The result is shown by th&MR) curve in Fig. 4.35.
The SNR value then slowly decreases from its maximum valiB%#afB, as the power in the
fundamental mode diminishes (as the Beam Composition Numbegases), and the power
in the first transverse mode increases. This trend contitwugtse point when the fundamen-
tal mode is no longer present in the laser beam; by this tireeStHR only dropped several
decibels, to about 30 dB. As soon as the second transverse appeéars in the laser beam,
the SNR drops sharply by about 3dB, and continues droppingratci higher rate than pre-
viously, as the modal composition is changed further. Fertighest drive current, the SNR

is roughly half of its original value. Differences in the begrofiles are hence sufficient to
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Figure 4.35: Changes in the SNR resulting from the changebariricident beam modal
composition (empty circles, associated with the vertisad an the right), and the amount of
lateral misalignment that can be tolerated before the SMRsto 10 % of its misalignment-
free value.

completely ruin a particular interconnect design. It skdag noted that the higher laser output
power associated with higher drive currents is not sufficiemeutralise the decrease in the
SNR due to the presence of higher-order modes.

As seen from Fig. 4.35, when almost all of the VCSEL power isteaiin the TEM,
mode, the SNR decreases by 10% when the planes are misabgredgabut 18% (note that
different channel spacings were used in Fig. 4.35 than in&RBB). As soon as the amount
of VCSEL power emitted in the TE} mode drops to about 80%, the misalignment tolerance
is halved. With just less than a half of the optical power &ditin the fundamental mode
(Beam Composition Number 75 in Fig. 4.34) the misalignmerdrtoice is only about 7%.
Figure 4.35 also shows that the interconnect misalignndetance primarily depends on the
portion of the total power emitted in the fundamental modey Bubtle change in the TEM
power is faithfully reflected in the misalignment toleranae can be seen by comparing the
features of the curves shown in Figs 4.34 and 4.35. The getmeral of decreasing SNR
values with decreases in the power emitted in the fundarh&aassian mode can also be

noticed in Fig. 4.35 (values indicated by empty circles).wedwer, all values are above the
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relatively-standard good-performance value of about 12/dith the proper knowledge of the
tolerance of optical interconnects to misalignment, thsigte process will lead to working

devices much quicker.

4.5 Summary and conclusion

In this chapter we have presented a practical optical iatarect design model, and success-
fully evaluated the device performance. The achievemehthi® chapter are built on the
strong foundations of the mode expansion method, develogbdeé previous chapter. Our op-
tical interconnect design model is very comprehensive,@abave accounted for both optical
and electrical parameter values. In the process of evaluati optical interconnect perfor-

mance, we have established the following facts:

e proper modelling of diffraction in optical interconnecssviery important, and the best
way to model diffraction is to use the mode expansion metheufig any other method,
or using the mode expansion method with too few expandingeséehds to erroneous

results

¢ the basic and most common approach to the design of optigatonnects consists of
determining the maximum possible interconnect lengtlor channel density), given
a set of particular parameter values and the required dyEdbrmance characteristic;
the mode expansion method allows us to draw optical interecindesign curves from
which it is easy to work out possible combinations/oénd D, given a required value

of the signal-to-noise ratio

e the optical interconnect design can be simplified by usiregsibace-bandwidth product
as the main performance parameter; the spatial (lengthemsltg) and temporal (band-
width) optical interconnect characteristics are combiimethe SBP, which has been

shown to be a maximum only for one set of optical interconpacameter values

e both approaches to the design of optical interconnectsdgisegn curves, and the SBP
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approach) are complicated in the case when the VCSEL bearainsrttigher order
modes; due to their increased diffraction, the presencegbieit-order modes results in

a diminished quality of optical interconnect performance

¢ the optical interconnect performance can be fine-tuned jugstadg any one of a number

of parameter values, or combinations thereof, suah ag, ws/A, or column offset; the
improvements are generally not large and their exploitetias to be weighted carefully

against the increased difficulty of production

the tolerance of optical interconnects to lateral misatignt has been found to be
strongly related to the portion of the VCSEL power emittedha fundamental Gaus-
sian mode; in the case that the fundamental mode is domitiengptical interconnect
is reasonably immune to misalignment, in the case that nfdeegower is emitted in

higher-order modes, the tolerance to misalignment is jmabt lost.

The above findings can best interpreted in the context of argéoptical interconnect design

procedure, which we have employed throughout this chapteis general procedure can be

summarised as follows:

1. set up a design model, denote all the parameters, idemtiigh phenomena are most

likely to affect the optical interconnect performance, aetermine the measure of op-

tical interconnect performance (such as the OCNR, SNR, or thg¢ SBP
experimentally measure or otherwise procure paramatees

calculate the optical interconnect performance, ancutatie its tolerance to misalign-
ment; if the resultant values are not acceptable, relax én®pnance requirements, or

change some of parameter values

while keeping the interconnect performance and tolerahove the required level, vary
the less fixed set of parameters to see if the chosen perfoamarasure can be opti-
mised; critically evaluate the benefit of the obtained invpraent over the production

complications that it may cause.
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In this chapter we have gone through each of the above fops,sé&d suggested a way in
which the steps can practically be executed. The way in wiieloptical interconnect design
model and the measure of performance are set up could vanydne case to another, depend-
ing on the design aims that need to be achieved. Howeversdanee of the procedure is the

same in each case, and the benefits of the mode expansiondhae¢hevident.



Chapter 5

Conclusion

The continuing exponential development of informationgassing systems, in terms of their
processing power, size, and cost, depends not only on thiemaong development of individ-
ual information-processing centres, but also on the dewedémt of the communication links
between them. While the development of integrated eleatrarguits, according to industrial
assessments, is likely to continue unabated, the elddamiesconnects used for communica-
tion between chips at medium and short distances have beaetifiedd as being in need of
urgent improvement. Currently, the most effective solufmmthe communication bottleneck
caused by the poor performance of electrical interconnsdasradical shift to a technology
utilising a higher frequency band, in the form of opticakir@onnects. Numerous theoretical
and experimental studies of optical interconnection sasperformed so far indicate a bright
future for these new devices.

While the humanity has a reasonably good grasp of the prexipl electromagnetism, a
lot of work still remains to be done on devising and orgamjginocedures for trouble-free and
independent application of those principles. It was nogzdly on in the research on optical
interconnects, that the problem of laser beam diffractidhnged to be dealt with decisively
if an optimum in the performance of optical interconnecttoive attained. However, even
though diffraction has been investigatad nauseamaccessible tools for solving practical

diffraction problems still have not been produced. Thiseéitation rectifies this.

178
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5.1 Summary of dissertation findings

We formulated the problem of diffraction in optical inters@cts as essentially a mathemati-
cal problem of appropriately solving the laser beam diticacintegral in the Fresnel region.
This diffraction integral is a direct consequence of amilan, manipulation, simplification
and approximation of the first principles of electromagsmatin the microchannel optical in-
terconnect configuration. While the way from the first pritegpto the specific diffraction
formula is well known in principle, we have followed it witlgggical optical interconnect pa-
rameters in mind; we have shown the reasoning behind andgh#icance of each approx-
imation. The treatment of this process is sometimes vericbigeor altogether omitted in
many textbook-level publications dealing with diffractioHowever, its proper understanding
and verification is necessary in order to obtain a propemgets/e of the problem that needs
to be solved. Furthermore, by showing how to do it in the cddbe microchannel optical
interconnect configuration, we have made the commenceneiné dreatment of diffraction
in other interconnect configurations easier.

After formulating the problem specifically, we turned outeation to the existing ways
of solving it. The first problem that we encountered was howldal with the vast amount
of literature that has been published on the subject. Thielgmoof optical diffraction, after
all, is older even than the theory of electromagnetismfitskidging by the mere number of
publications we expected to straight away find a proceduregary software packages, that
anyone working at the ‘system level, equipped with a corapand the basic knowledge of
the field, would be able to implement easily. However, thas wat the case. Perhaps our
‘basic knowledge’ was not extensive enough, or the evalnatiethodology and the overall
approach were ill conceived and poorly planned. Whateverdhson, the attainment of the
enabling power that the results presented in the previoastehs gave us, ultimately rewarded
the efforts motivated by this initial failure.

In an attempt to rationalise the current state of the art enalrea of optical diffraction,
we decided to divide the existing approaches into threewdifft categories. This division

is by no means overwhelmingly general, and it may not be eabplé to other projects of
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similar kind; it was inspired by the nature of the problemiffirdction in optical interconnects,
as well as the nature of the publications that we originatigaaintered. The first approach
consists of ‘direct solutions.” The studies of this kindrsfeom somewhere in the deductive
chain spanning the first principles and one of many mathealdrmulations of the scalar
diffraction principle. The starting point is very much likee mathematical formulation of our
problem presented in Ch. 2. However, as several equally raithematical arguments can be
used to arrive at the diffraction formula, the results inglapers of this first category frequently
appear incompatible with each other. Quite a bit of insiglitequently needed to establish the
relationships between different mathematical formufaiof the same meaning, especially if
the normalising and other factors are omitted. This wagitytconsidered an obstacle in our
project, but after a while clear trends emerged. After cimgpa suitable starting point, all
direct solutions proceed to analytically solve the diffraic problem. Depending on how the
problem was mathematically formulated, as well as on thecehof the formulation of the
incident optical field, various integration techniquesaplied in order to get to a meaningful
and useful result, which is then numerically implementedhow behavioural trends. The
main problem with this type of approach is that the resultsioled are usually only valid for
the specific situation considered, not to mention the nwaktraps that are associated with
them. If we desire to change any of the parameters of the @mbincluding the incident
optical field formulation, or the characteristics of thefidifting plane, the whole procedure
needs to be repeated.

The second category of solutions that we identified are théisns obtained by further
approximation of the diffraction formula that we chose as starting point in Ch. 2. The
motivation behind this approach is that the simplificatibnthe mathematics associated with
diffraction problems is frequently worth the benefits gdime the transparency and the ease
of application. In this category of solutions we includetithé solutions of the diffraction
problem in the far field, also known as the Fraunhofer diticac While we acknowledged
that these solutions are excellent for preliminary consitiens, our main fear was that the

further approximations made to the diffraction formula e strong in the optical intercon-
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nect context. The primary goal of the first-category sohsgigs to maintain a suitable level of
accuracy in the derivations all the way through to the finallg and as such are not much
used at the system level. On the other hand, the simplifiechsecategory approach might
be attractive from the engineering perspective, but thenaam never be sure what exactly is
missing. In the sense of the mathematical approach andalseused, the solutions belonging
to this category are very similar to the solutions that bgltmthe first category. The process
of integration is still pursued, and the outcome dependsierchosen starting point, all the
approximations, and the choice of the representation ahttident optical field.

The third category of solutions that we identified, termemlusons by equivalent repre-
sentation,” consisted of all the solutions that followedralgsophy radically different from
the first two. Instead of trying to ‘formulate and integratiee solutions in this category were
found to utilise unusual mathematical equalities, as weloapremeditate the characteristics
of the expected solutions. This approach very much fittedtin what we desired, and was by
far the approach most used in earlier studies on modelliffigadiion in optical interconnects.
While it possessed the easy-going nature of the solutioresradat by further approximation, it
lacked the accuracy and the rigour associated with the &tsgory. In this class of solutions,
the main focus was on understanding and modelling the sftdaliffraction, as they may be
relevant in a practical device, and trying to achieve th@seeseffects by alternative means.

Out of all the solutions in each of the three categories, Vectsd and reviewed a class
representative that could have and has been used to maoattdn in optical interconnects.
The first category of solutions was represented by the workaobkaet al., the second cat-
egory was represented by the work of Tagtcal.,, and the third category was represented by
the work of Belland and Crenn. In the work of Tanadaal. laser beams were represented
by Laguerre-Gaussian functions and full analytic intagres were performed with the result
being an infinite-sum representation of the diffractiondfj@h the work of Tanget al. the laser
beam was represented by a plane wave diffracted by an apgramd the simplified Fraun-
hofer diffraction field was obtained; in the work of Bellandda@renn the laser beam was

represented by Gaussian functions, and the (weak) difragtas interpreted as consisting of
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changes in the parameters of that incident Gaussian beane dfaéhose approaches qualified
as appropriate for modelling diffraction in optical intermects.

The most significant contributions of this dissertation #ve formulation of the mode
expansion method, and its validation as the optimal toohfodelling diffraction in optical
interconnects. The derivation of the mode expansion metfasdapproached from the philo-
sophical point of the third-category solutions describbdva. Rather than plunging straight
into the intricate manipulation of equations, we startedfithe assumption that the resultant
diffraction field, regardless of how it was produced can lerpreted as a weighted sum of
functions of an orthonormal set. This idea, mathematicatig in principle, is not new, but
the full credit for its first formal pursuit in the context @fder beam diffraction has to be given
to the work of Tanakaet al. Furthermore, as we have seen in Ch. 3, the application of the
modal-expansion principle is not a straight-forward nratbme has to resort to some clever
tactics if a truly new meaning is to be unveiled.

The mode expansion method enables us to model diffractiestsfwithout solving the
traditional diffraction integral, or evaluating one of iisting solutions. The crux of the
method consists of, first, representing the the optical,fledth behind and after the diffracting
aperture, in terms of weighted sums of suitably chosen gaigltogonal functions; second,
the two field representations are matched at the diffrastimface, thus allowing us to work out
the unknown coefficients and parameters. The mode expanmstimod was formulated with
the intrinsic assumption that the diffracting aperturenfgnitesimally thin, and that it can be
accounted for through its ‘action.” However, the methodegually well be applied to the case
of any composite aperture. The strengths of the mode expansthod are many, especially
in the context of modelling diffraction in optical intercoects. Namely, the incident optical
field is not constrained to any predefined form, such as plapéerical, or purely Gaussian
beams; the aperture shape, size, position, and the trasiemfsinction are also irrelevant, as
the derivation of the mode expansion method was not relatedyt particular kind of aperture.
Most importantly, however, the diffraction field obtaineg #he mode expansion method is

given by using the same functional forms used to represenntiident optical field. Hence,
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the phenomenon of diffraction can be interpreted in termshainges in the parameters of
the incident beam, rather than in terms of new functionahfrAs such, the mode expansion
method allows us to investigate diffraction at multiple avitdlly different diffraction surfaces,
by simply repeating the same process over and over again.

While the ideas of modal expansion have been investigatedopidy by researchers in
various fields closely related to the subject of laser bedfradtion, we point out that the
true novel contribution of this dissertation lies in thetfdtat we formally showed how to
arrive at the mode expansion method, starting from the Iaggnof the theory. We proved
that the mode expansion method truly gives the same resuttseadirect application of the
diffraction integral, and that the mode expansion methau lma applied regardless of the
choice of incident beam functions, or the diffraction soefa

The final set of contributions detailed in this dissertaticas made in the area of optical
interconnect design. We have proposed the microchanniglabpiterconnect configuration,
identified the parameters important in the design, as wétirasulated appropriate parameters
that can be used to evaluate the device performance. The alé¢he signal-to-noise ratio,
optical signal-to-noise ratio, and the space-bandwidtidpct are certainly not new, but they
have not been applied in the case of optical interconnegjul@sthe way that we have applied
them here. This is especially true in the case of the spacdvadth product which was
introduced to the study of optical interconnect perforngandhe present volume. By applying
the mode expansion method in the design of optical interectisrwe were able to precisely
guantify the effect of laser beam diffraction, evaluatedbeice performance, and establish the
performance limitations caused by the diffraction phenaeméNe have also used the mode
expansion method to investigate other important aspeatptafal interconnect performance,
such as its sensitivity to misalignment. We have, in thiseliation, indicated clearly, in
all of its details, how the mode expansion method is to beiagpph a microchannel optical
interconnect configuration.

For the first time to the best of our knowledge, we consideneckeffects of diffraction of

experimentally measured VCSEL's higher-order modes on #émopnance of optical inter-
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connects; without the mode expansion method this outcom#dwvwt be possible. We also
examined, for the very first time, the effects of diffractmirhigher-order modes on the space-
bandwidth product, as well as the tolerance of optical adenects to misalignment. In all
of the cases we found that diffraction effects, especidlhigher-order modes are present in
the laser beam, played an important role in the performahoptaal interconnects. None of

these findings would have been possible without the modensiquamethod.

5.2 Further goals and direction

The true value of the mode expansion method will be realiséy through its further devel-
opment and application in practical situations. The firgpstin the acquisition of any new
technique are usually the hardest; however, the time iaddstlaying the foundations pays
off manyfold when it comes to applying the technique in new axciting cases, that may not
even be evident now.

Several directions may be pursued in terms of incrementatriboitions in the develop-
ment of the mode expansion method, as each aspect of thedmathobe further probed and
refined. For example, one could look at more exotic ways alsgnting laser beams, investi-
gate ways of representing diffraction-free beams, or low& the situation where the incident
optical field is produced and emitted by several sourcesfrdaiion caused by non-clinical
diffracting surfaces, such as aberration-prone thickdensirrors, or other compound and
multiple elements. Finally, the produced diffraction fielduld be examined diagnostically
and the relationships between the characteristics of firaction field, on one hand, and the
incident field and the diffracting surface, on the other hawodld be sought.

The more exciting applications of the mode expansion metta=dto be connected with
promising new devices and systems, such as the free-sptcal apterconnects; one always
has to look for the situations where diffraction is likelydocur, and where it is likely to have
some effect on the overall performance. Luckily, with thexstant trend of device minia-

turisation, as well as with the penetration of optical temlbgies in our daily lives, this will
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become increasingly easier. The ultimate triumph of the er@dansion method, regardless
of the practical situation in which it is used, would be taallthe designer to come up with
novel and unusual physical structures and combinationshwhibuld allow him to neutralise

the negative effects of diffraction, and capitalise on thsifve.



Appendix A

Electromagnetic considerations

The electromagnetic considerations presented here aesl Ipagnarily on the material pre-

sented in Ref. [103].

A.1 Review of fundamentals

The electromagnetic principles, in their differentialrfgrcan be written as

oB

and
D
V><H=J+aa—t, (A.2)

whereFE is the electric field vectorD is the electric displacement vectds, is the magnetic
field vector, andH is the auxiliary magnetic field vectot] represents the (electric) current
density, andJ/,, represent the magnetic current density.

By taking the divergence of Egs (A.1) and (A.2), and having indrthe two equations of

186
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continuity,
dp
V-J+E—O, (A.3)
and
Opm
V-Jm+ﬁ—0, (A.4)

two immediate consequences of Eqs (A.1) and (A.1) are:

V. -B =py (A.5)
and

V.-D=p. (A.6)

In the above equationg, and p,, represent the (electric) and magnetic charge density per
unit volume respectively. Magnetic current densify,, and magnetic charge density,, are
introduced as mathematical formalisms, not necessaristieg in nature, with the aim of
facilitating further derivation.

The relationships between the two pairs of field vectd#sand D, and B and H, are
determined on the basis of the medium wherein the field exiStsaight away we assume
that all media of interest in the context of our problem acgrgpic; we assume that vectors
E and D, and B and H have the same direction at any point in the interconnect.oRatf

magnitudes of these two pairs of vectors:

D
== A7
= (A7)
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and
(A.8)

generally in function of field intensity and frequency, fothe constitutive parameters of the
medium. In Eq. (A.7)¢ represents the permittivity of the medium, and in Eq. (AiB)epre-
sents the permeability of the medium. The constitutive pa@tars are frequently normalised

to their constant values in vacuum:

€ = (1/367)-107 F/m,

o = 47 -107" H/m, (A.9)
and termed the relative permittivity (or dielectric comgja
€& = —, (A.10)
and the relative magnetic permeability:

g =1 (A.11)
Ho

While p, =~ p for practically all materials of interest in optical intermectse is generally

assumed to be a complex number,
€ = €re — J€im, (A.12)

in order to keep track of the relative phase difference betwe and D. The phase difference
is due to the molecular structure of the medium.

Values ofe and; at any point in a medium are generally dependent of the stieniy
the field at that point, as well as on the relative positionh&f bbservation point. In case

that the constitutive parameters are independent of treedtedngth, all relations between the
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field vectors become linear, and the superposition prieaiphy be used. If the constitutive
parameters do not depend on the relative position withimtédium, the medium is said to be
homogeneous, and the constitutive parameters can bed@at®nstants. We assume that all
materials of interest in optical interconnects are botbdinand homogeneous.

Assuming that only conduction currents are be present imtbéium, without any con-

vection currents, the electric field vector can be relatatieccurrent density vector:

J =oE, (A.13)

whereo, in general frequency dependent, is the conductivity ohtleelium.

In order to be able to properly define an electromagnetic field?, apart from the field
and source equations, we also must know the relations thsit &xa boundary where the
properties of the medium change discontinuously. Consideradjoining media,M/; and
M, with two sets of constitutive parameters: = {¢;, 11,01}, andps = {eg, p2,02}. The
boundary surface between; and M, is denoted byS;,, and the positive unit vector,
normal toS,, is directed from mediund/; into mediumM/,. The boundary conditions that

must be satisfied on the boundary betw@énand M, are as follows.
Boundary condition 1: The tangential component of the electric field is continuacss
the boundary:

In general, the electric fiel& penetrates into a conducting medium a distance inversely
proportional to,/o, the square root of the conductivity of the medium. Henceé/ifis
a perfect conductorf = oo), E; must be zero. Boundary condition 1 in that case can

be reduced to:

n x By = 0. (A.15)
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Boundary condition 2: There is a discontinuity in the normal componenf®ft the bound-

ary if there exists a surface layer of charge:

n- <D2 — .Dl) =Nn- (€2E2 — €1E1> =1, (A16)

wheren represents charge density per unit area. Generally, l@fetsarge occur when

one of the media has infinite conductivity.

Boundary condition 3: The normal component dB varies continuously across a boundary:

n-(By—Bi)=n- (u2Hy — p1Hy) = 0. (A.17)

Boundary condition 4: A discontinuity in the tangential component Bf occurs only where

there is a surface-current sheet on the boundary:

nx (Hy,— Hy) =K, (A.18)

whereK is the surface-current density. Generally, current sheass only if one of the
media is infinitely conducting. In that case, from Boundary diton 1, it follows that

the field cannot penetrate the medium, and hence that:

H, =0, (A.19)

from which it follows that

nx H,=K, (A.20)

and

n- By =0. (A.21)
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Note that Egs (A.19), (A.20), and (A.21) are written assugrimat M/ is infinitely con-

ducting, i.e. that; =

We proceed now to derive several other expressions thabwillseful in further consid-
erations of the electromagnetic field. By taking the curl of &g1), and by eliminating the

magnetic field vectoB by means of Egs (A.2) and (A.8), we obtain

2
VxVxEJrue%g:—ua—J—Vme. (A.22)

Similarly, by interchanging the roles of Egs (A.1) and (A& get

0?’H 0Jwm
VXVXH+M€at2 = GW—FVX-] (A23)
By using the vector identity
VXxVxP=V(V-P)-V?P, (A.24)

and after replacing’ - E with p/e, andV - H with p,,,/u, EQs (A.22) and (A.23) become

O’E oJ 1
’E — jie—— = pi— - A2
v Hegm =My —|—V><Jm—|—€Vp, (A.25)
and
O’H 8J
2f — = A.2
v Hegm =€ gp -V xdJ+ V,om (A.26)

Equations (A.25) and (A.26) still have the same general ingaas the starting Eqs (A.1)
and (A.2). Very frequently, as indeed is the case in the stfidyptical interconnects, we have
to deal with electromagnetic fields in a medium differenti® dne where they were produced.

Assuming that the medium of interest contains no sources,(B@5) and (A.26) reduce to
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the homogeneous vector wave equations:

O*E
V?’E — HeSg = 0, (A.27)
and
O*H
V>H — e e 0. (A.28)

So far, no restrictions were placed on the time dependenamybf the quantities. An
arbitrary function can always be represented by a comloinati functions with harmonic time
dependence. With the harmonic-time assumption, exprabsedgh the (suppressed) factor
eI@t = cos(wt) + j sin(wt), the vector relations, given by Eqgs (A.25) and (A.26), sifgib a

pair of vector Helmholtz equations:

V xV X E—EE=—jwud —V x Jy, (A.29)

and

VxVxH-KH=—juud,+V xJ, (A.30)

where the propagation constaht,s given by

k* = wipe. (A.31)

Again, in a source-free medium, Egs (A.29) and (A.30) sifgpb a pair of homogeneous

vector Helmholtz equations:

V?’E + k*E =0, (A.32)
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and

V’H + k*H = 0. (A.33)

As written above, Egs (A.32) and (A.33) imply that each regtdar component of the field

vectors,U, satisfies the scalar Helmholtz equation:

VU + k*U = 0. (A.34)

This equation is usually solved by making the paraxial aggiom, i.e. that the power
carried byy is concentrated along the axis of propagation, here takéee thez axis. When
dealing with the behaviour of electromagnetic fields in cgitinterconnects, we will always
assume that they do not extend laterally much past a smelé @round the axis of propaga-
tion. The most well-known waveforms satisfying Eq. (A.34¢ #éhe plane, cylindrical, and

spherical waves, all described by a family of equiphaseasesd.

A.2 Derivation of the diffraction formula

The field equations presented in the previous section appkgions of space free of charge
and current distributions; they do not contain informataout their ultimate sources, which
are exist outside of their domain of validity. Solving thelplem of laser beam diffraction
consists of the more general task of characterising the@relaagnetic field, the diffraction
field, due to a known field distribution associated with thi&acting surface. The application
of electromagnetic equations in this more general caseasterts utilising the vector Green’s
theorem. We Consider a volumi& bounded by surfaces, S,, ..., S,, as shown in Fig. A.1,
and introduceF’ andG as two vector functions of position . Both F' andG are considered
to be continuous and to have continuous first and secondatiggs inl’, as well as on the

boundary surfaces. As shown in Fig. Asd represents unit vectors normal to the bounding
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Figure A.1: Notation used in the application of Green'’s tie@o.

surfaces, and directed inid. According to the vector Green’s theorem, we then have:

/(F~V><V><G—G-V><V><F)dV
v

:—/ (GXxVxXxF—-FxVxG) -ndsS. (A.35)
S1+S2+...+5n

The ultimate purpose of applying the Green’s theorem is fwess the field at an arbitrary
point P in the volumeV in terms of the field sources within this volume and the vahfabe
field over the boundaries of the region. After assuming that

e—jkr

G = = Ya, (A.36)

r

wherer is the distance fronP to any other point in the region, andis an arbitrary but

otherwise constant vector, and after a very lengthy seguehmanipulations, we obtain the
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field atP as
1
By — ——/ <jw/ﬂpJ+Jm X Vi) — va) %
Am )y €
1
+— Jjwu (n x H) dS
AT S 455445,
1
+— (n x E)x Vi dS
AT S 4554450
1
+— (n-E)VydS, (A.37)
am S1+S2+...4+5n
and
1 ) Pm
Hy = —— jwevdy +J x Vi — —V | dV
ar Jy 2
1
+— Jjwe (1 x E) dS
4 S1+S2+...+5n
1
+— (nx H) x Vi) dS
4 S1+S2+...+5n
1

+ (n- H) Vi dS, (A.38)

4 S1+S2+...+5n

where all symbols have the same meaning as before. The fietdsarvation poin’ have
thus been expressed as the sum of contributions from theewdistributed through region
V" and from fields existing on the bounding surfaces. Equat{én37) and (A.38) describe
radiation fields in their direct relation to the sources. ldwar, we are frequently interested
in a simpler problem, as is indeed the case in our considerafi the laser beam diffraction
problem. The simple problem is this: Given the values of tleetac and magnetic field
vectors over an equiphase surface, how can we determineltiedictors at a specified point?
Let the fields be specified over an equiphase surfaeghich encloses all sources of the
field, and letP be the field point at which the vecto#s and H are to be determined. The
solution to our simplified problem can be obtained by appiiceof Eqs (A.37) and (A.38) to

the region bounded by and infinity. Since the sources of the field lie outside thgiar, the
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two volume integrals vanish as follows:

1
Ep = e S—jwu(nXH)w
+(nx E)x Vi + (n- E) Vi ds, (A.39)
and
Hp = ! j E
P= S—ng(nx )
+(n x H) x Vi + (n- H) Vi dS. (A.40)

Equations (A.39) and (A.40) may be regarded as an analytioaulation of the Huygens-
Fresnel diffraction principle, which serves generally dsaais for the study of wave propa-
gation. The Huygens-Fresnel principle states that eacht pm a given wavefront can be
regarded as a secondary source which gives rise to a sghsdvcalet; the wave at a field
point is to be obtained by superposition of these elementarmelets, with due regard to their
phase differences when they reach the observation point.

Given that surfacé is completely closed, Eqgs (A.39) and (A.40) can be rewriggn

1 oF o
Ep = i g (¢ o E@n) ds, (A.41)
and
1 oH o
Hp = i s (1/; o _H8n> dsS. (A.42)

If U stands for any rectangular componentifor H, we may also write a scalar relation

corresponding to Egs (A.39) and (A.40):

1 oU o
Ur==1- /. (zp 5 U an) ds. (A.43)

Equation (A.43) may be regarded as the mathematical exprestthe Huygens’ principle
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for a scalar wave, and is practically taken as the startingtor our considerations of laser

beam diffraction in optical interconnects.
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Additional expressions

B.1 Hermite-Gaussian coefficients

So far we have derived the expansion coefficients only in seoimthe Laguerre-Gaussian
modes. Generally, due to the equivalence between the tw@tetodes we expect that all the
results we can simply express the Laguerre-Gaussian @ungciin terms of Hermite-Gaussian
functions, and hence obtain the Hermite-Gaussian fornoulait We present here, for the sake
of completeness, the expansion coefficients for an emptgrecaperture of length in terms

of the Hermite-Gaussian laser beam modes. All the symbelsth@ same meaning as before,
the only difference is that the diffracting aperture is aaguather than a circle. As before,

the diffraction field can be approximated as

N M
Unm(x7yaz) = ZZ Cﬁm&ﬁTh(l'ay?Z)ﬂ (Bl)

n=0 m=0

with coefficients given by inverting Eq. (B.1)

Cﬁm - / / Unm<x7yaz) I&Zm(I,y,Z) d[Edy
_ . C. (B.2)

198



B.1. HERMITE-GAUSSIAN COEFFICIENTS 199

Assuming thatu — oo, each of the ‘half-coefficients”;, and Cj, is given by one of the
Egs (B.3)—(B.5), depending on the values.@ndm (where we have assumed that the incident

mode isy,,(z, y, z), and< v, u > means ‘a choice of eitheror y’):

(1) if (n,m) +t = odd,

C; =0, (B.3)

(2) if (n,m) = 2v andt = 2y,

1\ Ve 9 1/2
« - (5) ()
2 WS

(2v +20)!(s = B)"(s — )"
sy (v + ) 2012p!

ol ey L ss=6-7)
R A S = =ik &4
(3) if (n,m) =2v +1andt = 2u + 1,
-1 vt 2 3/2
Ci - (7) (wowoS)

v 42+ 1)(s = B)"(s — )"

svti(v + )/ (2v + 1)1(2u + 1)!

Pl ey L 8ls=8-1)

R ¥ == (5

where

11k gk
S$=—+—5+ > — =, B.6
w2 w2 2R 2R, (8.6)

the hypergeometric series is given by [108]

ab  ala+1)b(b+1) ,
F(a,b; =14+ —
(a,b;c, z) + Cz—l— (et )2 254

(B.7)
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and all other symbols have the same meaning as before. THeierds for the case that the
aperture contains a thin lens are best obtained numeri@atige the action of a square thin
lens is not exactly the same as the action of a circular tma & the same focal length), but
an estimate can be obtained by changing ¢ in the above equations.

The optimal parameter set of the expanding Hermite-Gauss@les (the parameter get
that maximises the incident-to-incident coupling coediit), assuming that the incident opti-
cal field is the fundamental Gaussian beam, can be found hytsineously solving Egs (B.8)

and (B.9), given by [182]

Eonpa® = Eipa?, (B.8)

. T 2a2+ A2a2
(nga® 778&2)\/ (m 5 ™ )<I>( oa2+770a2>

) ) 1
+iga®(nga® + fga®) exp { 2(%@ + fga )] 0, (B.9)

where the error function is given by [108]

O(x) exp(—y~)dy. (B.10)

7=l
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